SECTION 4
HEATH ASSEMBLY LANGUAGE
HASL-8

4-2 EECTION FOUR

(S cm srrsacr

—

TABLE OF CONTENTS

WRITING H8 ASSEMBLY LANGUAGE PROGRAMScovvv, 4-3
THE CHARACTER SET ...t e 4-4
STATEMENTS ... e e e 4-4
The Label Field ... e 4-5
The Opcode Field ...t 4-5
The Operand Fieldoviunt... e 4-6
The Comment Field e e e 4-6
Format Control............. .. uiiennnnninn. e 4-7
OPERAND EXPRESSIONS
OPETatOrS . . .ot 4-7
TOKENS .\ttt 4-8
THE 8080 OPCODESooiiuiiiiii i 4-10
Terms, Symbols, & Nomenclature e 4-11
Data Transfer Group et e i e 4-17"
Arithmetic Group 4-21
Logical Group:oouuiiitiii e 4-28
Branch Group..................... e 4-34
Stack, I/O, and Machine Control Group e 4-38
PSEUDO OPCODES/ASSEMBLER DIRECTIVES........ e 4-43
Define Byte, DBttt e e .. 4-44
Defined Space, DSoiiiiiii i 4-44
Define Word, DW i i e e 4-45
Conditional Assembly Pseudo Operators veeeeanianeanans 4-45
Listing Controlt i i e i 4-47
USING THE ASSEMBLERciitiiiiiiiiiiiinnneeennnnnnns 4-50
Errors ... e i it e e 4-54
Control Charactersccovvviieinnan PP 4-56
APPENDIX A ...\ttt e e e 4-57
Loading From the Software Distribution Tape 4-57
Loading From a Configured Tape...........c.coovvieieeeeneneennn... 4-58
INdEX .ottt e 4-59

= g T IS ATERIT®

Heath Assembly Language

WRITING H8 ASSEMBLY LANGUAGE PROGRAMS

The Heath Assembly Language program (HASL-8) lets you use source (symbolic)
programs using letters, numbers, and symbols that are meaningful as they are
abbreviated in English statements. These source programs must be generated
with the Heath Text Editor (TED-8).

Heath Assembly Language assembles the source program into a listing and an
object program in absolute binary format executable by the H8 Computer. The
listing and the object program are produced after two passes through the assem-
bler (the assembler mustread the source tape twice before it is able to produce the
absolute binary output). If there are sufficient memory locations in the host
computer, the binary program may be stored directly in memory. If there is not
room, as is often the case when you are assembling large programs, the object
program is written onto a mass storage device. During the second pass, HASL-8
produces a complete octal/symbolic listing of the assembled program. This

listing is especially useful for documentation and debugging purposes.

This Manual assumes that you are already familiar with the writing of assembly
language programs. Also, because of the many cross-references in this Section,
werecommend that you read all of this Section to get a good ‘‘feel”” for HASL-8. If
you are not familiar with assembly language programming, we recommend that
you study material such as the Heathkit Continuing Education “8080 Program-
ming” course.

HASL-8 is designed to produce programs which run in an H8 system; therefore,
it assembles 8080 symbolic assembly code. It requires about 8K of memory
(depending upon the number of symbols defined during assembly) and one mass
storage unit. Separately controllable mass storage readers and recorders may be
necessary for large assemblies. This can take the form of one paper tape/reader
punch or two independent cassette recorders. When used with 8K of memory,
HASL-8 provides for approximately 250 user-defined symbols.

This Software Reference Manual presumes that you have read the H8 operation
Manual and are familiar with the 8080 instruction set, I/O formats, memory
formats, and front panel configuration. A thorough knowledge of these facts is
vital to efficient assembly language programming.

4-3

4:4 l SECTION FOUR

C% HEATHKIT®

THE CHARACTER SET

The Heath Assembly Language source program is composed of symbols, num-
bers, expressions, symbolic instructions, argument separators, assembly direc-
tives, and line terminators, all using ASCII characters. Those characters that are
acceptable to HASL-8 are listed below.

1. The letters A through Z (lower case letters are acceptable for quoted
strings and comments, provided that HASL-8 is configured properly
in accordance with the software configuration guide).

2. The numerals 0 through 9.

3. The characters period (.) and dollar sign ($), which are considered
alphabetic.

4. The symbols

P=ZA ()L et
LINE FEED AND CARRIAGE RETURN

STATEMENTS

A source program is composed of a sequence of statements, designed to solve a
problem. Each statement must be on a single line.

A statement is composed of up to four fields, identified by the order of appear-
ance and by separating characters. The four fields are:

LABEL OPCODE OPERAND COMMENT
The label and comment fields are optional. The opcode and operand fields are

interdependent; either may be omitted, depending upon the contents of the
other.

= g IEATIHKITS

Heath Assembly Language

The Label Field

The label field always starts in column one. A label is a user-defined symbol
assigned the current value of the memory location counter. It is a symbolic
means of referring to a specific memory location within a program. Most state-

ments do not require a label. If you do not want a label, column one must be left

blank. Although the label is usually used to allow symbolic reference to the
address of the labeled instruction, the SET and EQU pseudos make special use of
the label field. .

A label must start with an alphabetic character, and it consists entirely of
alphabetic or numeric characters. The maximum length of a label is 7 characters.
Note that the characters “$” and “.” are considered alphabetic. Therefore, the
following are valid labels.

A A3 C9D4 .START .. $END END$PGM

For example, if the current location counter is set to 040 100 and the statement

.START MOV A,B

is the next statement, the assembler assigns the value 040 000 to the label
.START. Subsequent references to .START refer to location 040 100.

‘The Opcode Field

All statements (except the comment statements) must have an opcode field. The
opcode field need not be located in any particular column. However, it must be
separated from the label field by at least one blank. If no label is specified, the
opcode field may start in or after column 2.

The opcode is either an instruction mnemonic or an assembler directive. When
the entry in the opcode field is an instruction mnemonic, it specifies a machine
operation to be performed on any following operands. When it is an assembler
directive, it specifies certain functions or actions to be performed by the assem-
bler during program assembly.

The opcode field is terminated by a blank or by the end of a line.

4-5

4-6 | SECTION FOUR..

e eI EATHKITS

The Operand Field

The operand field follows the opcode field and must be separated from it by at
least one blank. Not all opcodes require operands. The operand contains infor-
mation used by a machine instruction or, in the case of assembler directives
(pseudo opcodes or pseudo ops), it contains information to be used by the
pseudo op. ‘

Operands may be symbols, expressions, or numbers. When multiple operands
appear with a statement, each is separated from the next by a comma. An operand
may be followed by a comment.

The operand field is terminated by a blank when followed by a comment, or by
the end of a line when the operand ends the assembly statement. For example,

_START MOV A,B THIS IS A COMMENT

The space between .START and MOV terminates the label field; the blank
between MOV and A,B terminates the opcode field and begins the operand field.
The comma separates the operands A and B and the blank terminates the
operand field and begins the comment field.

The Comment Field

The comment field follows the operand field, or the opcode field if no operand
field is present. It must be separated from its preceding field by at least one blank.
The comment field is not processed by the assembler and it is designed to
contain documentary information. The comment field is optional and may
contain any printing ASCII character. All other characters, even those with
special significance to the assembler, are ignored by the assembler when used in
the comment field.

A statement with an asterisk (*) in column one is taken as a comment statement
and is not otherwise processed by the assembler. A totally blank line is also taken
as a comment.

Heath Assembly Language 4-7
-C% HEATHEXIT® . L X

U

Format Control

The format of an assembly language program is controlled by the blank charac-
ter. Format control is primarily used to produce a program which is easily read.
Format control has no affect on the assembly process of the source program, and
because HASL-8 uses compression techniques, the use of multiple blanks does
not take up extra memory space. The following two statements are identical with
the exception that the first one does not use any tabs and the second one uses
tabs.

.START MOV A,B THIS IS A COMMENT
.START MOV A,B THIS IS A COMMENT

The TABs were converted to the appropriate number of blanks by TED-8. There-
fore, HASL-8 sees no TAB characters. ’

OPERAND EXPRESSIONS

Except when the opcode is a machine instruction requiring that an 8080 register
be specified as the operand, all operand fields may be coded as operand expres-

u sions. Such operand expressions are made up of integers, symbols, a special
origin symbol, and character strings which may be combined, using certain
operators. The operand may also be the origin symbol. The expressions are said
to be made up of operators and tokens. No parentheses are allowed nor is any
operator precedence recognized. Therefore, evaluation is strictly left to right.
The result of any expression must fall between —32,767 and 65,534.

Operators

HASL-8 recognizes 5 operators. They are:

+ Addition of an integer arithmetic expression.

Subtraction of an integer arithmetic expression.
Multiplication of an integer arithmetic expression.

Division of an integer arithmetic expression.

(unary) negation of a standard integer arithmetic expression.

I

4-8

SECTION FOUR

= g iEmATEHKITS

Note, the unary minus is valid only as the first character in an expression. The
following are examples of legitimate assembler operand expressions.

3+5
-2 (unary)
1+2*3

Note that the last example evaluates to 9 rather than 7, as the assembler does not
recognize any operator precedence. Therefore it evaluates the expression from
left to right.

Tokens

Heath Assembly Language recognizes four different tokens: integers, symbols,
character strings, and the origin symbol. Each of these tokens has the limitations
described in the following sections.

