
RDT

A Self-Relocating Debugging Tool
for Heath 8-bit Computers (HDOS System)

by Patrick Swayne

Distributed by the Heath Users' Group

!

**
Heath Users' Group

**
The Heath Users' Group is provided by Heath Company as a service to
its members for the purpose of fostering the exchange of ideas to
enhance their usage of Heath Equipment. As such, little or no
evaluation of the program(s) is performed. The prospective user is
hereby put on notice that the program may contain faults the
consequences of which Heath Company in general and the Heath Users'
Group (HUG) in particular cannot be held responsible. The prospective
user is, by virtue of obtaining and using these programs, assuming
full risk for all consequences.
**
These (this) program(s) were developed and tested on versions 1.6
(50.05) and 2.0 (50.06) of the Heath Disk Operating System (HDOS) and
believed to be free of program errors. The Heath Users' Group cannot
predict that the program will perform on future versions of HDOS.
However, if a version dependent program surfaces, REMark will publish
all known fixes for all products. Individual attention to problems of
this nature is not possible with a group as large as ours.
**

PART OF 885-1092

CONTENTS:

...................................Introduction 1

.........................Loading and Running RDT 1

..Commands 2

................................RDT Sample Run 15

.............................Debugging with RDT 18

.................RDT and the Type-Ahead Buffer 19

................................Command Summary 20

..Index 21

Introduction

RDT is a machine language debugger for Heath computers using the HDOS
system. It automatically moves itself up near the top of your system's
memory when you load it, and thus allows you to debug programs that
occupy the normal user RAM area. It also makes an excellent patch
utility and can load system files as well as regular absolute files.
Its built-in mnemonic disassembler will help you check your work when
patching or debugging.

Loading and Running RDT

RDT is supplied in assembly source and assembled binary forms. The
binary will run in any HDOS system. It occupies 6K of space at the top
of your system's memory after loading in the overlays. It is not that
large, but allows a buffer space for user programs that like to put
their stack just below the overlays. If you wish to reduce the space
occupied to 4K, change the value assigned to the label INCLUDE to 1
and re-assemble the source. The mnemonic disassembler feature will not
be available if you do this.
To run RDT, just enter RDT as an HDOS command preceded by a device
name (ex. SY1:RDT) if necessary. It will sign on by printing

SELF-RELOCATING DEBUGGING TOOL (RDT) Version 1.0

Enter Printer Device Name: <none>

If you plan to use a printer with RDT, enter the name of your device
driver at this point (LP:, AT:, etc.). You can leave off the colon (:)
if you wish. Type a carriage return after you enter the device name.
If you are not going to use a printer, type a carriage return without
entering a device name. When you hit return, RDT prints

STARTS XXX.XXX ENDS YYY.YYY
]

It displays the starting and ending addresses (XXX.XXX and YYY.YYY)
(in split octal) that it will occupy after relocation, moves itself,
and prompts for your commands with an inverse bracket (]).
The syntax ; for RDT commands is a command word followed by a number or
numbers (addresses or data) separated by delimiter characters (for
example, DISPLAY 42200,42237). Some commands need an additional
command word before the numbers are entered (for example, SEARCH WORD
42200,67377,40010). The delimiters used in RDT are the space, the
comma, and the dash, and they may

RDT Instruction Manual Page 1

be interchanged in most cases (exceptions will be noted). There are no
hard-to-remember special symbols or formats used in RDT. When you type
the first letter (or first two letters) of a command, it completes
itself and adds a following space if an argument is required. A
carriage return is usually required to terminate a command. As you
enter arguments to a command, you can correct mistakes with delete or
backspace before you hit return. If you want to exit a command after
invoking it, type control-A.
RDT expects you to enter numbers in octal/split octal but you can
change the base to hex with the BASE command (explained later) if you
wish. If you are in base octal, any number greater than three digits
that you enter is considered split octal, if RDT expects an address.
If you enter more than six digits for an address or more than three
for a byte, only the last six or three digits entered are used.
Leading zeros are not required in either case. The left digit in every
group of three should be 3 or less. If it is not, it will be truncated
to two binary digits. For example, if you enter 666, the left 6 (which
is binary 110) will be considered 2 (which is binary 10), and RDT will
"see" 266. If you enter a digit that is not octal (0-7) , a question
mark will be printed when you terminate the entry (type carriage
return), and you will be prompted for a new command. Here are some
examples:

You enter RDT response

111222333 "sees" 222333 (or 333 if a byte is needed)
477 "sees" 077
500637 "sees" 100237
338 prints "?"

