
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                           HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
This manual was originally (1990) issued as a series of text files. In 
the conversion to .pdf format, I have made minor adjustments to 
pagination and layout as I have combined the separate files into a 
single document.  
 
No changes have been made to the contents of the document other than 
the correction of an occasional misspelling. 
 
Jack Rubin 
SEBHC 
May, 2003 

 
 
 
 
 
 
 



 
 
 
     
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
    HDOS  3.02  is  an enhanced version of HDOS 2.0.  The long-awaited HDOS 
    3.0  was originally conceived by  William  G.  Parrott  III,  David  T. 
    Carroll,  and  Dale  L.   Wilson.   Due  to  circumstances beyond their 
    control David and Dale dropped out,  and  another  programmer,  Richard 
    Musgrave,  joined  Bill  Parrott  and  assumed  the  responsibility  of 
    developing the new operating system.  After completing HDOS  3.0,  Bill 
    moved  on  to  other  pursuits,  and  Richard has continued to develop, 
    debug,  and  improve  HDOS 3.0,  providing  an  enhancement called HDOS 
    3.02.  Refer to Chapter 14, page  14-3,  "WHAT'S  NEW",  for  a capsule 
    summary describing the HDOS 3.02 features. 
     
    The  HDOS  Operating  System  was  originally copyrighted  by the Heath 
    Company in 1980, has gone through several updates (HDOS 1.5, HDOS  1.6) 
    until  the  final  update  to  HDOS  2.0.  It was this version that was 
    entered into public  domain  on  19  July  1989,  by  Jim  Buszkiewicz, 
    Managing  Editor,  Heath  Users'  Group (National HUG), Box 217, Benton 
    Harbor, Michigan 49022-0217 (616)982-3463.  The letter was sent to Kirk 
    Thompson, editor of the Staunch 8/89er Newsletter, and is available for 
    public inspection. 
     
    This manual, based on the original work, presents the new version, HDOS 
    3.02.   Within this latest version, you will find many useful commands, 
    MS-DOS  emulating  functions,  such  as  "batch   files,"   and   other 
    interesting  features.   This  has  proven  to  be the most fascinating 
    operating system yet available for our Heath H89 family of computers. 
     
    SPECIAL DISCLAIMER: The Heath Company will not provide consultation  on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System. Therefore, do not refer to Heath for questions. 
     



 
     
     
     
     



                  HDOS 3.0 SOFTWARE REFERENCE MANUAL CONTENTS 
                  +++++++++++++++++++++++++++++++++++++++++++ 
   
    A  Table  of Contents is included at the beginning of each chapter.  In 
    order to readily distinguish one chapter from another, the page numbers 
    are  sectionalized.   For example, in chapter 1, the pages are serially 
    numbered 1-1, 1-2, 1-3, etc.,  while  in   chapter  2,  the  pages  are 
    serially  numbered 2-1, 2-2, 2-3, etc., and so on to include all of the 
    chapters.           
 
    The overall manual is divided into the following chapters: 
     
 
 
              CHAPTER              TITLE 
 
                 1 ............. System Configuration 
 
                 2 ............. General Operations 
 
                 3 ............. System Optimization 
      
                 4 ............. Syscmd/Plus: Quick Reference Guide 
 
                 5 ............. PIP/Plus: Quick Reference Guide 
 
                 6 ............. HDOS 3.02 Cookbook 
 
                 7 ............. Advanced Techniques 
 
                 8 ............. Theory of Operation 
 
                 9 ............. Console Debugger (DEBUG) 
 
                10 ............. Heath Text Line Editor (ED) 
 
                11 ............. Heath Assembly Language (ASM) 
      
                12 ............. Extended Heath Benton Harbor BASIC 
 
                13 ............. HDOS System Programmers' Manual 
 
                14 ............. Data Bits  
 
 
     
 
 
     
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                           HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                   CHAPTER 1 
 
                             SYSTEM CONFIGURATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                       PAGE 1-1 
    ===========         ====================                       ======== 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
           
          SECTIONALIZED MANUAL CONTENTS ........................ 1-1 
 
          INTRODUCTION ......................................... 1-3 
            Notation Coventions ................................ 1-5 
            CTRL (CONTROL) Sequences ........................... 1-6 
 
          SYSTEM CONFIGURATION ................................. 1-7 
            Operating System Minimum Requirements .............. 1-7 
            Port Allocations for the H89, Table 1-1 ............ 1-7 
            Port Allocations for the H8, Table 1-2 ............. 1-8 
            Setting Up A System ................................ 1-9 
              Disk Drives and Monitor Roms ..................... 1-9 
              Setting Up A System with 5 1/4 or 8-inch Drives.. 1-11  
              Differences Between 5 1/4 and 8-Inch Disks ...... 1-11 
 
          APPENDIX 1-A  
            Glossary of Terms ................................. 1-18 
 
          APPENDIX 1-B 
            Configuring Hardware .............................. 1-22 
 
          APPENDIX 1-C 
            Port Assignments .................................. 1-34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     



     



    CHAPTER ONE         SYSTEM CONFIGURATION                       PAGE 1-3 
    ===========         ====================                       ======== 
 
 
                                 INTRODUCTION 
                                 ============ 
 
    Most  of  the  material  found  in chapters one through three cover the 
    fundamentals of the HDOS 3.0  Operating System.  This is necessary  for 
    beginners  in  order to provide the proper background to enable them to 
    use HDOS 3.0  efficiently.  If desired, advanced  users  may  begin  in 
    Chapter 4, SYSCMD/Plus. 
 