INTEGERS

Decimal integers ranging from 0 to 65,535 are allowed, but no decimal place may
be specified. The radix of an integer expressions is assumed to be decimal.
However, you may specify binary, octal, offset octal, decimal, or hexadecimal.
Specify them by using a post-radix symbol following the integer expression.

B Binary
OorQ Octal

D Decimal

H Hexadecimal
A Offset Octal

For example:

EXPRESSION RADIX DECIMAL VALUE
000 00011B Binary ‘ 3
160Q Octal (also 1120) 112
3200 Decimal (also 3200D) 3200
77000A Offset octal 16128
021AH Hexadecimal 282

Heath Assembly Language 4'9
= g iEATEIIRITS - J

LEGAL INTEGER ILLEGAL INTEGER COMMENTS
EXPRESSIONS EXPRESSIONS

232 232.1 Decimals may not be specified
10111B 226B Not a binary number

- 177Q 888 Not an octal number
A1FH 21C No hex radix specified

If an integer expression evaluates to less than —32,767, or greater than 65,534, an
error code is flagged.

SYMBOLS

An expression may contain any user defined symbol. Although most symbolsdo
not need to be defined sequentially before the referencing statement, some
pseudo operators require all their operand symbols to be defined in earlier
statements in the program. Such operators are said to require *‘pass one evalua-
tion” and are documented in “The 8080 Opcodes’’ (Page 4-10). All symbols must
consist of legal HASL-8 characters.

The # Symbol

If the pound sign (#) is the first charcter in an expression, the expression is
evaluated as a 16-bit expression. After the expression is evaluated, the resultant
value is masked to an 8-bit equivalent. Once this is done, a 16-bit operand may be
referenced in an instruction requiring 8 bits without causing an overflow V)
error. For example:

MVI H, ADDR/256
MVI L,#ADDR (HL) = 16 bit address

In this example, the first line of code loads the H and L register pair (16-bit
register) with the binary value associated with the label “ADDR” divided by 256.
The second line of code immediately loads the L register (an 8-bit register) with
the lower 8-bits of the binary value equated to the symbol ADDR in the symbol
table. This process does not cause an overflow error, as the 16-bit binary equiva-
lent of ADDR is masked to the least significant 8-bits before it is moved into the
8-bit L register.

4-10

SECTION FOUR -

C% HEATEHIEIT®

CHARACTER STRING

A character string consisting of one or two legal characters may be used as a
token in an HASL-8 expression. Such a character string is enclosed in a single
quote (apostrophe).. For example:

TA' The character A (Value 101Q)
'GL' The character string GL (Value 10n 114A)
" The character quotation mark (Value 042Q)

THE ORIGIN SYMBOL, ORG

The current value of the origin counter may be referenced with the special

symbol asterisk (*). NOTE: The assembler decides from the expression context
whether the asterisk (*) represents the origin counter or is the multiplication
operator. For -example, the program '

" . ORG 10
A EQU * % %

defines the symbol A to have the value 100. The first statement, ORG 10, sets
the origin counter to the value 10. In the second statement, the label A is equated
with the first asterisk, which the assembler presumes to.be the symbol for the
origin counter. This is multiplied by the third symbol, which the assembler also
presumes to be the origin symbol. However, the middle asterisk is taken as the
multiplication operator. : '

THE 8080 OPCODES*

Heath Assembly Language supports the standard 8080 machine opcodes. A
review of the 8080 instruction set is presented on the following pages. Included
in this review is a discussion of instruction and data formats, addressing modes,
conditions flags, the symbols or abbreviations used in describing the 8080
instruction set, and the discussion of the format used to describe each instruc-
tion. '

* Portions of this section are reprinted with the permission of Intel Corporation (Copyright, 1976).

g)

Heath ASsémny Language 4-11
-<:§ HEATEHIKIT® :)

(_J . The 8080 instruction set includes five different types of instructions:

® Data Transfer Group — move data between reglsters or between mem-
ory and registers.

® Arithmetic Group — add, subtract, increment, or decrement data in
registers or in memory.

® Logical Group — AND, OR, EXCLUSIVE-OR, compare, rotate, or com-
plement data in registers or in memory.

® Branch Group — conditional and unconditional jump instructions,
subroutine call instructions, and return instructions.

® Stack, I/O and Machine Control Group — includes I/O instructions, as
well as instructions for maintaining the stack and internal control flags.

Terms, Symbols, & Nomenclature

INSTRUCTION AND DATA FORMATS

Memory for the 8080 is organized into 8-bit quantities called bytes, Each byte has
a unique 16-bit binary address corresponding to its sequential position in mem-
ory.

The 8080 can directly address up to 65,536 bytes of memory, which may consist
of both read-only memory (ROM) elements and random-access memory (RAM]
elements (read/write memory).

Data in the 8080 is stored in the form of 8-bit binary integers:

DATA WORD
D7|DG D5ID4ID3I02ID1IDQ
- MsB LSB

When a register or data word contains a binary number, it is necessary to
establish the order in which the bits of the number are written. In the Intel 8080,
BIT 0 is referred to as the Least Significant Bit (LSB), and BIT 7 (of an 8-bit
number) is referred to as the Most Significant Bit (MSB).

4-12

SECTION FOUR

e T E ATEIIITO

The 8080 program instructions may be one, two, or three bytes in length. J
Multiple byte instructions must be stored in successive memory locations; the
address of the first byte is always used as the address of the instructions. The
exact instruction format will depend on the particular operation to be executed.

Byte One

Byte Two

Byte One
Byte Two

Byte Three

ADDRESSING MODES

Single Byte Instructions

D7I | | | | L Do | Op Code
Two-Byte Instructions
D7l | |] | | iDo Op Code
D7l et Dg | Data or 1/0
Address
Three-Byte Instructions
D7j ! ! ! ! rol Do | Op Code
D7I | | | | | | Do Data
or
D5 e Do |/ Address

Often, the data that is to be operated on is stored in memory. When multi-byte
numeric data is used, the data, like instructions, is stored in successive memory
locations with the least significant byte first, followed by increasingly signific-
ant bytes. The 8080 has four different modes for addressing data stored in

memory or in registers:

e Direct — Bytes 2 and 3 of the instruction contain the exact memory
address of the data item (the low-order bits of the address are in byte 2,
the high-order bits in byte 3).

® Register — Specifies the register or register pair in which the data is

located.

® Register Indirect — Specifies a register pair which contains the mem-
ory address where the data is located (the high-order bits of the address
are in the first register of the pair, the low-order bits in the second).

e Immediate — Contains the data itself. This is either an 8-bit quantity or
a 16-bit quantity (least significant byte first, most significant byte

second).

Heath Assembly Language 4-13

Unless directed by an interrupt or branch instruction, the execution of instruc-
tions proceeds through consecutively increasing memory locations. A branch

instruction can specify the address of the next instruction to be executed in one
of two ways:

® Direct — The branch instruction contains the address of the next
instruction to be executed. (Except for the “RST” instruction, byte 2
contains the low-order address and byte 3 the high-order address.)

® Register Indirect — The branch instruction indicates a register pair
which contains the address of the next instruction to be executed. (The
high-order bits of the address are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special 1-byte call instruction (usually used during
interrupt sequences). RST includes a 3-bit field: program control is transferred to
the instruction whose address is eight times the contents of this 3-bit field.

CONDITION FLAGS

There are five condition flags associated with the execution of instructions on
the 8080. They are Zero, Sign, Parity, Carry, and Auxiliary Carry, and are each
represented by a 1-bit register in the CPU. A flag is “‘set” by forcing the bit to 1;
and “reset” by forcing the bit to 0.

Unless indicated otherwise, when an instruction affects a flag, it affects it in the
following manner.

Zero: Iftheresult of an instruction has the value 0, this flag is set. Otherwise
it is reset.
Sign: If the most significant bit of the result of the operation has the value 1,

-this flag is set. Otherwise it is reset.

Parity If the modulo 2 sum of the bits of the result of the operation is 0 (i. e., if
theresult has even parity), this flag is set. Otherwise it is reset (i. e., if
the result has odd parity).

Carry: If the instruction resulted in a carry (from addition), or a b.orrow .[from
subtraction or a comparison) out of the high-order bit, this flag is set.
Otherwise it is reset.

4-14 | SECTION FOUR

A T ATEIECIT®

Auxiliary If the instruction caused a carry out of bit 3 and into bit 4 of the

Carry: resulting value, the auxiliary carry is set. Otherwise it is reset. This
flag is affected by single precision additions, subtractions, incre-
ments, decrements, comparisons, and logical operations, but is prin-
cipally used with additions and increments preceding a DAA (Deci-
mal Adjust Accumulator) instruction.

Symbols and Abbreviations

The following symbols and abbreviations are used in the subsequent description
of the 8080 instructions:

SYMBOLS MEANING

~ accumulator Register A

| addr 16-bit address quantity
data 8-bit data quantity
data 16 16-bit data quantity
byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
bort 8-bit address of an I/O device
r, 11, 12 One of the registers A,B,C,D,E,H,L
DDD, SSS The bit pattern designating one of the registers A, B, C,

D,E,H, L

(DDD = destination, SSS = source):

DDD or SSS REGISTER NAME
111 A
000 B
001 C
010 D
011 E
100 H
101 L

e [P Heath Assembly Language 4-15

Ip One of the register pairs:

B represents the B, C pair with B as the high-order register and C as the |
low-order register;

D represents the D, E pair with D as the high-order register and E as the
low-order register;

Hrepresents the H, L pair with H as the high-order register and L as the
low-order register;

SP represents the 16-bit stack pointer register.