If you select base hex, all hex digits are valid (0-F). You do not
need leading zeros for addresses less than 4 digits or bytes less than
two digits. As above, if you enter too many digits, only the last ones
entered are used. Here are some examples:

You enter RDT response

ABCDE "sees" BCDE (or DE if a byte is needed)
abed "sees" ABCD (lower case is OK)
123X prints "?"

RDT Commands

Below is a description of the commands available in RDT. Before each
command's description the syntax of the command is shown using general
terms in parentheses instead of actual numbers or delimiter
characters. The expression (del) means a delimiter character, and (cr)
means a carriage return. An example is

RDT Instruction Manual Page 2

FILL (start addr.) (del) (end addr.) (del) (constant) (cr)

and an actual use of the FILL command might be

FILL 60000,77377,0

followed by a carriage return. In that example, the memory space from
60000 to 77377 is filled with zeros.

The ADd/subtract command:

NOTE: The letters you need to type to invoke the above command are
capitalized. The rest are shown lower case. This procedure will be
followed when each command is introduced.

ADD/SUBTRACT (number) (del) (number) (cr)

With this command, you can add and subtract in octal/split octal
and hex. The sum and difference of the two numbers you enter are
printed on the next line (the second number is subtracted from the
first). If the result of* the addition is over 377377A (0FFFFH),
the carry is dropped. If you subtract a number from one smaller
than itself, a borrow is supplied. Here is an example of this
command:

]ADD/SUBTRACT 43177,42200
105.377 000.377

The AScii command:

ASCII (address)(cr)

The ASCII command lets you examine memory and make changes to it
using ASCII characters instead of numbers. After you enter the
command, address, and carriage return, RDT prints your address on
the next line, spaces over, and prints an ASCII representation of
the byte at that address followed by a slash (/). Control
characters are printed as normal characters preceded by a
"^" (example: control-E is ^E). At this point you can type a
carriage return to end the command, or a slash (/) to look at the
next addresss, or just about any other ASCII character to replace
what is there. The character you enter can be a control character
as long as it is not one used by HDOS or RDT (^A to ^D, ^0, ^P,
^S, ^Q, or ^Z and CR, LF). RDT does not check for delete or
backspace characters in the ASCII command, so you can enter those
characters as well. After you enter the character, you again have
the option of ending the command with a carriage return, or going
on to the next address with a slash. If at any time you wish to
back up to a previous address, type a dash (-). You should take
care when using this command not to change an

RDT Instruction Manual Page 3

address below 42200A (2280H) or above the starting address of RDT,
displayed when it signed on. You should also make sure that what
you are changing is ASCII data, not part of your program's
machine code. Example: the word TEXT was misspelled as TEST.

]ASCII 112045

112.045 T// type a slash to move forward
112.046 E//
112.047 S/X/ replace S with X and move
112.050 T/ type a (cr) here
] back to RDT

The Base command:

BASE HEX

BASE OCTAL

This command sets the number base for RDT input and output. After
you type B to invoke the command, you only need to type H or 0 to
complete it (no carriage return needed). At start up, the base is
always set to octal/split octal.

The CHange command:

CHANGE (address)(cr)

The CHANGE command is used to examine or make changes to memory.
Its operation is similar to the ASCII command. After you enter an
address and a carriage return, RDT prints the address on the next
line, spaces, and prints the byte there followed by a slash. At
this point you can enter a comma or space to look at the next
address, a dash to look at the previous address, a carriage return
to end the command, or a number to replace the one there. If you
enter a number, you can use the above procedure to move forward,
back up, or end the command. In the CHANGE command, the
replacement is not actually done until you enter a delimiter
character or carriage return after you enter your number. (In the
ASCII command, the change is done as soon as you enter the new
character.) If you have typed in a number in the CHANGE command
and decide that you did not want to make that change, you can exit
without changing by typing an illegal character. RDT enters the
character input mode while in the CHANGE command so it can check
each character entered, so backspace and delete will not work.
Since RDT accepts only the last byte entered, you can correct
mistakes by retyping the number before you go on to the next
address.
As each cell is changed, RDT checks to see that it was changed
correctly. If not, a question mark is printed and

RDT Instruction Manual Page 4

you are prompted for a new command. This feature can help
you find bad memory cells, or let you know that your address
is way out in left field. As with ASCII, be sure you do not
change memory below 42200A (2280H) or above RDT's starting
address.