    Heath  Disk Operating System, Version 3.0, is an updated, sophisticated 
    library of programs which controls and facilitates the many and diverse 
    applications  of  your  computer.  The H8/H89/Z90/HDOS system has set a 
    new standard in the hobby computer industry.  This was the first  hobby 
    system to  offer  many  of  the functions of large, commercial computer 
    systems.  In addition, this genre of computers have proven to  be  very 
    trustworthy and dependable.  Most of the owners are very loyal to their 
    computer systems.  The satisfaction you will derive from the system  is 
    limited only by your own imagination. 
     
    Even  if this is your first use of an H8, H89, or Z90, you will be able 
    to set up your computer  system  quickly.   Immediately  following  the 
    "System  Configuration"  Chapter  Two  "General  Operations" provides a 
    description of the basic functions performed by the computer.   Hearken 
    well to  these  procedures, since you will be using them frequently, as 
    long as you retain your computer.  Hence, they  are  to  be  memorized. 
    Continuing with Chapter Three, "System Optimization," you will be shown 
    how to optimize your system for best results. 
     
    It will require about  three  hours  to  complete  the  "System  Set-Up 
    Procedure."  Do not be reluctant to stand up and stretch or get a drink 
    if you have to, even if you are in the middle of a  copying  operation. 
    The computer will be patiently waiting when you return. 
 
    If in the course of following the instructions you mistype  a  word  or 
    command,  and you notice it before you have pressed the RETURN key, you 
    can instruct HDOS to ignore the entry.  To do this, hold down the  CTRL 
    key while simultaneously typing the character 'U.'  "^U" will appear on 
    the  screen, HDOS will automatically execute a carriage return, and you 
    can then retype the line.  This applies to a situation when you are  at 
    the  HDOS  system  prompt,  and  not  when you are in an editor or word 
    processor. 
 
    If  you  do  not  notice  a  mistyped word until after you have pressed 
    RETURN, do not panic.  HDOS will attempt to make  sense  of  your  word 
    (STSGEN,  for  example),  and  when  it  cannot, it will print an error 
    message  on  the  screen.   The  HDOS  3.0   system  prompt   will   be 
    redisplayed.  To restart, just retype the command line again. 
 
    Please bear  in mind that you must type a CARRIAGE RETURN,  hereinafter 
    referred to as <RTN>, after typing in a line.   If you  type a line and 
    do  not  enter  a  carriage  return  afterwards,  the computer will not 
    receive your command.  This applies to a situation when you are at  the 
    HDOS system prompt. 
 
     



    CHAPTER ONE         SYSTEM CONFIGURATION                       PAGE 1-4 
    ===========         ====================                       ======== 
 
 
                              INTRODUCTION (Cont) 
                              =================== 
 
    You may find it reassuring to know that it is impossible to damage  the 
    computer by typing in the wrong word or command.   Unless  you  have  a 
    substantial  understanding  of  assembly  language,  it is difficult to 
    damage the HDOS 3.0/3.02 Operating System. 
 
    However,  you may damage a disk's contents when using the INIT program. 
    When using this program, it is important not to wipe  out  your  system 
    disk.   Also if your system has multiple types of drives, consisting of 
    both 48 tpi and 96 tpi  drives,  do  not  inadvertently  instruct  your 
    computer  to  format  a  96  tpi disk in a 48 tpi drive.  This practice 
    could damage a disk drive. 
 
    Most  importantly, remember that the computer is patient.  It will wait 
    for you to type a command correctly, no matter how long it takes.   And 
    while it will not reward you for typing the command correctly (referred 
    to as "syntax"), the computer will nevertheless not begrudge  you  many 
    unsuccessful attempts. 
     
                                     NOTE 
              You  will  notice  references  made  to  "80-track" 
              drives and "96 tpi drives"; also "40-track"  drives 
              and   "48   tpi   drives."    These   terms  (i.e., 
              80-track/96 tpi;  and  40-track/48  tpi)  mean  the 
              same. 
 
 
    [To  check  out  unfamiliar  computer  terms,  refer  to  Appendix 1-A, 
    "Glossary of Terms."] 
    *********************************************************************** 
              
 
                             NOTATION CONVENTIONS 
                             ==================== 
          
        0        Zero  (Used  where the numerical zero may be confused with 
                 the letter "O".) 
          
        ^        Required space.  Pay special attention to the spaces shown 
                 in the examples in this manual.   If  a  space  is  either 
                 omitted  or  inserted  improperly,  it  could  cause  your 
                 command to fail! 
                  
        <RTN>    Carriage  return.   Produced  by  pressing the RETURN key. 
                 This moves the cursor to the first column to the  left  on 
                 the   following  line,  depending  upon  the  left  margin 
                 setting.  It also tells the computer to execute a command 
                 when entered at the end of a command line. 
 
        <xxx>    The  default  response.  If you press the RETURN key after 
                 this message, HDOS assumes that you intend the reply which 
                 is inclosed in the < > symbols. 
     



    CHAPTER ONE         SYSTEM CONFIGURATION                       PAGE 1-5 
    ===========         ====================                       ======== 
 
 
                          NOTATION CONVENTIONS (Cont) 
                          =========================== 
 
          "      Statements made by the computer are set off by quotations, 
                 except where dialogue is obvious. 
 
          '      Responses keyed by the user are set off in apostrophes, 
                 except where dialogue is obvious. 
        SYn: 
                 The  primary  boot  disk drives, where "n" is the specific 
                 hardware-configured drive that boots by default.  That  is 
                 when you boot the computer by just pressing "B."  HDOS can 
                 accommodate  up  to  four   disk   drives   on   the   H37 
                 (soft-sectored)   disk  drive  chain.   For  example,  one 
                 usually addresses a disk drive with an expression such  as 
                 SY1:,  SY2:, or SY3:, or in HDOS 3.02, a simple 1:, 2:, or 
                 3:.  with the expression followed by a FULL  COLON.   This 
                 may  be compared to addressing your friends, Bill, Tom, or 
                 Terry, or whatever.  
               