RP The bit pattern designating one of the register pairs B, D, H, SP:

RP REGISTER PAIR

00 B-C

01 - D-E

10 H-L

11 SP
rh The first (high-order) register of a designated register pair.
rl The second (low-order) register of a designated register pair.

PC 16-bit program counter register (PCH and PCL are used to
refer to the high-order and low-order 8-bits respectively).

SP 16-bit stack pointer register (SPH and SPL are used to refer to the
high-order and low-order 8-bits respectively).

rm Bit m of the register r (bits are numbered 7 through 0 from left to right).

Z, S, P, The condition flags:
Cy, AC

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry,
respectively.

4-16 SECTION FOUR - = s ATEIKITS

NOTE: HASL-8 recognizes the E as well as the Z defining the zero bit. Therefore, W
JZ (jump zero) or JE (jump equal) are both valid op-codes.

() The contents of the memory location or registers enclosed in the parenthe-

ses.

- “Is transferred to”
A Logical AND

W Exclusive OR

v Inclusive OR

+ Addition

- Two’s complement subtraction

* Multiplication

«— “Is exchanged with”

— The one’s complement (e. g., (A)) QJ
n The restart number 0 through 7

NNN The binary representation 000 through 111
for restart number 0 through 7 respectively.
Description Format

The following pages provide a detailed description of the instruction set of the
8080. Each instruction is described in the following manner:

1. The HASL-8 format, consisting of the opcode and operand fields, is
printed in BOLDFACE on the left side of the first line.

2. Thename of the instruction is enclosed in parentheses at the center of
the first line.

3. Thenextline(s) contain a symbolic description of the operation of the
instruction.

Heath A | G-
HEA’I‘I—IKITQ ssembly Language 4-17

This is followed by a narrative description of the operation of the
instruction.

8. The following line(s) contain the binary fields and patterns that com-
prise the machine instruction.

6. The last two lines contain incidental information about the execution
of the instruction. The number of machine cycles and states required
to execute the instruction are listed first. If the instruction has two
possible execution times, as in a conditional jump, both times will be
listed, separated by a slash. Next, any significant data addressing
modes (see ‘“‘Addressing Modes,” Page 4-12) are listed. The last line
lists any of the five Flags that are affected by the execution of the
instruction.

Data Transfer Group

This group of instructions transfers data to and from registers and memory.
¢) Condition flags are not affected by any instruction in this group.

MOV ri1, r2 (Move Register)

(r1)« (r2)
The content of register r2 is moved to register r1.

0'1DID| [I

Cycles: 1 Addressing: register
States: 5 Flags: none
MOV r, M (Move from memory)

(r) « ((H) (L) v
The content of the memory location whose address is in registers Hand L is
moved to register r.

o' 1| o"p "o |1

N Cycles: 2 Addressing: reg. indirect
U States: 7 Flags: none

4-18

SECTION FOUR

MOVM, r

(H) (L) « (1)

The content of register r is moved to the memory location whose address is

in registers H and L.

Cycles:
States:

MVI r, data

(r) « (byte 2)

(Move to memory)

=g FIE ATELIIT®

o !

1

,
7

Addressing: reg. indirect

Flags:

(Move to register immediate)

none

The content of byte 2 of the instruction is moved to register r.

p'p!p

0 1 1 0
data byte |
Cycles: 2 Addressing: immediate
States: 7 Flags: none

MVI M, data (Move to memory immediate)

(H) (L)) « (byte 2)

The content of byte 2 of the instruction is moved to the memory location

whose address is in registers H and L.

I |

ol ol 7T 1 lTol 1 1o
data byte
Cycles: 3 Addressing: immed./reg.
indirect
States: 10 Flags: none

3

Heath Assembly La -
= HIE ATEIKITS y Language | 4-19

==

u LXI rp, data 16 (Load register pair immediate)

(rh) « (byte 3),

(r]) « (byte 2)

Byte 3 of the instruction is moved into the high-order register (rh) of the
register pairrp. Byte 2 of the instruction is moved into the low-order register
(rl) of the register pair rp.

ol ol RV Pl 0" 0" o'

" low-order data

- high-order data

Cycles: 3 Addressing: immediate
States: 10 Flags: none
LDA addr (Load Accumulator direct)

(A) « (byte 3) (byte 2)

The content of the memory location, whose address is specified in byte 2
and byte 3 of the instruction, is moved to register A.

o ToT1 T TiTolqTo
low-order addr
high-order addr
Cycles: 4 Addressing: direct
States: 13 Flags: none
STA addr (Store accumulator direct)

((byte 3) (byte 2)) « (A)
The content of the accumulator is moved to the memory location whose
address is specified in byte 2 and byte 3 of the instruction.

0 , 0 ! 1 I 1 ! 0 ! 0 ! 1 ! 0
low-order addr
high-order addr
Cycles: 4 : Addressing: direct
b States: 13 Flags: none

4-20 | SECTION FOUR = rrm aTErRITS

LHLD addr (Load H and L direct) (U

(L) « ((byte 3) (byte 2))

(H) « ((byte 3) (byte 2) + 1)

The content of the memory location whose address is specified in byte 2 and

byte 3 of the instruction is moved to register L. The content of the memory
“location at the succeeding address is moved to register H.

0 ! 0 ! 1 I 0 ! 1 ! 0 ! 1 ! 0
low-order addr
high-order addr
Cycles: 5 Addressing: direct
States: 16 Flags: none

SHLD addr (Store H and L direct)

((byte 3) (byte 2)) « (L)

((byte 3) (byte 2) + 1) « (H)

The content of register L is moved to the memory location whose address is -
specified in byte 2 and byte 3. The content of register H is moved to the (&.)
succeeding memory location. '

ol ol 1 1Tolo oty Ty

low-order addr

high-order addr
Cycles: 5 Addressing: direct
States: 16 Flags: none

LDAX rp (Load accumulator indirect)

(A) « ((rp)

‘The content of the memory location whose address is in the register pair rp
is moved to register A. NOTE: Only register pairs rp = B (registers B and C)
or rp = D (registers D and E) may be specified.

OIO R|P1l0|1l0

Cycles: 2 Addressing: reg. indirect
States: 7 Flags: none

Heath Assembly Language

e JFTE ATEIRIT|]

STAX rp (Store accumulator indirect)

((rp)) « (A)

The content of register A is moved to the memory location whose address is
in theregister pair rp. NOTE: Only register pairsrp = B (registers B and C) or
rp = D (registers D and E) may be specified.

OIO RlP 0'0'1'0

Cycles: 2 Addressing: reg. indirect
States: 7 Flags: none
XCHG (Exchange H and L with D and E)
(H) «— (D)
(L) < (E)

The contents of registers H and L are exchanged with the contents of
registers D and E.

1'1-'1'0'1'0'1'1

Cycles: 1 Addressing: register
States: 4 Flags: none

Arithmetic Group

This group of instructions performs arithmetic operations on data in registers
and memory.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign,
Parity, Carry, and Auxiliary Carry flags according to the standard rules.

All subtraction operations are performed via two’s complement arithmetic and
set the carry flag to one to indicate a borrow and clear it to indicate no borrow.

ADD r (Add Register)
(A) < (A) + ()

The content of register r is added to the content of the accumulator. The
result is placed in the accumulator.

I

1'0 0'0'0 SISS

Cycles: 1 Addressing: register
States: 4 Flags: Z,S,P,CY,AC

4-21

4-22 lsecﬂou FOUR

= B ATIKIT®

ADD M (Add memory) Q«

(A) « (A) + ((H) (L)
The content of the memory location whose address is contained in the H
and L registers is added to the content of the accumulator. The result is

placed in the accumulator.

1T ol ol olol 1T 40y

Cycles: 2 Addressing: reg. indirect
States: 7 Flags: Z,8,P,CY,AC

ADI DATA (add immediate)
(A) « (A) + (byte 2)

The content of the second byte of the instruction is added to the content of
the accumulator. The result is placed in the accumulator.

1ol ol T 11Ty

data byte -
Cycles: 2 Addressing: immediate v
States: 7 Flags: Z,S,P,CY,AC
ADCr (Add Register with carry)

o~

(A) « (&) + (1) + (CY) 4
The content of register r and the content of the carry bit are added to the
content of the accumulator. The result is placed in the accumulator.

11 o !

ool 1]s
Cycles: 1 Addressing: register
States: 4 Flags: Z2,S,P,CY,AC

Heath A -
I—IEA’I‘I—IKITB ssembly Language 7 4-23

U ADCM (Add memory with carry)

(A) « (A) + ((H) (L)) + (CY)

The content of the memory location whose address is contained in the H
and L registers and the content of the CY flag are added to the accumulator.
The result is placed in the accumulator.

Cycles: 2 Addressing: reg. indirect
States: 7 Flags: Z,S,P,CY,AC
ACI data (Add immediate with carry)

(A) « (A) + (byte 2) + (CY)
The content of the second byte of the instruction and the content of the CY

flag are added to the contents of the accumulator. The result is placed in the
accumulator. '

u V data byte

Cycles: 2 | Addressing: immediate
States: 7 : Flags: Z,S,P,CY,AC
SUBr (Subtract Register)

(A) « (A) — (1)
The content of register r is subtracted from the content of the accumulator.
The result is placed in the accumulator.