Example: write a mini loop program.

]CHANGE 100000

100.000 127/303, replace 127 with 303
100.001 032/000,
100.002 311/100- let's back up
100.001 000/- back up one more
100.000 303 type (cr) here
] back to RDT

The COmpare command:

COMPARE (start addr .) (del) (end addr.) (del) (test addr.)(cr)

This command is used to compare two blocks of memory. The first
two addresses you enter are the start and end of the control
block, and the third address is the start of the test block. Each
byte in the test block is compared with a corresponding byte in
the control block, and if there is a mis-match, the current test
address is printed. Comparison continues until the end of the
control block is reached, and control returns to RDT. This command
is useful for checking newly programmed EPROMS.

The Display memory command:

DISPLAY (start addr.)(del)(end addr.)(cr)

With this command, you can display the contents of a block of
memory of any size. After you enter the required addresses, RDT
prints the starting address on the next line, spaces twice, and
prints data bytes separated by spaces. When the address is
divisible by 10H or 10Q (depending on the base selected), RDT
prints a carriage return-line feed, the current address, and
continues printing data bytes. This process continues until the
end address is reached. You can abort the DISPLAY command by
typing control-A.

]DISPLAY 30000,30037 (example of DISPLAY command)

030.000 303 014 037 041 300 377 071 353
030.010 041 100 040 166 042 076 040 066
030.020 000 043 315 216 030 302 017 030
030.030 006 000 052 076 040 004 064 176
]

RDT Instruction Manual Page 5

The Examine memory command:

EXAMINE (start addr.) (del) (end addr.)(cr)

This command is a mnemonic disassembler. Its output resembles the
output of the HDOS assembler (ASM). On each line of disassembly,
it prints the current address, the machine code, its mnemonic
representation, and a "comment" based on the ASCII value of the
instruction and data. Disassembly continues until the end address
is reached. If the end address falls within a two or three byte
instruction, the entire instruction is printed. EXAMINE is useful
for checking patches or other hand-entered code. It will not be
available if you re-assemble RDT for the short (4k) version. You
can abort EXAMINE with control-A. Here is a sample run of EXAMINE:

]EXAMINE 30000,30017

030.000 303 014 037 JMP 037014A *C
030.003 041 300 377 LXI H,377300A *!@
030.006 071 DAD SP *9
030.007 353 XCHG *k
030.010 041 100 040 LXI H,040100A *!@
030.013 166 HLT *v
030.014 042 076 040 SHLD 040076A *">
030.017 066 000 MVI M,000Q *6

If there is a RST 7 instruction in your program, it is printed by
RDT as SCALL with a one byte argument, as if it were a two byte
instruction.

The Fill memory command:

FILL (start addr.) (del) (end addr) (del) (constant) (cr)

This command allows you to fill a block of memory with a constant.
RDT will fill your specified area with any 8-bit value you supply,
and check each cell as it is filled. If a cell checks out bad, RDT
prints a question mark and prompts for a new command. You can
check your program's effect on an area of memory by filling it
with a known constant, running your program, and then using the
DISPLAY command to see if anything changed. You can also perform a
simple RAM test by filling the test area with 125Q (55H) and then
with 252Q (AAH) . Since the binary pattern for 125Q is 01010101
and for 252Q is 10101010, the test checks each bit in each cell,
but you may need a more comprehensive test for some RAM problems.
As with the CHANGE and ASCII commands, care should be taken not to
write into HDOS or RDT memory.

RDT Instruction Manual Page 6

The Go to command:

GO TO (address) (del) (breakpoint) (del) (breakpoint) (cr)

With this command, you can execute your programs and set one or
two breakpoints if desired. You have the option of typing (cr)
instead of the first or second delimiter character to eliminate
one or both breakpoints. When the command is terminated with (cr),
control is transferred to your program with all registers except
PC having the values indicated by the REGISTER command (described
later). The PC register will take the value of the first address
entered. You can eliminate the first address if the PC register is
already where you want it. Here are some examples:

]G0 TO 60000,67123,64324 start at 60000 and set
breakpoints at 67123 and
64324

]G0 TO 42200 start at 42200, set no
breakpoints

]G0 TO ,52100 start at existing PC value
set breakpoint at 52100

If your program hits a breakpoint, control is returned to RDT,
which saves the values of all registers and prints them out in the
format used by the REGISTER command. The breakpoint hit is cleared
along with the other one, if it was set. If your breakpoints are
not hit, or you did not set any, you can still return to RDT by
typing control-A. As with breakpoints, RDT will print all the
registers and prompt for a new command, and clear any breakpoints
that were set. In either case the PC value indicated is the next
executable instruction.
WARNING: the HDOS System Programmer's Guide states that you should
not single step through a call to HDOS. This restriction also
applies to breakpoints. You should not put a breakpoint in HDOS,
or type control-A while your program is calling HDOS. Results are
unpredictable. You should try to use only breakpoints and not
control-A if your program uses HDOS a lot, to ensure breaking only
in the program. Even .SCIN and .SCOUT can cause trouble if
interrupted.

RDT Instruction Manual Page 7

The Hex command:

HEX (number) (cr)

The HEX command expects a number in octal/split octal regardless
of the base you have set and prints the number in hex on the next
line. The number is printed using 4 digits, with leading zeros if
necessary. Example:

]HEX 360
00F0
]

The Input mode command:

INPUT MODE CHARACTER

INPUT MODE LINE

This command lets you set the input mode HDOS will be in when you
go to a user program. Normally a program will take care of setting
up HDOS for the mode of console operations it will use. But if you
interrupt a program in the middle (breakpoint, etc.), return to
RDT, then return to the program, it may not reset the console
mode. RDT will do it for you. After you type I to invoke the INPUT
MODE command, just type C to select character mode without echo,
or L for line mode with echo (these are the modes usually used).
RDT will set up the mode selected just before it jumps to your
program. The default mode (at start up) is Line.

RDT Instruction Manual Page 8

The Load command:

LOAD (<dev:>fname.ext)(cr)

LOAD is used to load absolute binary files from disk into memory.
The default device is SY0:, and the default extension is .ABS. The
program can occupy any space from 42200A (2280H) to the starting
address of RDT. It can be a system or non-system file, as long as
it is the binary type (RDT will not load "CODE PIC" files such as
device drivers). If you try to load a non-binary file, the message
FILE IS NOT MACHINE CODE is printed and the load terminated. You
can, however, use RDT to patch PATCH or other absolute system
files. If the file you try to load is too large for the available
space, RDT prints FILE TOO BIG. If the load is successful, RDT
prints the starting and ending addresses of the file. The user PC
register is set to the entry point of the file, so you run the
program by typing

GO TO (cr) or GO TO ,(breakpoints)(cr)

Here is an example of the LOAD command:

]LOAD SY1:GAME (load GAME.ABS from SY1:)

STARTS 042.200
ENDS 051.233
]

The Move command:

MOVE (start addr.) (del) (end addr.) (del) (destination) (cr)

This command copies the contents of a specified block of memory to
a destination address. The movement does not fix three byte
instructions for execution at the new address. MOVE is useful for
temporarily saving a program while its space is used by another
one. The program can later be moved back into its operating area.

The Octal command:

OCTAL (number)(cr)

OCTAL is the opposite of the HEX command. It expects a number in
hex, converts it to octal, and prints it on the next line. The
number is printed using six digits with leading zeros if
necessary.

RDT Instruction Manual Page 9

The POrt commands:

PORT IN (port address)(cr)

PORT OUT (port address)(cr)

These commands allow you to get data from or send it to any of the
256 8080 or Z80 ports. After you invoke the command, type I to
input or 0 to output, then enter the port address (0 to 377 octal
or 0 to 0FF hex). Type (cr) to terminate the entry. If you are
inputting (IN) , RDT will read your port and print what it reads.
You can read the same port again by typing a delimiter character,
or exit the command with a carriage return. If you are outputting
(OUT), RDT will print an equal sign (=) and wait for a response.
You can either enter a number to be sent to the port, or a (cr) to
exit the command. If you enter a number, it is not actually sent
until you terminate it with a delimiter or a carriage return. If
you use a delimiter, RDT will send your data and prompt for more
data with an equal sign. If you enter a (cr), RDT will send your
data and exit the command. Here are some examples:

]PORT IN 360

377, read the port again
377 type (cr) to exit
]PORT OUT 340

= 101, send 101Q and prompt for another input
= 102 type (cr) to exit and send 102Q
]

The PRinter command:

PRINTER (Y OR N) Y

PRINTER (Y OR N) N

With this command, you can send listings (from DISPLAY, EXAMINE,
etc.) to a printer. You must have supplied a valid device driver
name when RDT signed on. When you invoke the command and answer Y,
everything sent to the screen is also sent to your printer. It is
sent in blocks of 256 bytes, so the listing on the screen will
stop from time to time while the printer "catches up". The 256
byte buffer might be partially full when your listing finishes, so
it may not all appear on the paper, but when you use the PRINTER
command again and answer N, the buffer is emptied, your printed
listing is finished, and the printer driver is closed. You can
abort a listing while the printer is on with control-A, but do not
type it while the printer is actually printing, because you will
interrupt HDOS.

RDT Instruction Manual Page 10

The Register display and modify command:

REGISTER (cr)

REGISTER (identifier) (number) (cr)

This command is used to display and/or alter user registers. If
you type a carriage return after REGISTER, the values of all the
(8080) registers are displayed as follows:

]REGISTER
A=000 F=000 B=000.000 D=000.000 H=000.000 P=000.000 S=042.200

Note that B indicates the BC register pair, D means DE, H means
HL, P means PC (program counter) and S means SP (stack pointer).
If you are in base hex, the display looks like this:

]REGISTER
A=00 F=00 B=0000 D=0000 H=0000 P=0000 S=2280

At start up, all the registers are initially set to zero, except
for the stack pointer, which is set to the usual 042200A (2280H).
If you want to change the value of a register, enter its
identifier after the word REGISTER instead of a (cr). Use the
abbreviations used by RDT in the full register display to identify
registers. After you enter the identifier, the current value is
displayed followed by a slash. At this point you can enter a (cr)
to exit the command, or a number to replace the value currently in
the register. After you enter a new value, type return to make the
change and exit the command.

RDT considers the BC, DE, and HL register pairs as single 16-bit
registers (B, D, and H). If you change the value of a 16 bit
register, any number you enter will affect all 16 bits. If you
only want to change half of the 16 bits, you may have to enter the
existing other half as well. Here is an example. We want to change
the B register to 111, and the E register to 222.

]REGISTER B 000.000/111000

]REGISTER D 000.000/222

Note that we had to enter 111000 to change only the B register and
leave the C register at 000, but we only had to enter 222 to
change the E register because it is the lower half, and the upper
half was zero.

RDT Instruction Manual Page 11

The SAve command:

SAVE (<dev :>fname.ext) (comma) (start) (del) (end) (del) (entry) (cr)

This command is used to save a block of memory on disk as an
absolute binary file, using the standard HDOS binary format. The
default extension is .ABS, and the default device is SY0:. After
you enter the file name, you must supply the starting address, the
ending address, and the entry address. You must use a comma as the
delimiter character after the file name before you enter the
addresses. If you are patching a file, use the REGISTER command to
see what the entry address is (PC register). Here is an example:

]SAVE SY1:GAME,42200,51233,42200
(This saves GAME.ABS on SY1:)

The SEarch command:

SEARCH. BYTE (start addr.) (del) (end addr.) (del) (byte) (cr)

SEARCH WORD (start addr.) (del) (end addr.) (del) (word) (cr)

The SEARCH command will look for a number within a specified block
of memory. After you invoke the command, enter B to search for a
byte (8 bits) or W to search for a word (16 bits). Then enter the
starting and ending addresses of the block to search, and the
number to search for. RDT will print the address of the number
each time it finds it. When it reaches the end of the block, it
will prompt for a new command. If no addresses are printed, it
means that your number was not found.

NOTE: The 8080 and Z80 microprocessors store 16 bit words with the
low byte first, so if you ask RDT to search for 111222 (split
octal), it looks for the byte pair 222111. This is no concern when
you are searching for addresses since you can enter them normally,
but if you are searching for a two byte instruction such as MVI A,
100Q, you will have to reverse the two bytes. MVI A,100Q is 076
100 in octal, but you would have to enter 100076 to look for it.
Keep in mind that when you are looking for single byte
instructions you may also find the instruction's numeric value in
a data field. Not every 303Q in a program may be a JMP
instruction. Here is an example of SEARCH:

]SEARCH WORD 42200,53122,40010

47325 50102

RDT found the word 40010A in two places, 47325A and 50102A.