        DKn:     The  secondary  boot  drives,  where  "n"  is the specific 
                 hardware-configured drive  that  boots  on  the  secondary 
                 drive  line.   That  is,  when  you  boot  the computer by 
                 pressing "Bn:."  Heath  standard  is  to  assign  the  H17 
                 (hard-sectored) as the primary drives, but this assignment 
                 may be changed.  Essentially, DKn: means a different  kind 
                 of  disk  drive than the primary type.  Therefore, in some 
                 instances it could be soft-sector.  In other instances, it 
                 might  be  an  8-inch  drive.   For  details how to toggle 
                 primary/secondary drives, refer to page 1-10. 
 
        DYn:     A number of Heath-approved vendors offer accessories, such 
                 as hard disks or RAM cards.  These  accessories  generally 
                 come with their own device drivers.   These device drivers 
                 are assigned unique filenames, such as "DYn:." 
               
        nn       Used  to  indicate  a  numeric message that will vary from 
                 program to program.  When you translate  the  instructions 
                 in  a  printed  documentation  to  a  command typed on the 
                 computer screen, you are expected to  substitute  a  digit 
                 for each of the letters. 
 
     Asterisks:  A row of asterisks indicates a change of topic. 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 
 
     



    CHAPTER ONE         SYSTEM CONFIGURATION                       PAGE 1-6 
    ===========         ====================                       ======== 
 
 
                               CONTROL SEQUENCES 
                               =================    
 
    You can execute all of  the  following  control  codes  except  DELETE, 
    BACKSPACE,  and  SHIFT-RESET, by holding down the CTRL key while typing 
    the appropriate letter.  Thus, to execute CTRL-C, hold  down  the  CTRL 
    key while simultaneously typing the C key. 
 
    DELETE       If  you press either of these keys, the system will remove 
    BACKSPACE    the character to the left of the cursor from the screen so 
                 that  you  can  retype  it.   HDOS  will  either echo each 
                 deleted character so you can  see  which  characters  have 
                 been  deleted, or will remove the character from the video 
                 screen.  These two functions are controlled by  a  program 
                 called "SET.ABS."  For details, refer to page 3-19. 
           
    CTRL-D       You can use this code to exit from a utility program, such 
                 as INIT, or ONECOPY, and the computer will return  you  to 
                 the HDOS system prompt.   In many contexts, HDOS considers 
                 the CTRL-D code to signify "end of file" or "end of  input 
                 data."        
 
    CTRL-G       This code will cause the computer to beep. 
            
    CTRL-U       When you mistype a command at the system prompt and notice 
                 the error before  you  enter  a  carriage  return,  CTRL-U 
                 instructs  HDOS  to ignore the line so that you can retype 
                 it. 
           
    CTRL-Z       When  you  strike  these  keys  twice  in  succession, any 
    CTRL-Z       ongoing HDOS activity is cancelled.   You  will  generally 
                 use  this  code  when all else fails to return to the HDOS 
                 command mode from a  utility  program,  such  as  ASM   or 
                 BASIC.  This code will often let you escape from a program  
                 which has hung up.      
                  
    SHIFT-RESET  When  you press these two keys simultaneously, the H89/Z90 
                 will return to the monitor ROM prompt.   The  monitor  ROM 
                 prompt  is  what you see on the screen before you boot the 
                 system, normally H: on an unmodified  H/Z89/Z90  computer. 
                 CAUTION:  this  sequence  should  be  used  to exit a hung 
                 program only in the event  that  CTRL-Z  CTRL-Z  will  not 
                 work,  since  there is some risk of data loss.  To make it 
                 hard to do this accidentally, only  the  right-hand  SHIFT 
                 key  will  work.   The  left-hand key is locked out.  [For 
                 H89/Z90 computers only.] 
            
    RESET        When  you press these two keys simultaneously, the H8 will 
    0 (H8)       return to system prompt.   CAUTION:  This sequence  should 
                 be  used to exit  a  hung  program only in the  event that  
                 CTRL-Z CTRL-Z will not work, since there is some  risk  of 
                 data loss.  [For the H8 computer only.] 
 
 
     



    CHAPTER ONE          SYSTEM CONFIGURATION                      PAGE 1-7 
    ===========          ====================                      ======== 
 
                             SYSTEM CONFIGURATION 
                             ++++++++++++++++++++ 
 
    The  following  paragraphs and tables describe the minimum requirements 
    of your operating system.  This section contains only information about 
    software configuration.   Refer to Appendix 1-B, "Configuring Hardware"  
    for instructions on how to configure your hardware. 
 
    You  must  have  an H8 or H89/Z90 computer system with a minimum of 32k 
    bytes of operational  memory.  HDOS 3.0 is ORG-0.  This does  not  mean 
    that  the  program  area  (USERFWA)  is  near zero, but rather that the 
    system itself  (i.e.,  HDOS30.SYS)  is  loaded  in  low  memory.   This 
    provides  the  user  with  about  5k of additional memory for programs. 
    This memory block was not available in HDOS 2.0.  HDOS30.SYS starts  at 
    memory  location 000000, instead of 040.000A in HDOS 2.  This situation 
    is normal unless the computer system has been modified.    
 
    Table 1-1 outlines the port allocation   scheme  used  on  the  H89/Z90 
    computer  system.   Table  1-2 lists port allocations for the H8.  Both 
    tables list the device and the device name used in the software.    The 
    software device name is a special name by which the software recognizes 
    various physical devices (peripherals).    For  example,  the  software 
    recognizes  commands that involve the line printer only if the software 
    device name for the line printer,  LP:, is  specified  along  with  the 
    command.   For  additional  port  data,  refer  to  Appendix 1-C, "Port 
    Assignments." 
 