1001 To s TsTs
Cycles: 1 Addressing: register
States: 4 ‘ Flags: Z,S,P,CY,AC

4-24 | SECTION FOUR

SUB M (Subtract memory)

(A) « (A) — ((H) (L) _
The content of the memory location whose address is contained in the H
and L registers is subtracted from the content of the accumulator. The result

is placed in the accumulator.

Cycles: 2 Addressing: reg. indirect
States: 7 Flags: Z,S,P,CY,AC

SUI DATA (Subtract immediate)

(A) « (A) — (byte 2)
The content of the second byte of the instruction is subtracted from the
content of the accumulator. The result is placed in the accumulator.

1T 1 To T To Ty Ty Ty
data byte
Cycles: 2 Addressing: immediate
States: 7 Flags: Z,S,P,CY,AC
SBB r (Subtract Register with borrow)

(A) « (A) — (1) — (CY)
The content of register r and the content of the CY flag are both subtracted
from the accumulator. The result is placed in the accumulator.

Cycles: 1 Addressing: register
States: 4 Flags: Z,S,P,CY,AC

C

. Heath Assembly Language
= g rImATIIKITS

SBB M (Subtract memory with borrow)

(A) < (A) — ((H) (L)) — (CY)

The content of the memory location whose address is contained in the H
and I registers and the content of the CY flag are both subtracted from the
accumulator. The result is placed in the accumulator.

1 ! 0 ! 0 ! 1 ! 1 ! 1 ! 1 ! 0
Cycles: 2 Addressing: reg. indirect
States: 7 Flags: Z,S,P,CY,AC
SBI data (Subtract immediate with borrow)

(A) « (A) — (byte 2) — (CY)
The contents of the second byte of the instruction and the contents of the CY
flag are both subtracted from the accumulator. The result is placed in the

accumulator.
1P Tl Ty Ty Ty Ty
data byte
Cycles: 2 Addressing: immediate
States: 7 Flags: Z,S,P,CY,AC
INRr (Increment Register)
(1) () +1

The content of register r is incremented by one. NOTE: All condition flags
except CY are affected.

o' oo ' Tl 170 o

Cycles: 1 Addressing: register
States: 5 Flags: Z,S,P,AC

4-25

- R
4-26 | SECTION FOU = g I IEATIKITS

INR M (Increment memory) w

(H) L) <« (H @) +1
The content of the memory location whose address is contained in the H

and L registers is incremented by one. NOTE: All condition flags except CY
are affected.

0 0 0 0
Cycles: 3 Addressing: reg. indirect
States: 10 Flags: Z,S,P,AC
DCRr (Decrement Register)

) e(@—1
The content of register r is decremented by one. NOTE: All condition flags
except CY are affected.

Cycles: 1 : Addressing: register
States: 5 Flags: Z,S,P,AC
DCR M (Decrement memory)

(H) (L) « (H) (L)) —1
The content of the memory location whose address is contained in the H
and L registers is decremented by one. NOTE: All condition flags except CY

are affected.
ol ol T Toly ol
Cycles: 3 Addressing: reg. indirect
States: 10 Flags:

U

Heath Assembly Language 4-27

= g FIE ATEIIITS

INX rp (Increment register pair) 0(0,2,4,6)3

- (rh) (r]) « (rh) (z) + 1
The content of the register pair rp is incremented by one. NOTE: No
condition flags are affected.

Cycles: 1 Addressing: register
" States: 5 Flags: none
DCX rp (Decrement register pair)

(rh) (r]) « (th) (r]) — 1
The content of register pair rp is decremented by one. NOTE: No condition
flags are affected.

Cycles: 1 Addressing: register
States: 5 Flags: none
DAD rp (Add register pair to H and L)

(H) (L) « (H) (L) + (rh) (z])

The content of register pair rp is added to the content of the register pair H
and L. The result is placed in register pair H and L. NOTE: Only the CY flag
is affected. It is set if there is a carry out of the double precision add;

otherwise it is reset.

0 l 0 R l P 1 ! 0 I 0 l 1
Cycles: 3 Addressing: register
States: 10 Flags: CY

4-28 | secTiON FOUR — e

DAA (Decimal Adjust Accumulator) _ w

The eight-bit number in the accumulator is adjusted to form two 4-bit
Binary-Coded-Decimal digits by the following process:

1. If the value of the least significant 4 bits of the accumulator is greater
than 9 or if the AC flag is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the accumulator is now
greater than 9, or if the CY flag is set, 6 is added to the most significant
4 bits of the accumulator.

ol ol 1 Tolol 141,

Cycles: 1
States: 4
Flags: Z,5,P,CY,AC
Logical Group: ' U

This group of instructions performs logical (Boolean) operations on data in
registers and memory and on condition flags.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign,
Parity, Auxiliary Carry, and Carry flags according to the standard rules.

ANAT (AND Register)

(A) « (A)A (1)
The content of register r is logically anded with the content of the ac-
cumulator. The result is placed in the accumulator. The CY flag is cleared.

- 1|0I1|0I0 S.IS

Cycles: 1 Addressing: register
States: 4 Flags: Z,S,P,CY,AC

[E=FarmaTrrITe |
= il

Heath Assembly Language

ANA M (AND memory)

(A) « (A) A ((H) (L)

The contents of the memory location whose address is contained in the H
and L registers is logically anded with the content of the accumulator. The
result is placed in the accumulator. The CY flag is cleared.

Cycles: 2 ' Addressing: reg. indirect
States: 7 Flags: Z,S,P,CY,AC
ANI data (AND immediate)

(A) « (A) A (byte 2)

The content of the second byte of the instruction is logically anded with the
contents of the accumulator. The result is placed in the accumulator. The
CY and AC flags are cleared.

1T T ToTo Ty Tyl
data byte
Cycles: 2 Addressing: immediate
States: 7 Flags: Z,S,P,CY,AC
XRAT (Exclusive OR Register)

(A) « (A) ¥ (1)

The content of register r is exclusive-OR’d with the content of the ac-
cumulator. The result is placed in the accumulator. The CY and AC flags
are cleared.

1 ! 0 I 1 ! 0 ! 1 S I S ! S
Cycles: 1 Addressing: register
States: 4 Flags: Z,S,P,CY,AC

4-29

4-30

SECTION FOUR

= g IEATEHKITS

XRA M (Exclusive OR Memory))

(A) « (A) v ((H) (L)

The content of the memory location whose address is contained in the H
and L registers is exclusive-OR’d with the content of the accumulator. The
result is placed in the accumulator. The CY and AC flags are cleared.

1ol Tl Tyl Ty
Cycles: 2 Addressing: reg. indirect
States: 7 Flags: Z,S,P,CY,AC

XRI data (Exclusive OR immediate)

(A) < (A) v (byte 2)

The content of the second byte of the instruction is exclusive-OR’d with the
content of the accumulator. The result is placed in the accumulator. The CY
and AC flags are cleared.

1Py T T T T T T

data byte w

Cycles: 2 Addressing: immediate
States: 7 Flags: Z,S,P,CY,AC
ORAT (OR Register)

(A) «(A) VvV (1)

The content of register r is inclusive-OR’d with the content of the ac-
cumulator. The result is placed in the accumulator. The CY and AC flags
are cleared.

1ol g Ty 1o s Ts Tg

Cycles: 1 Addressing: register
States: 4 Flags: Z,S5,P,CY,AC

= grrmATHEITS

Heath Assembly Language

ORA M (OR memory)

(A) < (A) vV ((H) (L)

The content of the memory location whose address is contained in the H
and L registers is inclusive-OR’d with the content of the accumulator. The
result is placed in the accumulator. The CY and AC flags are cleared.

Cycles: 2 Addressing: reg. indirect
- States: 7 Flags: Z,S5,P,CY,AC

ORI data (OR Immediate)

(A) <« (A) V (byte 2)

The content of the second byte of the instruction is inclusive-OR’d with the
content of the accumulator. The result is placed in the accumulator. The CY
and AC flags are cleared.

data byte
Cycles: 2 Addressing: immediate
States: 7 Flags: Z,S,P,CY,AC
CMP r (Compare Register)

(A)—(1)

The content of register r is subtracted from the accumulator. The ac-
cumulator remains unchanged. The condition flags are set as a result of the
subtraction. The Z flag is set to 1 if (A) = (r). The CY flag is set to 1 if (A) <

().

Cycles: 1 Addreséing: register
States: 4 Flags: Z,S,P,CY,AC

4-31

4-32 | SECTION FOUR A e

CMP M (Compare memory) U
(A) — ((H) (L)

The content of the memory location whose address is contained in the H

and L registers is subtracted from the accumulator. The accumulator re-

mains unchanged. The condition flags are set as a result of the subtraction.
- TheZflagissetto1if(A) = ((H) (L)). The CY flag is set to 1 if (A) < ((H) (L)).

LT
Cycles: 2 Addressing: reg. indirect
States: 7 Flags: Z,S,P,CY,AC
CPI data - (Compare immediate)
(A) — (byte 2)

The content of the second byte of the instruction is subtracted from the
accumulator. The condition flags are set by the result of the subtraction. The
Z flag is set to 1 if (A) = (byte 2). The CY flag is set to 1 if (A) < (byte 2).

data byte
Cycles: 2 Addressing: immediate
States: 7 Flags: Z,5,P,CY,AC

RLC (Rotate left)

(Anti) < (Aq); (Ag) < (A7)

(CY) < (A9

The content of the accumulator is rotated left one position. The low order bit
and the CY flag are both set to the value shifted out of the high order bit
position. Only the CY flag is affected.