RDT Instruction Manual Page 12

The Single step command:

SINGLE STEP (start addr.) (del) (count) (cr)

This command allows you to single step through a program you are
debugging. After each instruction is executed, RDT prints out the
registers in the format used by the REGISTER command. It will step
for as many instructions as specified in the count you supply.
Remember that the count will be in the number base you are using
(octal or hex). The maximum count allowed is 256 (decimal, which
is specified by entering zero, or leaving off the count.) You can
halt the stepping with control-S and continue it with control-Q.
You can also abort the stepping with control-A. Here is an
example. In memory we have the following:

ORG 4220OA
MVI A,111Q
LXI B,222222A
LXI H,333333A
STC

When we single step through those instructions, we get:

]SINGLE STEP 42200,4

A-Ill F=000 B=000.000 D=000.000 H=000.000 P=042.201 S=042.200
A=lll F=000 B=222.222 D=000.000 H=000.000 P=042.204 S=042.200
A=lll F=000 B=222.222 D=000.000 H=333.333 P=042.207 S=042.200
A=lll F=001 B=222.222 D=000.000 H=333.333 P=042.210 S=042.200
]

The above shows the output for a Z80 machine. For an 8080, the F
(flag) register would be 002 for the first three lines and 003 for
the fourth line (because bit 1 is always high).

WARNING: You should not single step through calls to HDOS. Examine
the area where you are single stepping (with EXAMINE) for SCALLs
if you are not familiar with it.

NOTE: RDT uses the single step hardware in the computer for single
stepping. In H8*s (with an 8080), the 8080*s INTE output is used
in single stepping. In H89's, the Z80 used does not produce an
INTE output so it is simulated with external hardware. It does not
always work. Sometimes it will not allow a single instruction to
be executed so you may see two lines with the same PC register
value. This does not harm your program or hinder your debugging,
though, since no instruction was executed, but the attempt is
counted by RDT, so your stepping may end before you wanted it to.

RDT Instruction Manual Page 13

The Tape Load command:

TLOAD (cr)

This command loads Heath format binary cassette tapes. The PC
register is set to the entry address of the program loaded. If
there is a load error, a question mark is printed and RDT prompts
you for a new command. Do not load tapes that start lower than
42200A (2280H), or you will wipe out HDOS's lower storage area.

The Tape Save command:

TSAVE (start addr.) (del) (end addr.) (del) (entry addr.)(cr)

This command writes a block of memory on cassette in Heath binary
format. The entry address is stored on tape for later use by
PAM-8, MTR-88, or RDT.

RDT Instruction Manual Page 14

RDT Sample Run

The following is a sample work session with RDT. We are going to use it to
patch the HDOS assembler (ASM Issue #104.05.00) to print the address and data
columns in hex instead of octal. After starting RDT, the first thing we are
going to do is load the assembler. It is on our system disk.

]LOAD ASM

STARTS 042.200
ENDS 075.005

In addition to the starting and ending addresses, we will need the entry
address, so we use the REGISTER command.

]REGISTER P 070.055/

We don't want to change it, so we just hit return after the value is
displayed. The routine we want to change is called $TOD (type octal digits)
and is located at addresses 61234A through 61260A. Let's look at it.

]EXAMINE 61234,61260

061.234 305 PUSH B *E
061.235 006 003 MVI B,003Q *
061.237 247 ANA A *'
061.240 027 RAL *
061.241 027 RAL *
061.242 027 RAL *
061.243 365 PUSH PSW *u
061.244 346 007 ANI 007Q *f
061.246 306 060 ADI 060Q *F0
061.250 167 MOV M,A *w
061.251 043 INX H *#
061.252 361 POP PSW *q
061.253 005 DCR B *
061.254 302 240 061 JNZ 061240A *B 1
061.257 301 POP B *A
061.260 311 RET *I

We can replace the above with another routine as long as it is not larger.
Fortunately, the routine we are going to use is one byte shorter:

$THD PUSH PSW SAVE BYTE
 RRC MOVE HIGH NIBBLE DOWN
 RRC
 RRC
 RRC
 CALL CHEX CONVERT TO HEX
 POP PSW RESTORE BYTE
CHEX ANI 17Q ISOLATE NIBBLE
 ADI 220Q CONVERT TO ASCII
 DAA
 ACI 100Q
 DAA
 MOV M,A STORE NUMBER
 INX H INCR POINTER
 RET