    In  the  following tables, addresses are given only in octal, indicated 
    by a series of digits followed by a "Q."  The operating system does not 
    use any ports below 100Q.  The ports shown below are available for your 
    own use. 
 
                         PORT ALLOCATIONS FOR THE H89 
                         ============================ 
                                   TABLE 1-1 
                                   --------- 
                            DEVICE      I/F                     INTERRUPT 
    DEVICE                  NAME        CARD     PORT ADDRESS     LEVEL 
 
    Console Terminal         TT:        ---        350-357Q         3 
    Line Printer             LP:        H88-3      340-347Q      (Note 6) 
    Alternate Terminal       AT:        H88-3      320-327Q      (Note 6) 
    5" Hard Sector Drive  SYn:/DKn:     H88-1      174-177Q 
    5" Soft Sector Drive  SYn:/DKn:     Z89-37     170-174Q 
    8" Soft Sector Drive  SYn:/DKn:     H89-47     170-173Q or 
                                                   174-177Q 
    8" Winchester HardDsk  (Note 4)     H89-67     170-173Q or 
                                                   174-177Q 
    3rd Serial Port       (Note 5)      H88-3      330-337Q      (Note 6) 
    
    NOTES: 
        1. If you are  using an H36 DECWRITER as a line printer,  you  must 
    connect it as device AT:.  (NOTE: AT: is the Alternate Terminal.) 
 
        2. In most cases, the line printer should be connected as device LP:. 
     



    CHAPTER ONE          SYSTEM CONFIGURATION                      PAGE 1-8 
    ===========          ====================                      ======== 
  
                          SYSTEM CONFIGURATION (Cont) 
                          +++++++++++++++++++++++++++ 
 
                      PORT ALLOCATIONS FOR THE H89 (Cont) 
                      =================================== 
                                   TABLE 1-1 
                                   --------- 
         3.  See  Chapter 1,  Appendix 1-C,  for  details  concerning  port 
    assignments for HDOS 3.0. 
 
        4. H67 was  never supported by HDOS v.3.0, although a device driver 
    was available from non-Heath vendors. 
 
        5. Certain printer  drivers may be  configured  to  use  this  port 
    instead of the standard line printer port. 
 
        6. Interrupt levels 3, 4, and 5  are available on the 3-port serial 
    card,  but current Heath software does not use any interrupts.  Certain 
    non-Heath  communications software (i.e.   modem  programs)  require  a 
    level 5 interrupt on the third serial port. 
    .......................................................................  
 
                          PORT ALLOCATIONS FOR THE H8 
                          =========================== 
                                   TABLE 1-2 
                                   --------- 
                            DEVICE      I/F                     INTERRUPT 
    DEVICE                  NAME        CARD     PORT ADDRESS     LEVEL 
 
 
    Console Terminal         TT:        H8-5       372-373Q         3 
                             TT:        H8-4       350-357Q         3 
    Line Printer             LP:        H8-4       340-347Q      (Note 6) 
    Alternate Terminal       AT:        H8-5       320-327Q      (Note 6) 
                                        H8-4       320-327Q        --- 
    Front Panel             None        None       360-361Q        --- 
    5" Hard Sector Drive  SYn:/DKn:     H8-17      174-177Q 
    5" Soft Sector Drive  SYn:/DKn:     Z8-37      170-174Q 
    8" Soft Sector Drive  SYn:/DKn:     H8-47      170-173Q or 
                                                   174-177Q 
    8" Winchester HardDsk  (Note 4)     H8-67      170-173Q or 
                                                   174-177Q 
    3rd Serial Port       (Note 5)      H8-4       330-337Q      (Note 6) 
 
 
    NOTES: 
 
        1. If you are using an H36 DECWRITER as a terminal, connect  it  as 
    device  TT:.   If you are using an H36 as a line printer, connect it as 
    device AT:.  NOTE: The term AT: indicates an alternate terminal. 
 
        2. A line printer should be connected as device LP:. 
 
        3. See  Chapter 1, Appendix 1-C,  for  details on port  assignments  
    HDOS 3.0.                                                     
     



    CHAPTER ONE          SYSTEM CONFIGURATION                      PAGE 1-9 
    ===========          ====================                      ======== 
 
                          SYSTEM CONFIGURATION (Cont) 
                          +++++++++++++++++++++++++++ 
 
                      PORT ALLOCATIONS FOR THE H8 (Cont) 
                      ================================== 
                                   TABLE 1-2 
                                   --------- 
        4. H67 was never  supported  by HDOS 3.0, although a  device driver 
    was available from non-Heath vendors.           
     
        5. Certain printer drivers may be  configured  to  use  this  port 
    instead of the standard line printer port.           
 
        6. Interrupt  levels 3, 4, and 5 are available  on  the  card,  but 
    current  Heath software does not use any interrupts.  Certain non-Heath 
    communications software  (i.e.  modem  programs)  requires  a  level  5 
    interrupt on the third serial port.          
 
    In addition to  port  assignments,  these  tables  list  the  interface 
    card(s)  normally  used  with  each  device.   You will need to install 
    jumpers on the interface  card  in  order  to  select  the  appropriate 
    address. 
    ....................................................................... 
                              SETTING UP A SYSTEM 
                              =================== 
                         Disk Drives and Monitor ROMs 
                         ---------------------------- 
 
    Limited  by  the  design of the respective controller design, HDOS 3.02 
    supports up to seven disk drives: a maximum of three 5-1/4 inch  drives 
    connected  to  the  H17  hard  sector controller, and a maximum of four 
    drives connected to the H37 or H47  soft sector  controller.   If  your 
    system  includes  the  H47 controller, it can utilize a maximum of four 
    5-1/4 inch drives connected to the  soft  sector  controller  OR  three 
    drives  connected  to  the  hard  sector  controller,  and  two  drives 
    connected to the H-47 controller.  There are  only  two  sets  of  disk 
    drive  I/O  ports  on the H89 buss - 170-173Q and 174-177Q.  By using a 
    custom I/O decoder ROM, it is possible to add  a  third  type  of  disk 
    drive,  using  custom  software  also.  The third (modified) controller 
    will not be bootable, unless the Monitor ROM, MTR-90 is also modified. 
 