0|0l0'0|0|1|111

Cycles: 1
States: 4
Flags: CY

Heath Assembly Language 4-33
= g IEmATEICITS y -anguag

(U RRC (Rotate right)

(An) < (An-1); (A7) « (Ay)

(CY) « (Ay)

The content of the accumulator is rotated right one position. The high order
bit and the CY flag are both set to the value shifted out of the low order bit
position. Only the CY flag is affected.

ol ol oTo Ty T T, T
Cycles: 1
States: 4
Flags: CY
RAL - (Rotate left through carry)

(Ant1) < (An); (CY) « (A))

(Ag) « (CY)

The content of the accumulator is rotated left one position through the CY
flag. The low order bit is set equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY flag is affected.

w
o' o'l o1 To Ty T Ty
Cycles: 1
States: 4
Flags: CY
RAR (Rotate right through carry)
(A;) < (Apst); (CY) « (Ay)
(A7) « (CY) -
Th7e content of the accumulator is rotated right one position through the CY
flag. The high order bit is set to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Only the CY flag is affected.
0'0'0'1 I1 I1'1'1
Cycles: 1
States: 4
Flags: CY
s

4-34 [SECTION FOUR
= g HIEATEIRITS

CMA (Complement accumulator)

(A) « (A)
" The contents of the accumulator are complemented (zero bits become 1, one
bits become (0). No flags are affected.

0'0'1'0'1 l1‘1'1
Cycles: 1
States: 4
Flags: none
CMC (Complement carry)

(CY) « (CY)
"The CY flag is complemented. No other flags are affected.

ol ol ¢ Ty Ty Ty T4 T

Cycles: 1
States: 4
Flags: CY
STC (Set carry)
(CY) «1

The CY flag is set to 1. No other flags are affected.

ol ol 1 T T o T4 T 7T,

Cycles: 1
States: 4
Flags: CY

Branch Group

This group of instructions alter normal sequential program flow. Condition flags
are not affected by any instruction in this group.

The two types of branch instructions are unconditional and conditional. Uncon-
ditional transfers simply perform the specified operation on register PC (the

I—IE.A_TI—IKITe Heath Assembly Language 4-35

u program counter). Conditional transfers examine the status of one of the four
processor flags to determine if the specified branch is to be executed The
following conditions may be specified:

CONDITION CCC OCTAL

NE or NZ — not zero (Z=0) 000 0
E or Z — zero (Z=1) 001 1
NC — no carry (CY = 0) 010 2

C — carry (CY = 1) 011 3

PO — parity odd (P = 0) 100 4

PE — parity even (P = 1) 101 5

P — plus (S = 0) 110 6

M — minus (S = 1) 111 7

JMP addr (Jump)

(PC) « (byte 3) (byte 2)
Control is transferred to the instruction whose address is specified in byte 3
and byte 2 of the current instruction.

w 1 I 1 ! 0 I 0 ! 0 I 0 ! 1 l 1
low-order addr
high-order addr
Cycles: 3 Addressing: immediate
States: 10 Flags: none
JNE JNC JPO JP (Condition jump)
JE JC JPE M
If (CCQ),

(PC) « (byte 3) (byte 2)
If the specified condition is true, control is transferred to the instruction
whose address is specified in byte 3 and byte 2 of the current instruction.
Otherwise, control continues sequentially.

i T a]l cTcetlcelol1 o

low-order addr

high-order addr

Cycles: 3 Addressing: immediate
O. States: 10 . Flags: none

4-36 | SECTION FOUR e

CALL addr (Call)

((SP) — 1) « (PCH)
((SP) — 2) « (PCL)
(SP) « (SP) — 2

(PC) « (byte 3) (byte 2)

The high-order eight bits of the next instruction address are moved to the
memory location whose address is one less than the content of register SP.
The low-order eight bits of the next instruction address are moved to the
memory location whose address is two less than the content of register SP.
The content of register SP is decremented by 2. Control is transferred to the
instruction whose address is specified in byte 3 and byte 2 of the current

instruction.
1T ToTol s Ty Toly
low-order addr
high-order addr
Cycles: 5 Addressing: immediate/reg.
indirect
States: 17 Flags: none

CNE CNC CPO CP

(Condition call)
CE CC CPE M

If (CCQ),
((SP) — 1) « (PCH)
((SP) — 2) « (PCL)
(SP) — (SP) — 2
(PC) « (byte 3) (byte 2)

If the specified condition is true, the actions specified in the CALL instruc-
tion (see above) are performed; otherwise, control continues sequentially.

1'1 CIC'C 1|0|0

low-order addr

high-order addr

Cycles: 3/5 Addressing: immediate/reg.
indirect
States: 11/17 Flags: none

Heath Assembly Language 4-37

= grIsATEIKITS

RET (Return)

(PCL) « ((SP)):
(PCH) « ((SP)) + 1);
(SP) «— (SP) + 2:

The content of the memory location whose address is specified in register
SP is moved to the low-order eight bits of register PC. The content of the
memory location whose address is one more than the content of register SP
is moved to the high-order eight bits of register PC. The content of register
SP is incremented by 2.

Cycles: 3 Addressing: reg. indirect
States: 10 Flags: none

RNE RNC cCOP CP

RE RC CPE CM (Conditional return)

If (CCC),
(PCL) « ((SP))
(PCH « ((SP) + 1)
(

SP) « (SP) + 2

If the specified condition is true, the actions specified in the RET instruc-
tion (see above) are performed: otherwise, control continues sequentially.

1yl e clololo

C
Cycles: 1/3 Addressing: reg. indirect
States: 5/11 Flags: none
RSTn (Restart)

((SP) — 1) « (PCH) .
((SP) — 2) « (PCL)
(SP) « (SP) — 2
(PC) — 8 * (NNN)

The high-order eight bits of the next instruction address are moved to the
memory location whose address is one less than the content of register SP.
The low-order eight bits of the next instruction address are moved to the
memory location whose address is two less than the content of register SP.

4-38

SECTION FOUR

e A FI T ATELIKIT®

The content of register SP is decremented by two. Control is transferred to

the instruction whose address is eight times the content of NNN.

1 Ty N L P I
Cycles: 3 Addressing:
States: 11 Flags:

reg. indirect
none

15141312 1110 9 8 76543 2 10

[oJoJoJoJoJoJofofofo[n]n]N[of0]0]

Program Counter After Restart

PCHL (Jump H and L indirect — move H and L
to PC)

(PCH) « (H)
(PCL) « (L)

The content of register H is moved to the high-order eight bits of register PC.
The content of register L is moved to the low-order eight bits of register PC.

1 1
Cycles: 1 Addressing: register
States: 5 Flags: none

Stack, I/0, and Machine Control Group

This group of instructions performs I/O, manipulates the Stack, and alters
internal control flags. Unless otherwise specified, condition flags are not af-

fected by any instructions in this group.

PUSH rp (Push)

((SP) — 1) « (rh)
((SP) — 2) « (1])
(SP) « (SP) — 2

4

= g rIEATHKIT®

Heath Assembly Language 4-39

The content of the high-order register of register pair rp is moved to the
memory location whose address is one less than the content of register SP.
The content of the low-order register of register pair rp is moved to the
memory location whose address is two less than the content of register SP.
The content of register SP is decremented by 2. NOTE: Register pair rp = SP
may not be specified.

1 | 1 R I P 0 ! 1 ! 0 ! 1
Cycles: 3 Addressing: reg. indirect
States: 11 Flags: none

PUSH PSW (Push processor status word)

((SP) — 1) « (A)

((SP) — 2)o « (CY), ((SP) — 2), « 1
((SP) — 2); « (P), ((SP) — 2); < 0
((SP) — 2}, < (AQ), ((SP) — 2); <0
((SP) — 2) « (2), ((SP) — 2), « (S)
(SP) « (SP) — 2

The content of register A is moved to the memory location whose address is
one less than register SP. The contents of the condition flags are assembled
into a processor status word and the word is moved to the memory location
whose address is two less than the content of register SP. The content of
register SP is decremented by two.

1P by Ty T T To T,

Cycles: 3 Addressing: reg. indirect
States: 11 Flags: none

FLAG WORD

4-40 | SECTION FOUR E=TrmaTIirTe

POP rp (Pop)

(x]) < ((SP))
(th) < ((SP) + 1
(SP) « (SP) + 2

The content of the memory location whose address is specified by the
content of register SP is moved to the low-order register of register pair rp.
The content of the memory location whose address is one more than the
content of register SP is moved to the high-order register of register pair rp.

The content of register SP is incremented by 2. NOTE: Register pair rp = SP
may not be specified.

1'1 RIP 0'0'0'1

Cycles: 3 Addressing: reg. indirect
States: 10 Flags: none
POP PSW (Pop processor status word)

(CY) « ((SP))s

(P) < ((SP));)
(AC) « ((SP))

(Z) < ((SP))s

(S) « ((SP)),

(A) «< ((SP) + 1)

(SP) « (SP) + 2

The content of the memory location whose address is specified by the
content of register SP is used to restore the condition flags. The content of
the memory location whose address is one more than the content of register
SP is moved to register A. The content of register SP is incremented by 2.