RDT Instruction Manual Page 15

There are two ways to put in a patch with RDT. The obvious way is by
using the CHANGE command to put it in a byte at a time. But if it is a
large patch, you can type in the source with an editor, assemble it,
and then use RDT to merge it with the program to be patched. To
assemble the above routine, you would have to add an ORG statement
(ORG 61234A), and an END statement (END $THD). Let's say we have
assembled the patch and placed the resulting .ABS file on SY1:, and it
is named HEX.ABS. We will load it into memory:

]LOAD SYl:HEX

STARTS 061.234
ENDS 061.260

We just wiped out a 256 byte section of the assembler that was already
in memory, since that is the minimum block size in HDOS. It is not
possible to merge files by simply loading one on top of another, since
they are rounded to 256 byte increments when they are stored on disk.
But we can use the MOVE command in RDT to merge them. First, we move
the patch we just loaded up more than 256 bytes beyond the assembler's
end address:

]MOVE 61234,61257,101234

Note that we subtracted one from the end address (61257). We did it
because the assembler always adds an extra byte at the end. Now look
at the destination address we used (101234). When you move a block
somewhere temporarily, it is always a good idea to use a destination
address with the same lower half as the source address. That makes it
easier to figure the end address when you move it back. Now that we've
moved the patch, we can load in a fresh copy of the ASM with the load
command, and merge the patch into it:

]LOAD ASM

STARTS 042.200
ENDS 075.005
]MOVE 101234,101257,61234

The patch is now in place in the assembler. If we ran it now, it would
output numbers in hex, but the addresses would still have a period
between the upper and lower bytes, which is not normal practice in
hex notation. The code that does it is only 3 bytes long and can
simply be replaced with NOP instructions, so we will do it with the
CHANGE command.

RDT Instruction Manual Page 16

The address of the code we are going to patch is 57133A.

]CHANGE 57133

057.133 066/0,
057.134 056/0,
057.135 043/0

The first patch could also have been done with the CHANGE command, but
we would have had to calculate the address after the CALL instruction
(CALL CHEX). It is easier to let the assembler do it for you. Now that
the assembler is patched, we can save it on disk. We want to keep the
octal assembler, so we will call this one ASMH.ABS and save it on
SY1:.

]SAVE SYl:ASMH,42200,75005,70055

We now have two assemblers, one with hex output and one with octal.
You can also give a patched file the same name as the original and
save it on the original disk to replace the original (if the original
is not write protected), but your disk must have as much free space as
the size of the file, because RDT will write the new file before it
deletes the old one. If there is not enough space, you will get an
error message, and the old file is not changed. The ability to give a
patched file a new name and/or save it on a different disk allows you
to patch files that are write protected and locked.
We are through patching for now. If we need the assembler right away,
we can run it with the GO TO command, or we can exit to HDOS by typing
control-D:

]^D
ARE YOU SURE? Y
>

RDT Instruction Manual Page 17

Debugging with RDT

RDT was designed primarily for the assembly language programmer. When
you assemble a program with one of Heath's assemblers, it produces a
binary file that can be loaded by RDT. The PC register will be set to
the address specified by the END statement in the source. You can run
the program by entering GO TO (cr), or step through it with SINGLE
STEP, (count) (cr) or SINGLE STEP (cr).

Using Breakpoints

Breakpoints can be used to locate crash points and test conditional
branches. If your program crashes when you run it, you can locate the
crash point by placing breakpoints "early" in the program and moving
them farther in until the point is found. Keep in mind that crashes
can destroy everything in memory, including your program and RDT. Make
sure you have a good copy of the program on disk or tape, and update
it frequently.

You can determine the direction a conditional branch takes by single
stepping through it, or by placing breakpoints at the condition met
and condition not met destinations. You can force a conditional jump
to take a particular direction by placing a breakpoint at the address
of the jump instruction. When it is hit, use the REGISTER command to
alter the flag register to the condition you want, then enter GO TO
(cr) to take the jump.

When using breakpoints, be sure to place them at the addresses of
instructions, not data. A breakpoint in a data area will never be hit,
and could cause a crash. However, if you hit another breakpoint or
control-A out of the program, the bad breakpoint will be cleared.