    Because the H8 buss is more complete than the H89 buss, implementation 
    of additional types of disk drives is simpler. 
 
    If you have only one type of disk drive in your system, the drive which 
    is  hardware  configured  to be drive zero, is normally designated SY0: 
    (system unit zero).  Other disk drives of the same  type  are  numbered 
    sequentially from one  (i.e.  SY1:, and SY2:).  If you have not altered 
    your computer hardware, the SYn: (primary boot) drives  are  the  5-1/4 
    inch, H17 hard sector drives. 
 
    If  you have drives of two different types in your system, HDOS assigns 
    names in the format  SYn:  to  all  drives  that  have  been  hardware- 
    configured  as  the  primary  boot  drives.  The "n" in the SYn: format 
    typically corresponds to the  hardware  number  of  each  primary  boot 
    drive.   Those drives in the system which have been hardware-configured 



    CHAPTER ONE          SYSTEM CONFIGURATION                     PAGE 1-10 
    ===========          ====================                     ========= 
 
                          SETTING UP A SYSTEM (Cont) 
                          ++++++++++++++++++++++++++ 
                      Disk Drives and Monitor ROMs (Cont) 
                      =================================== 
 
    as secondary non-boot drives are assigned names  in  the  format  DKn:. 
    Again, the "n" in the DKn: format corresponds to the hardware number of 
    each secondary drive,  if you have not altered your  hardware.   Either 
    the  soft-sector drives or the 8-inch drives can be the DKn: (secondary 
    boot) drives.       
 
    It  is  possible  to  reverse  this  assignment  with dip-switch SW501, 
    located on the CPU board.  The "stock H89" comes configured to boot the 
    H17 drives.  This can  be  changed  to  boot  the  H37 or H47 drives as 
    primaries,  instead  of  the  H17 drives.  In this case, the H17 drives 
    become the secondary drives.  To perform the modification to  make  the 
    H37 the primary boot drives, set pins 4 and 5 to "1" on SW501.  To make 
    the H47 the primary boot drives, set pins 1 and 3 to "1" on SW501.  All 
    other  pins should be set to zero.  If you lack the skill or confidence 
    to change the switch, you can always boot a secondary  drive  from  the 
    monitor  ROM  with  a  different  start-up  command.  For example: Boot 
    SD1<RTN>, where the SD1 stands  for  secondary  drive  DK1:.   Whatever 
    drive  you  use  to  boot  from becomes "SY0:," and the non-boot drives 
    connected to a different type of controller become the "DKn:" drives. 
     
    SY0:  is  the  "system" drive unit.  This drive most usually contains a 
    disk with the HDOS system files on it.   If  you  are  running  an  H17 
    computer  system with one drive, and you require more disk space, there 
    is a solution to your problem.  After you boot your normal system disk, 
    first  load  your  drivers,  then RESET your system disk, and install a 
    data disk containing only SYSCMD.SYS and  PIP.ABS.   Prior  to  leaving 
    HDOS  via  either  the QUIT or BYE command, reset SY0:, and replace the 
    original system disk. 
     
    Initially, only  your  distribution  disk contains system files.  After 
    completing the "System Set-Up"  procedure,  you  will  have  created  a 
    SYSTEM  VOLUME,  which  will  contain copies of all the necessary files 
    from the distribution disk.  For normal operation,  the  SYSTEM  VOLUME 
    will always be mounted in SY0:. 
 
    NOTE: Use the distribution disks only to  prepare  your  first  set  of 
    working  SYSTEM  VOLUMES.    Do  not  use  the distribution disk to run 
    programs, other than those specified in this Software Reference Manual. 
 
    The  distribution  disks are write-protected to guarantee that you will 
    always have an accurate copy of the operating system.  Do  not  disable 
    the  write  protection by removing the write-protect tabs on 5 1/4-inch 
    disks or installing the write-protect tabs on 8-inch disks. 
 
    Under  normal conditions you will probably need extra disks for storing 
    data and programs.  We recommend that you have at least two  copies  of 
    your  SYSTEM  VOLUME,  as  well  as  a  spare  copy  of  any  important 
    information.  The process of creating SYSTEM VOLUMES and "backup" disks 
    will be discussed within the "System Set-Up Procedure" section. 
 
 



    CHAPTER ONE          SYSTEM CONFIGURATION                     PAGE 1-11 
    ===========          ====================                     ========= 
    
                          SETTING UP A SYSTEM (Cont) 
                          ++++++++++++++++++++++++++ 
                      Disk Drives and Monitor ROMs (Cont) 
                      =================================== 
 
                                     NOTES 
    Details  on booting techniques may be found in Chapter 2, Appendix 2-A, 
    "Booting Techniques".  Details on how to program your disk  drives  may 
    be  found in Chapter 2, Appendix 2-B, "Programming Drives."  Details on 
    programming disk drives may  be  found  in  Chapter  1,  Appendix  1-B, 
    "Configuring Hardware." 
    *********************************************************************** 
 
 
             Setting Up A System with 5-1/4 or 8-inch Disk Drives 
             ---------------------------------------------------- 
 
    Assuming  you have a hard-sector computer system, you should have seven 
    distribution disks.  The seven-disk set of HDOS 3.0 distribution  disks 
    contains   HDOS  3.0  BOOTING  DISK,  EXECUTABLE   DEVICE  DRIVERS  AND 
    UTILITIES, DEVICE DRIVER SOURCE CODE (4 disks), and COMMON DECKS.  This 
    set includes an update to the HDOS Operating System.  Console Debugger, 
    Heath Ed Line Editor, Assembly Language, and Benton  Harbor  BASIC  are 
    carried  forward from HDOS 2.0, except some of the chapters have slight 
    modifications  to enable  them to  work in  the HDOS 3.0   environment. 
    If you have a computer system with soft-sector drives primary, you will 
    receive fewer disks. 
     