T2 13 T T Teloty

Cycles: 3 Addressing: reg. indirect
States: 10 Flags: Z,S,P,CY,AC

HEATHKIT@ Heath Assembly Langyage

XTHL (Exchange stack top with H and L)

(L) < ((SP))
(H) «— ((SP) + 1)

The content of the L register is exchanged with the content of the memory
location whose address is specified by the content of register SP. The
content of the H register is exchanged with the content of the memory
location whose address is one more than the content of register SP.

1 Ty T T T T Ty
Cycles: 5 Addi‘essing: reg. indirect
States: 18 Flags: none

SPHL (Move HL to SP)
(SP) « (H) (L)

The contents of registers H and L (16 bits) are moved to register SP.

1Dl Ty Tl Ty
Cycles: 1 Addressing: register
States: 5 Flags: none

IN port (Input)
(A) « (data)

The data placed on the eight bit bidirectional data bus by the specified port
is moved to register A.

input port

Cycles: 3 Addressing: direct
States: 10 Flags: none

4-41

4-42 | SECTION FOUR

OUT port (Output)

e

(data) « (A)

The content of register A is placed on the eight bit bidirectional data bus for
transmission to the specified port.

1T 1 ToT 1 To o lqty

output port

Cycles: 3 Addressing: direct
States: 10 Flags: none
EI : (Enable interrupt)
The interrupt system is enabled following the execution of the next instruc-
tion. :
LR
Cycles: 1
States: 4 P
Flags: none u
DI (Disable interrupt)

The interrupt system is disabled immediately following the execution of
the DI instruction.

PR R B P P B T

Cycles: 1
States: 4
Flags: none

- Heath Assembly Language 4-43

&) HLT (Halt)

The processor is stopped. The registers and flags are unaffected.

0'1'1'1'0'1'1'0

Cycles: 1
States: 7
Flags: none

NOP (No op)

No operation is performed. The registers and flags are unaffected.

ol ol ol ol olololo

Cycles: 1
States: 4
Flags: none

PSEUDO OPCODES/ASSEMBLER DIRECTIVES

The Heath Assembly Language supports 20 assembler directives or, as they are
more commonly known, pseudo opcodes or simply pseudo ops. These opcodes
are called “pseudo” because they are coded as machine operations. But as their
alternate name (assembler directives) indicates, they represent commands to
HASL-8 and are not translated as instructions for the H8. Some pseudo ops
conditionally affect the operation of the assembler. Others cause the assembler to
generate constants into the generated object code.

4-44

SECTION FOUR

(o e
v/ .

Define Byte, DB
The DB pseudo defines byte contents. The DB pseudo is of the form:

Label DB iexpl, ,iexpn

The integer expressions iexp1 through iexpn are expressions which evaluate to
8-bit values. For the DB pseudo, a long string can be substituted for an expres-
sion. The long string is a character string, delimited by single quotes ('), contain-
ing one or more characters. You can enclose a quote (') within a string by coding
it as two single quotes. Each of the expressions is converted into an 8-bit binary
number and stored in sequential memory locations. A few examples of the DB
pseudo are:

" CR EQU 15Q
LF EQU 12Q
DB 1
DB 2,3,4
DB 10,CR,LF, 'H8 BASIC',O

In each case, the DB pseudo converts the expression into a single byte and stores
it in the appropriate memory location. The DB pseudo recognized a character
string as a series of expressions. Therefore, each character is converted into its
ASCII binary equivalent and is stored in a sequential memory location.

Define Spabe, DS

The defined space pseudo (DS) reserves a block of memory during assembly.

The form of the DS pseudo is:
LABEL DS iexp COMMENT

This pseudo is used, for example, to set up a buffer area or to define any other
storage area. The DS pseudo causes the assembler to reserve a number of bytes
specified by the expression (iexp) in the operand. These bytes are not preset to
any value. Therefore, you should not presume any special original contents.
Programs using extensive buffer area should use the DS pseudo to declare this
area. Using the DS pseudo significantly shortens the program load time. In the
example

LINE DS 80 80 character input line buffer

an 80-character input buffer is reserved by a single statement.

C

g F I ATEIKITS

Heath Assembly Language

Define Word, DW

The DW pseudo defines word constants. The form of the DW pseudo is:

LABEL DW iexpl, , iexpn

The DW pseudo specifies one or more data words iexp through iexpn. Data
words are 2-byte values which are placed into memory space, low order byte
first. NOTE: Strings greater than two characters long are not allowed when you
are using the DW pseudo.

Conditional Assembly Pseudo Operators

Frequently, you may want to write a program with certain portions of it that can
be turned on or turned off. That is to say, when they are turned on, these portions
of the program are assembled. If they are turned off, they are not assembled
during that particular assembly. HASL-8 contains three pseudos to aid in condi-
tional assembly. They are:

IF ELSE and ENDIF
IF iy

The IF pseudo conditionally disables assembly of any statements following the
IF pseudo operator. The form of the IF pseudo operator is:

IF iexp

IF the expression (iexp) evaluates to zero, the statements following the IF pseudo
- are assembled. If the expression does not evaluate to zero (either negative or
positive), any statements in the assembly source code following this expression
are skipped until one of the three following pseudos are encountered. The ELSE,
ENDIF and END pseudos are not skipped regardless of the value of the expres-
sion ‘“iexp”’.

ELSE

The ELSE pseudo toggles the state of the assembly conditions. The ELSE pseudo
is of the form:

ELSE

If the conditional assembly flag is set to skip assembling source code, it is
changed so source code is now assembled. If lines of source code prior to
encountering the ELSE pseudo are being assembled, those following the ELSE
pseudo are skipped until an ELSE, ENDIF, or END is encountered. NOTE: The
ELSE segment must appear after an IF statement, but before the associated ENDIF
statement.

4-45

4-46

SECTION FOUR

FIEATEIIITS

ENDIF

The ENDIF statement indicates the end of a block of source code designated for
conditional assembly. The form of the ENDIF pseudo is:

ENDIF

Assembly resumes regardless of the current assembly state (assembling or skip-
ping) when the ENDIF conditional assembly pseudo occurs.

END

The END pseudo indicates the END of a program. The END pseudo takes the
form:

END iexp

where iexp is the program entry point. The program entry point is the memory

address where program execution begins. If the END statement is missing, the

assembler generates one. If iexp is missing, the H8 does not receive a starting
value for the program counter where the binary tape is loaded.

EQU

The Equate statement is used to assign an arbitrary value to a symbol. The form of
the equate statement is:

LABEL EQU iexp

The equate statement is unique, as it must evaluate on pass one. For this reason,
any symbols used within the expression “iexp” must be defined before the
assembler encounters the EQU statements. The label is assigned the value of the
integer expression “iexp”. This label may not be redefined by subsequent use as
a label in any other statement. For example,

.START EQU *
The label .START is set equal to the value of the memory location counter, or
.START EQU 100

The label .START is set equal to 100.

NOTE: If you omit the label, an error is generated.

~
L‘ 3 ﬁf}

C.

Heath Assembly Language

[z AaTzrzcrTe

ORG

The Origin statement (ORG) sets the initial value of the memory location
counter. The form of the origin statement is:

LABEL ORG iexp

The expression iexp must evaluate on pass one. Therefore, any symbols used
within this expression must be defined before the assembler encounters this
statement. When the assembler encounters the ORG statement, the memory
location counter is set to the expression value. All subsequent object code
generated by the assembler is placed in sequential memory locations, starting at
the address given by the expression. It is legal to establish a new origin, either
before or after a previous origin. If a label is present, it is given the value iexp. For
example:

BEGIN ORG ~ 40 100A The program is started at location 040 100 (offset octal)
and the label BEGIN is assigned the offset octal value 040
100.

BEGIN ORG .START+256 The memory location counter is set to the previously
defined value of the label .START +256. The label
BEGIN also assumes this value.

SET

The SET statement assigns an arbitrary value to a desired symbol. The form of the
SET statement is:

LABEL SET iexp

The SET pseudo op differs from the EQU pseudo op in that any label defined in a
SET statement can be redefined in a following SET statement as many times as
desired in the course of the program. The expression ‘‘iexp”’ must evaluate
during pass one. Therefore, any symbols used within the expression “’iexp’’ must
be previously defined. '

Listing Control

HASL-8 provides a number of pseudo operators which affect the listing mode.
They control paging, pagination, titles, and subtitles. The listing control
pseudos are used to affect easily read documentation; they do not appear in the
program listing.

4-47

4-48 | SECTION FOUR

= g T I ATEIKIT®

IRy

TITLE

The pseudo operator TITLE causes a new page title to be used. The form of the
title pseudo op is:

TITLE 'new title'

Unless the assembler is already at the top of a page, a new page of the assembly
listing is generated. This page is given the title contained in the string ‘new title’.

STL

The subtitle pseudo (STL) causes a new page subtitle to be set. The form of the
subtitle pseudo is:

STL 'new subtitle'

The subtitle pseudo does not affect pagination. This is to say, it does not generate
a new page but simply titles a subsection of the program. Subtitles are frequently
used to indicate subroutines or major program modules.

EJECT

The EJECT pseudo causes a new page to be started. The form of the eject pseudo
is:

EJECT

When HASL-8 processes an EJECT pseudo, the output device is instructed to
move to the start of a new page during the listing.