RDT Instruction Manual Page 18

RDT and the Type-Ahead Buffer

RDT clears the console type-ahead buffer when it completes a command
word so that you cannot backspace into the command while you enter
arguments. You can enter a command during the delay from when you
start RDT until it prompts for input, but you cannot enter arguments
during that time. The buffer is used when you input arguments
(address, etc.) and RDT gets them from it when you type (cr).
You can terminate the address you enter for the CHANGE command with a
comma as well as with a return, and that allows you to do some tricks
with the type-ahead buffer. For instance, after you enter the address
and a comma, you can enter the changes you wish to make right on the
command line. The example on page 5 could be entered as CHANGE
100000,303,0,100 followed by a (cr). When you hit return, it would
look like this:

]CHANGE 100000,303,0,100 (you type this)

100.000 127/303, (RDT prints all of this)
100.001 032/0,
100.002 311/100
]

You can also use this method to examine a few memory cells. Just type
as many commas as the number of bytes you want to see after the
address. For example:

]CHANGE 100000,,, (you type this)

303/, (RDT prints this)
000/,
100/
]

When you use this method to make changes or look at memory, you can
use backspace or delete to correct errors in any part of the entry.

RDT Instruction Manual Page 19

RDT Command Summary

ADd/subtract (number) (del) (number) (cr)
AScii (address)(cr)
Base Hex
Base Octal
CHange (address)(cr)
Compare (start addr.) (del) (end addr.) (del) (test addr.) (cr)
Display (start addr.) (del) (end addr.) (cr)
Examine (start addr.) (del) (end addr.) (cr)
Fill (start addr.) (del) (end addr.) (del) (constant) (cr)
Go to (address) (del) (breakpoint) (del) (breakpoint) (cr)
Hex (number)(cr)
Input mode Character
Input mode Line
Load (<dev:>fname.ext)(cr)
Move (start addr.) (del) (end addr.) (del) (destination) (cr)
Octal (number)(cr)
POrt In (port address)(cr)
POrt Out (port address)(cr)
PRinter (y or n) Y
PRinter (y or n) N
Register (cr)
Register (identifier)(number)(cr)
SAve (<dev:>fname.ext) (comma) (start) (del) (end) (del) (entry) (cr)
SEarch Byte (start addr.) (del) (end addr.) (del) (byte) (cr)
SEarch Word (start addr.) (del) (end addr.) (del) (word) (cr)
Single step (address) (del) (count) (cr)
TLoad (cr)
TSave (start addr.) (del) (end addr.) (del) (entry addr.)(cr)

In this summary, the letters needed to invoke each command are shown
as capital letters and the rest as lower case letters. In actual
practice, all capitals are used, and if you enter lower case letters,
they are converted to capitals. The expression (del) means a comma
space or dash which can usually be used interchangeably, and (cr) is a
carriage return.

RDT Instruction Manual Page 20

INDEX

.................COMMAND SUMMARY 20

.........................COMMANDS 2

.................ADD/SUBTRACT 3

........................ASCII 3

.........................BASE 4

.......................CHANGE 4

......................COMPARE 5

......................DISPLAY 5

......................EXAMINE 6

.........................FILL 6

........................GO TO 7

..........................HEX 8

...................INPUT MODE 8

.........................LOAD 9

.........................MOVE 9

........................OCTAL 9

........................PORT 10

.....................PRINTER 10

....................REGISTER 11

........................SAVE 12

......................SEARCH 12

.................SINGLE STEP 13

.......................TLOAD 14

.......................TSAVE 14

..............DEBUGGING WITH RDT 18

.....................INTRODUCTION 1

..........LOADING AND RUNNING RDT 1

......................SAMPLE RUN 15

...............TYPE-AHEAD BUFFER 19

RDT Instruction Manual Page 21

The disk HUG 885-1092 contains the following:

RDT.ABS -- This is the assembled RDT program. To run it, enter the
name RDT as a command in HDOS, prefixing it with a device name if
necessary. Example: SYl:RDT

RDTS.ABS -- This is the short version of RDT. It does not contain the
EXAMINE command (the disassembler).

RDT.ASM — This is the assembly source for RDT. All HDOS definitions
 used in the program are in this source.

DIS.ACM and DIST.ACM — These files make up the disassembler that is
used by the EXAMINE command.

RDT Instruction Manual Page 22