    The  HDOS  3.0  BOOTING  DISK  contains  most  of  the  files which are 
    essential to running programs, and it is from it that you will generate 
    your system volumes. 
 
    The  disk  of  EXECUTABLE DEVICE DRIVERS AND UTILITIES contains all the 
    essential HDOS 3.0/3.02 utilities not found on the HDOS  BOOTING  disk. 
    This  includes  some very nice utilities, patches, and MS-DOS emulating 
    programs that make this operating system not only  more  flexible  than 
    HDOS 2.0, but more fun to use. 
 
    In  addition to the distribution disks supplied, you will need at least 
    two blank disks which do NOT have write-protect tabs installed.  DO NOT 
    remove the write tabs from the HDOS 3.0 BOOTING DISK and the other HDOS 
    3.0 distribution disks!.  If you did so, it would make it too  easy  to 
    trash a disk, - especially for a beginner. 
    ************************************************************************ 
 
                The Differences Between 5 1/4 and 8-Inch Disks 
                ---------------------------------------------- 
 
    One of the primary functions of  a  computer  operating  system  is  to 
    enable  the  various physical parts of the computer to cooperate toward 
    the execution of your commands.  In order for this cooperation to  take 
    place,  there  must  be  communications between HDOS (software) and the 
    physical parts of the computer (hardware).  The computer cannot execute 
    any command unless HDOS is communicating with the hardware. 
 
 



    CHAPTER ONE          SYSTEM CONFIGURATION                     PAGE 1-12 
    ===========          ====================                     ========= 
 
                          SETTING UP A SYSTEM (Cont) 
                          ========================== 
             The Differences Between 5 1/4 and 8-Inch Disks (Cont) 
             ----------------------------------------------------- 
 
    It is obvious that an H37 5 1/4-inch disk is physically smaller than an 
    H47 8-inch disk, but the physical  differences  go  deeper  than  that. 
    Heath  designed  the  H37  controller  with  a capacity of four drives, 
    compared to the  H47's  capacity  of  two,  and  the  H17  controller's 
    capacity  of  three.   The  H89  computer can handle only two different 
    types of drives; any combination of H37, H17, or H47. 
 
    Admittedly, certain non-Heath vendors had at one time designed a super 
    controller that could handle the H37, the  H47,  and  the  H17  on  one 
    board, without sacrificing the three-port serial board.  Unfortunately, 
    these controllers are no longer available.  
 
    There  is also a difference in the appearance of the H37 and H17 versus 
    the H47 disks.  To illustrate: 
 
                                       +-----------------------------+ 
                                       |                             | 
          +----------------------+     |                             | 
          |                      |     |                             | 
          |                      |     |               __            | 
          |             __       |     |             /    \          | 
          |           /    \     |     | :--------: :      :   O     | 
          | |------: :      :    |     | :________: :      :         | 
          | :------: :      :    |     |             \ __ /          | 
          |           \ __ /     |     +---:                         | 
          |         O            |    B ___:                         | 
          |               +--+   |     |                             | 
          |_______________|  |___|     |_____________________________| 
                            A 
 
              5 1/4-Inch Disk                     8-Inch Disk 
                H37 and H17                           H47 
 
    As  illustrated, the 5 1/4-inch disk is shown on the left.  Notice that 
    the write-tab notch, "A," faces downward.  Not so with the 8-inch disk, 
    shown  to  the  right.   Notice  that  the  write-tab notch, "B," faces 
    forward. 
 
    The  obvious  physical  difference  in the appearance of the two disks, 
    also displays a another difference.  For example, with  the  H37  disk, 
    when  the write-tab notch is COVERED with a write tab, one cannot write 
    to that disk.  It is said that the disk is write-protected.   With  the 
    H47,  8-inch  disk, however, this situation is reversed.  In this case, 
    if the write-protect notch is covered, the disk is "WRITE-ENABLED."  In 
    order  to  cause  the  H47  disk to be write-protected, insure that the 
    write-tab  notch is left open.  Operationally, there are no significant 
    differences between the 5 1/4-inch and 8-inch drives. 
 
 
    *********************************************************************** 
        



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-13 
    ===========         ====================                      ========= 
 
                            APPENDIX 1-A: GLOSSARY 
                            ++++++++++++++++++++++ 
                   
    ACCESS:         The act of finding a storage location in memory or on a 
                    mass-storage medium in  order to read data from  it  or 
                    write  data  to  it.  Also see "direct access," "random 
                    access," and "sequential access." 
                
    ALLOCATION:     The  act of setting aside a certain amount of memory or 
                    an area  of  a  mass-storage  device  to  be  used  for 
                    running programs and/or storing data. 
           
    ALPHANUMERIC:   Any string of characters containing both alphabetic and 
                    numeric characters. 
 
    ASCII:          Abbreviation for American Standard Code for Information 
                    Interchange, a standard code used to store alphanumeric 
                    data. 
 
    BACKUP:         A  duplicate of a  program or file stored on a separate 
                    disk or  other  storage  medium, such as magnetic tape,  
                    removable winchester  cartridge, etc.  This is a "fail- 
                    safe" method to insure against loss of data.  
 