SPACE

The space pseudo leaves blank lines in the program listing. The form of the space
pseudo is:

SPACE iexpl, iexpl

During the assembly listing, iexp1 blank lines are left. If the optional expression
iexp2 is specified, the assembler checks during a listing to see if the number of
lines remaining on the page is greater than or less than iexp2. If there are less
than iexp2 lines remaining on the page, the spacing function is skipped and a
new page is started, as if an EJECT speudo was executed.

: - # PR — Heath Assembly Language | 4-49

LON (Listing on)

The LON pseudo operator is used to turn-on listing options. The form of the LON
pseudo is: \

LON CcCC

Each option is represented by a single character. The characters for the desired
options are supplied as CCC. The options and their default modes (if they are not
specified) are:

L Master listing

If this option is enabled, all program lines are listed. If it is disabled, only
lines containing errors are listed.

DEFAULT MODE: All program lines are listed (normally enabled; disable
using LOF).

I Lists the IF-skipped lines. When this option is enabled, all lines skipped
due to IF statements are listed (although they are not assembled).
DEFAULT MODE: The skip lines are not contained in the listing.

G Lists all generated bytes. When this option is enabled, all generated bytes
appear on the listing. If more than three bytes are generated by a statement,
new lines are generated in the listing to display these bytes. NOTE: Define
byte pseudo can produce many bytes when you are encoding a string.
These are not normally listed.

DEFAULT MODE: Lists a maximum of the 3-bytes generated in each
statement.

LOF (Listing off)

The LOF pseudo is identical to the LON pseudo except that the selected options
are disabled. The form of the LOF pseudo is:

LOF ccc

See LON, above, for a description of the control character CCC.

ERRxx
HASL-8 contains four conditional error pseudo operators. These are of the form:

ERRZR iexp
ERRNZ iexp
ERRPL iexp -
ERRMI iexp

4-50

SECTION FOUR

s A FTE ATEIIIT®

———————

For each of these pseudo operators, the assembler tests the indicated expression.
If the expression matches the expressed error condition, an error code is flagged
in the listing. The errors associated with each of the conditional error pseudos
are:

ERRZR tests for zero expression

ERRNZ tests for non-zero expression
ERRPL tests for positive expression
ERRMI tests for negative expression

These pseudo error tests are particularly useful when you make assumptions
about the configuration of various program elements or expressions. You can
encode these assumptions into ERRxx pseudos. So any change which causes the
code to fail generates an error, flagging the programmer during the listing. For
example,

LXI H, AREA1

MOV B,M (B) = (AREA1)
INX H
ERRNZ AREA2-AREA1-1 Assume area 2 follows area 1

MOV C.M (C) = (AREA2)

If, when the program is assembled, AREA 1 and AREA 2 have been defined
differently, an error flag would warn of this mistake.

USING THE ASSEMBLER

Before the Heath Assembly Language is used, the source program must be
prepared using a Text Editor such as TED-8. Once the source program is pre-
pared and stored on tape, Heath Assembly Language can be loaded in the H8.
The loading procedure is outlined in “Appendix A” (Page 4-57). Once a confi-
gured version of HASL-8 is loaded and started, a series of questions must be
answered. First the assembler asks '

PAGE SIZE?

The normal page (8-1/2 x 11) has 66 lines. You can specify longer or shorter page
sizes by counting the total number of lines required to fill the page top to bottom.
The assembler then asks

INTER-PAGE GAP SIZE?

s

= HEATEHKITS

Heath Assembly Language 4-51

The normal page allows the last six lines for the inter-page gap. However, you
may specify any desired gap. The PAGE SIZE and INTER-PAGE GAP inputs are
used when the title, subtitle, space and eject pseudo-ops are executed. The
assembler then asks

LISTING PORT:

The normal reply to listing port is a carriage-return. A carriage-return with no
port number specified indicates the listing port is to be the console terminal. If
you specify, a port number, HASL-8 returns control to PAM-8 so you may
configure the port as desired. Once the port is configured, HASL-8 is restarted at
location 040 100. Once listing port is specified, the assembler asks

BINARY (Y/N)?

If you do not want a binary (N), the output tape transport is not used and no
binary image of the assembled program is placed in memory. Often, no binary is
specified until you are sure the program will assemble. If a yes (Y) is given in
reply to the question, the assembler then asks

BINARY TAPE (Y/N)?

Ano (N) reply to this question directs HASL-8 to place the binary generated from
the assembly into memory at the proper location. If NO BINARY TAPE is
specified, you should set the HIGH MEMORY limit below the point used by the
object program. NOTE: To do this may require reconfiguration of the assembler.
See “Appendix A,” (Page 4-57).

A yes (Y) reply to this question directs HASL-8 to place the binary generated
from the assembly of the source code onto tape at the dump port. This tape is in
the memory image format and contains the starting and ending addresses, and
the entry point address of the desired program.

Once the assembler determines whether a binary is to be generated or not, and if
it is to be placed into memory or dumped onto tape, it then asks

INPUT

4-52

SECTION FOUR

= FIE ATEIIT®

Theresponse to this is the character string used to identify the source file when it
was created by the Text Editor. Do not include any string delimiters to specify the
file name when outputting from Text Editor. For example:

NEWOUT "TEST"
FLUSH
SURE?

dumps a file named TEST using TED-8. It is loaded by the assembler by

INPUT?TEST
FOUND TEST

The file name does not have to be complete and can be a null, which allows
HASL-8 to load the next file on the tape. (Enter a null by typing a range return.)

Once the file is found, HASL-8 begins the assembly process. The entire file is
read for the first pass. Once the first pass is complete, HASL-8 issues the
instruction

REWIND SOURCE TAPE TYPE CR WHEN DONE.

The tape drive is not turned off, so the source tape may be easily returned at its
starting point. Once the tape is at its starting point, type a carriage return (CR)
and start the tape transport. HASL-8 then issues the instruction

FOUND TEST
POSITION PAPER. TYPE CR:

The paper in any printer on the H8 system should be in place and the dump tape
transport should be made ready at this time. Position the paper at the bottom of a
form. HASL-8 starts by spacing an interpage gap. It then prints the title and
subtitles. '

Once you type the carriage return, HASL-8 begins the second pass, generating
the listing and creating the binary tape. The listing may require reading several
records of the input tape and the output binary dump may come in a number of
records. Once the listing and the binary dump are complete, HASL-8 terminates
its operation by outputting

STATEMENTS = XXXXX
FREE BYTES — XxXxxXX
NO ERRORS DETECTED. or

STATEMENTS = xxxXxXx
FREE BYTES — xXXxXx

ERRORS — xxxxx

Heath Assembly Language 4-53

Hiiﬁﬁir{rnfur:{rcxi:q

U This first version of this terminating statement indicates that you have success-
fully completed an assembly of your source program, and if a binary output is
specified it is generated. The second version of this terminating statement
indicates that you have completed assembly of your source program, but there
are errors which the assembler is able to detect. These errors exist in any binary
output which may have been specified. Up to three errors per statement line will
be shown on the listing output. The errors are shown as single letters in the left
hand three columns of the listing. A typical output listing format is shown
below.

HEATH/WINTEK H8 ASSEMBLER

ISSUE # 4.01.00.
COPYRIGHT WINTEK CORP., 01/77

.PAD =4/0

.CONSOLE LENGTH = 00080/72 .
.HIGH MEMORY = 24575/

.LOWER CASE (Y/N)?

HEATH H8ASM ISSUE #4.01.00.

PAGE SIZE? 60
INTER-PAGE GAP SIZE? 6
LISTING PORT:
; BINARY (Y/N)?Y

(».’) BINARY TAPE (Y/N)?Y
INPUT?USR PROGRAM FOR BASIC #1.0
FOUND USR PROGRAM FOR BASIC #1.0
REWIND SOURCE TAPE. TYPE CR WHEN DONE.
FOUND USR PROGRAM FOR BASIC #1.0

POSITION PAPER. TYPE CR:
HASL #04.01.00

PAGE 1
Errors Addresses Object Labeler Opcodes Operands Comments
Code _
117.220 ORG 120000A-160Q
063.207 FPNRM EQU 063207A
117.220 003 START INX B INC UP
117.221 003 INX B TO
117.222 003 INX B EXPONENT
117.223 012 LDAX B (A) = ACCX EXP
117.224 247 ANA A SET CONDX CODE
117.225 310 RZ
117.226 075 DCR A /2
117.227 312 233 077 JZ USR1 IF UNDER FLOW
117.232 075 DCR A /2 AGAIN (/4)
117.233 002 USR1 STAX B RET TO ACCX
117.234 315 207 063 CALL FPNRM NORMALIZE
117.237 311 RET IN CASE O
-~ :
ih,) 117.240 END START
g STATEMENTS = 00016

FREE BYTES - 10331
NO ERRORS DETECTED.

4-54 l SECTION FOUR

e ETE ATEIITS

Errors

All errors detected by the Heath Assembly Language are flagged directly on the
listing in the first three columns. One character is flagged for each error detected.
If more than one error is detected, the second error character is placed in column
2 and the third error character is placed in column 3.

CHARACTER ERROR

8] An undefined symbol. The symbol name does
not match any symbol in the symbol assignment
table. Check for spelling errors or for a com-
pletely undefined symbol.

R Illegal register specified. Two different errors
can cause this message. A non-8080 register may
have been specified, or the instruction was not
meaningful for the register. For example, a regis-
ter pair instruction which refers to a single regis-
ter.

D Label is doubly defined. The symbolic label has
been defined twice in the source program.

A Operand syntax error. The operand expression is
improper. For example, it may evaluate to a
number >65535, be a divide by zero, or be
nonexistant.

\Y% Value exceeds eight bits. The result of an expres-
sion is greater than 255. This error is not flagged
if the op-code called for a 16-bit operand such as
an LXI instruciton.

F Format error. A pseudo-op requires a label that is
not present in the source code. For example, an
EQU pseudo-op requires a label. Too many
characters in a label.

o Unrecognized op-code. The op-code in this
statement does not belong to the 8080 instruc-
tion set, nor does it belong to the HASL-8
pseudo-op instruction code set. Check for spel-
ling errors or for op-codes used from other mi-
croprocessor instruction sets.

Heath Assembly Language I 4-55

By I ATEIICIT®
(J CHARACTER ERROR
P Error generated by ERRxx pseudo or reference to

a doubly defined label. Note the ERRxx pseudos
are generated to flag the user when a test expres-
sion does not evaluate satisfactorily.

NOTE: If an assembly generates a great number of errors, it is best to return to the
Text Editor, correct as many errors as possible, and reassemble. The reassembly
will frequently flag additional errors which are then obvious on the second
assembly. If the errors are few, you may load the program and debug it using
BUG-8 or PAM-8. However, this does not result in a correct listing.

During an Input, one of two error messages may be generated. They are:

SEQ ERR and
CHKSUM ERR.

A sequence error (SEQ ERR) is generated if the file records are not in the proper
sequence. For example, if two consecutive label records are read, an error is
generated, as a TED-8 Source file consists of a label record followed by text
records. The form of the sequence error is

\ SEQ ERR

Typing a CNTRL-C after the SEQ ERR message generates a tape error message
TRY AGAIN?

Reply Y to TRY AGAIN? if you wish to try once more toread the tape. Rewind the
tape until you are sure it is before the bad/missing record. HASL-8 will discard
all records until the bad/missing one is located. Watch the record numbers on the
H8 front panel LED’s to make sure you don’t miss the record again.

Reply N to TRY AGAIN? if you wish to restart the assembly completely.

A checksum error (CHKSUM ERR) is generated if the actual computed CRC for
therecord in question does not match the CRC recorded at the start of the record.
The form of the checksum error message is

CHKSUM ERR IGNORE?

A'Y in response to the question ignore aborts the error message and the next
consecutiverecord is read. NOTE: Do not ignore the checksum error unless there
isno other way torecover the data. If a checksum error is flagged, the chances are
very good that the data in the designated record is faulty.

C

4-56

SECTION FOUR

=y rIEATEIIIT®

Control Characters

CONTROL-C

CONTROL-C is a general-purpose cancel key. Typing CNTRL-C causes HASL-8
to start over at the beginning.

RESTARTS

The ﬂB front panel keyboard can be used to restart the assembler if control has

been returned to PAM-8. HASL-8 can be restarted in two places. They are:

NEW PASS #1 040 100 and;
NEW PASS #2 040 103.

OUTPUT SUSPENSION and RESTORATION, CNTRL-S and CNTRL-Q

Typing CONTROL-S during an output suspends the output to the terminal and
suspends program execution. This command is particularly useful when you use
a video terminal, since you can use the CONTROL-S or suspend feature each
time a screen is nearly filled and information at the top is about to be lost due to
scrolling.

Typing a CONTROL-Q permits HASL-8 to resume execution and outputting
information to the terminal. The CONTROL-Q cancels the CONTROL-S func-
tion.

The DISCARD FLAG, CNTRL-O and CNTRL-B

Typing the CONTROL-O toggles the DISCARD FLAG. This stops output on the
terminal but does not halt program execution until the program terminates.

Typing a CONTROL-P (or retyping CONTROL-O) clears the discard flag.

CONTROL-O is often used to discard the remainder of long listings and other
similar outputs. '

s

O UL R

Heath Assembly Language
HEA’I‘I—IKI’I‘9 ,

APPENDIX A

Loading Procedures

Loading From the Software Distribution Tape

Load the tape in the reader.

Ready the tape transport.

Press LOAD on the H8 front panel.

A single beep indicates a successful load.
Press GO on the H8 front panel.

The console terminal will respond with:

HEATH/WINTEK H8 ASSEMBLER
ISSUE #4.01.00
COPYRIGHT WINTEK CORP., 01/76

7. Configure HASL-8 as desired, answering the following questions. Prompt

each question by typing its first character on the console terminal
keyboard.

*AUTO NEW-LINE (Y/N)?
*BKSP = 00008/

*CONSOLE LENGTH = 00080/
*HIGH MEMORY = 16383/
*LOWER CASE (Y/N)?

*PAD =4/

*RUBOUT = 00127/

*SAVE?

&

Before executing SAVE, have the tape transport ready at the DUMP port.
To use HASL-8 directly from the distribution tape, type the return key at
any time rather than a question prompt key. HASL-8 responds

©

HEATH HASL-8 ISSUE #4.01.00.

*

4-57

4-58

SECTION FOUR

Loading From a Configured Tape

Load the tape in the tape transport.

Ready the tape transport.

Press LOAD on the H8 front panel.

A medium beep indicates a successful load.
Press GO key on the H8 front panel.

The console terminal responds with:

SN

HEATH HASL-8 ISSUE #4.01.00
BINARY (Y/N)<?Y

HASL-8 is ready to use in the configured form. Proceed to answer the question
directing the desired assembly procedure.

C

Heath Assembly Language

INDEX

Addressing Modes, 4-12
Arithmetic Instructions, 4-21 ff,
Assembler Directives, 4-43
Assembler Operations, 4-50

Branch Instructions, 4-34 ff,

Character Set, 4-4
Character Strings, 4-10
Comment Field, 4-4, 4-6
Condition Flags, 4-13
Conditional Assembly, 4-45
Control Characters, 4-56

Data Transfer Instructions, 4-17 ff,
Define Byte (DB), 4-44

Define Word (DW), 4-45

Defined Space (DS), 4-44

Direct, 4-12

Dollar Sign ($), 4-4

Doubly Defined Label, 4-54

ERRxx, 4-49
EQU, 4-46
EJECT, 4-48
ELSE, 4-45
END, 4-46
ENDIF, 4-46
Errors, 4-54
Expressions, 4-7

- Format Control, 4-7

1/O Instructions, 4-38 ff,
IF, 4-45

Illegal Register, 4-54
Immediate, 4-12
Integers, 4-8

LOF, 4-49

LON, 4-49

Label Field, 4-4 ff,

Least Significant Bit (LSB), 4-11
Letters, 4-4

Listing Control, 4-47

Logical Instructions, 4-28 ff,

Machine Control Instructions, 4-38 ff,
Most Significant Bit (MSB), 4-11

Numerals, 4-4

Opcode Field, 4-4 ff,

OPCODES (8080), 4-10 ff,
Arithmetic Group, 4-21 ff,
Branch Group, 4-35 ff,
Data Transfer Group, 4-17 ff,
Logical Group, 4-29 ff,
Machine Group, 4-38 ff,

Operating the Assembler, 4-50

Operand Field, 4-4, 4-6

Operator Precedence, 4-8

Operators, 4-6

ORG, 4-47

Origin Symbol (ORG), 4-10, 4-47

Overflow Error, 4-9

Period, (.), 4-4
Pound symbol, (#), 4-9
Pseudo Opcodes, 4-43

Register, 4-12
Register Indirect, 4-12

Set, 4-47

Space, 4-48

Stack Instructions, 4-38 ff,
Statements, 4-4

STL, 4-48

Strings, 4-10

Symbolic Programs, 4-3
Symbols, 4-9

Syntax Error, 4-54

Text Editor, 4-3
Title, 4-48
Tokens, 4-8
TED-8, 4-3, 4-7

Undefined Symbol, 4-54
Unrecognized Op-Code, 4-54

4-59

e ttttteerieeeseeeeeeesnieresaennnes.. JEQUIRED PATCHES FOR
ettt JHEATH HB HASL = 8 s
L
... L I s Y 2 R o SRR
R C TR ISP P RATLS FHESE BAT S MUST BE TNETALLED T i s
R ROBOET EUSKY TINE & LAt T8 MADE Egba S
... LR B ONEYBURSTTON. TABE " " "
...... NOTES S - “NGRE 3" " * "= " e e m o e e et
...... USES " NG 3+ "+ "+ o e
. e L L L L o L S o nTTTT. T
N’ 0A1221 AL s
""" 041386318 072 067
L1 S L T V- PP P OO PPt
T osEiE3 3037101067 '
053227 112 067 ...
...... N AR TR S eeeneens
055104 064 ..
....... R LT GaY e e
O L0 127 e ettt
""" 055213335
055231 315 120 067 000 s
""" 047079 70627122 °063 062 126 063 311 302
...... 067102 043 053 315 042 056,303 136 053 .. i
047119 7"315° 1447040 303 042 056 062 050
...... 067122 047 376 32T BLL it e et
073002 044
...... 073000 061 e eeeeieeeeeeeeteeeeeeeaa e et et sttt

teeescsssbesescsscsccacsooree W R OvessseessssessETIIITITIVIIITTVIOIIYTOIVITY

Page 4 of 4