    BIT:            A binary digit expressed as either a "0" or a "1." Bits 
                    are the smallest data unit used in a computer,  and are 
                    combined into blocks.   A block  of 4 bits  is called a 
                    "nibble," or sometimes "nybble."   A block of 8 bits is 
                    called either a "byte" or an "8-bit word." 
 
    BLOCK:          See "cluster." 
                
    BOOTSTRAP:      The  program or process by means of which communication 
                    is established between hardware and software.  In order 
                    for  the  computer to "run," it must contain a program. 
                    In order to load programs into a computer, the computer 
                    must be running.  In other words, the system must "lift 
                    itself by its bootstraps" before it can operate.  Early 
                    computer  systems  were  started,  or  "booted-up,"  by 
                    manually switching a series of binary instructions from 
                    the  front panel.  Nowadays, most computer systems have 
                    bootstrap  programs  already  loaded   into   read-only 
                    memories,  or  ROMs.  The bootstrap program enables the 
                    computer to  run  whenever  the  power  is  turned  on. 
                    Bootstrap,  or  "boot," can  be  used  to  describe the 
                    process of transferring from a basic  start-up  program 
                    to  a  more sophisticated program, such as an operating 
                    system. 
            
    BUFFER:         An  area  of  user or system RAM which is set aside for 
                    communication   with  peripherals, including  the  disk 
                    drives.   The HDOS disk buffer consists of 256 bytes of 
                    memory, which is the same size as a disk sector.   When 
                    accessing  a  file, the operating system reads a sector 
                    into the buffer so that a program can  gain  access  to 
                             



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-14 
    ===========         ====================                      ========= 
 
                         APPENDIX 1-A: GLOSSARY (Cont) 
                         +++++++++++++++++++++++++++++ 
                                                                    
    BUFFER: (Cont)  the  data.  Buffers  vary in  size, depending  upon the 
                    efficiency  of  the  peripheral  with  which  they  are  
                    associated  and  the  amount  of  available  memory.  A   
                    buffer  for a terminal  might consist of only one byte, 
                    while a  disk buffer should be at least as large as the 
                    minumum unit of storage on the disk, 254 bytes. 
             
    CARRIAGE        This  expression,  often  used in computer manuals, has 
    RETURN:         been replaced by "RETURN."  Pressing the  "RETURN"  key 
                    will  send  the cursor down one line and to column 1 on 
                    the  left  margin.   <CR>  is an  expression originally 
                    used during the era of the typewriter. 
 
    CATALOG:        A  command that instructs the operating system to print 
                    a display of useful information about a set  of  files, 
                    such  as  filenames,  sizes,  and  dates of creation or 
                    alteration. 
           
    CHARACTER SET:  The  characters  which  may be  displayed or  used  for  
                    processing  on a  specific computer,  printer, or other 
                    peripheral.   Unique  character sets may be utilized on 
                    the H89 by installing certain non-Heath TLB board ROMs, 
                    such as the SuperSet by TMSI. 
 
    CLOSE:          A command that indicates to the operating system that a 
                    process no longer requires access  to  the  data  in  a 
                    file.   If the file was changed during the execution of 
                    the program, the disk storage  area  utilized  for  the 
                    file  may  be  updated.   The  directory  will  also be 
                    updated to reflect the changes to the file, such as its 
                    size and location on the disk media. 
             
    CLUSTER:        A  contiguous  portion  of  storage  area  on  the disk 
                    medium.  In the case of HDOS, the minimum cluster  size 
                    is two sectors of 256 bytes each. 
             
    COMMAND:        Information  communicated to the operating system which 
                    instructs the system to perform some  action,  such  as 
                    deleting a file. 
              
    CONSOLE:        Another  word  for the peripheral from which a computer 
                    system  is  controlled.   An   "operator"   or   "user" 
                    communicates  with  the  operating system by means of a 
                    console or terminal. 
                 
    CONTIGUOUS:     Describes  objects  or  storage  areas that are located 
                    next to each other.  Similar to "continuous." 
          
 
 
 
 
 



    CHAPTER ONE          SYSTEM CONFIGURATION                     PAGE 1-15 
    ===========          ====================                     ========= 
 
                         APPENDIX 1-A:GLOSSARY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    COPY:           The  act  of  placing the contents of one file from one 
                    peripheral device into another.   The data contained in 
                    the two files is then identical; however, the names and 
                    physical locations of the files are different. 
 
    CPU:            The  computer's  "Central Processing Unit."   It is the 
                    "brains" of the system and controls all operations.  It  
                    refers to the  microprocessor,  but also applies to the 
                    circuit board,  on which the CPU is mounted.  The H89's 
                    CPU is a Z80, while the H8 uses an 8080 CPU. 
 
    CRC:            Acronym  for  "Cyclic  Redundancy  Check."   This is an 
                    operation that measures the size of  either  binary  or 
                    ASCII  files.   The result is a 5-digit expression that 
                    is used to verify that a copy of a file is identical to 
                    the original.  Example: 52453. 
            
    CREATE:         The  act of setting up a new file, giving it a name for 
                    future reference.  The operating system will find space 
                    for  the  file  on  the  disk  if  sufficient  space is 
                    available.   It  will  also  update  the  directory  to 
                    indicate the presence of the new file, unique among the 
                    files on a particular disk. 
 
    DEFAULT:        A  condition  that  exists  when  no action is taken to 
                    override it.  For instance, a device driver  may  print 
                    lines  which  are  80 characters in length unless it is 
                    instructed to make the lines shorter  or  longer.   The 
                    default line length would then be 80 characters. 
                  
    DELETE:         A command that instructs the operating system to remove 
                    a file from the directory, and to free the area on  the 
                    disk  that  it occupies, making the space available for 
                    other purposes. 
                  
    DESTINATION:    A  file  or  peripheral  device, to which data is to be 
                    written.  For example, TT: or LP:. 
 
    DEVICE:         A  peripheral  to which data is to be  written, or from 
                    which data is to be  read,  by  means  of  input/output 
                    commands  or  instructions.    
                    
    DEVICE DRIVER:  An operating system program that controls a peripheral, 
                    such as a disk drive, terminal console, or printer. 
                    See "device independence." 
      
    DEVICE          A  feature  that  allows  a  user program to refer to a 
    INDEPENDENCE:   peripheral by a symbolic name, as if it  were  a  file, 
                    instead  of  requiring  a  section of the program to be 
                    written specifically for the purpose of controlling the 
                    peripheral.   Thus, a program can command the operating 
                    system to input data to the named device or output data 
     



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-16 
    ===========         ====================                      ========= 
 
                         APPENDIX 1-A: GLOSSARY (Cont) 
                         +++++++++++++++++++++++++++++ 
 
    DEVICE          from  it.  The operating system, in turn, uses a device 
    INDEPENDENCE:   driver  which is  associated with  the  device  name in  
    (Cont)          order to accomplish the I/O. 
 
    DIAGNOSTIC:     A  program  used  to  troubleshoot  a  computer system, 
                    or the various components of a  computer  system.   The 
                    most  common  "diagnostics"  are programs that are used 
                    to find possible read/write errors in memory devices. 
                     
    DIRECT ACCESS:  A  concept  used with some disk systems to describe the 
                    ablity to access a given block of  data  by  using  the 
                    directory  to  find  its physical position on the disk. 
                    This eliminates the need to  read  all  the  data  that 
                    precedes  the  desired  block as a means of finding it. 
                    The term "random access" is sometimes used to  describe 
                    this capability. 
                
    DIRECTORY:      A data area used by the operating system that holds the 
                    location and size of each disk file, referenced by  its 
                    name.  It is similar to a city telephone directory, but 
                    with filenames instead of people's names and addresses. 
 
    DRIVER:         A nickname for "device driver." 
      
    EXTENSION:      The  portion  of  a filename that distinguishes it from 
                    another  file  with the  same  name.  For  instance, an 
                    assembly language program that is used to compute poker 
                    odds could be called  "POKER.ASM,"  while the assembled 
                    machine-language  instructions  for  the  program could 
                    be stored on a file called  "POKER.ABS."  The extension 
                    is  a  portion  of  the  filename  that is  located  to 
                    the right of the period.  Under HDOS, it may consist of 
                    zero to three characters. 
          
    FGN:            The  first  group  number.  This  file  relates  to the  
                    map. 
 
    FWA:            The first work space address.  This file relates to the 
                    memory map. 
 
    FILE:           A  data  structure  that is generally associated with a 
                    disk  or  other  direct-access  device.   The  disk  is 
                    analogous  to  an office filing cabinet, with the files 
                    corresponding to the  folders  of  information  on  the 
                    magnetic  recording  medium  of the disk.  Data is read 
                    from  files and written to files by means of  operating 
                    system  commands  which reference each file by a unique 
                    filename.   The system handles the problems of  finding 
                    the data  and making it  available to a process.  Files 
                    must  be  "open" to be  accessed  and must be  "closed" 
                    when no longer needed. 
          
 



    CHAPTER ONE          SYSTEM CONFIGURATION                     PAGE 1-17 
    ===========          ====================                     ========= 
 
                          APPENDIX 1-A: GLOSSARY (Cont) 
                          +++++++++++++++++++++++++++++ 
 
    FREE:           The act of making an area of memory available for other 
                    purposes.  For example, when  a  file  is  closed,  its 
                    buffer  is  "freed."    Also,  when you CAT a disk, the 
                    final summary tells how many sectors are used  and  how 
                    many sectors are "free" to be used.   
 
    H17:            A disk drive connected to the  hard-sector  controller. 
                    Also, a reference to the hard-sector controller.   
 
    H37:            A disk drive  connected to the  soft-sector controller. 
                    Also, a reference to the soft-sector controller. 
 
    H47:            A disk drive  connected to the  soft-sector controller. 
                    NOTE:  The  standard Heath  configuration  permits only 
                    two of the above units to operate at any given time. 
 
    H67:            A  hard-drive  wired  into  the  computer system.  This  
                    applies to a specific Heath winchester product. 
 
    HANDLER:        See "device driver." 
                 
    HARD ERROR:     A  disk read/write error caused by a malfunction in the 
                    electronic or electromechanical hardware which does not 
                    go  away  when successive attempts to read or write are 
                    made.  A hard error is usually the result of  an  error 
                    in  writing  caused  by  dust,  static  electricity,  a 
                    scratched disk,  or  by  various  kinds  of  electronic 
                    interference  or  noise  from  electric  motors,  radio 
                    transmitters, and so on. 
                
    INITIALIZE:     A  command to the operating system that instructs it to 
                    prepare a floppy-disk for data storage.  A  new  floppy 
                    disk must be initialized before you can use it.  If the 
                    floppy disk already contains data, that  data  will  be 
                    destroyed if that volume is initialized. 
 
    INITIALIZATION: The process of initializing a disk. 
 
    I/O:            Abbreviation for input/output. 
                
    INTERRUPT:      A  hardware signal to the computer, used extensively by 
                    operating systems, that causes the current  process  to 
                    temporarily cease, and another to take its place.  This 
                    facility  speeds  up  the  operation  and  handling  of 
                    peripherals.   The  interrupt  routine  is similar to a 
                    subroutine in that it eventually returns control to the 
                    original  process.  The difference is that an interrupt 
                    may occur at almost any  time,  and  is  controlled  by 
                    external events, such as a keystroke at the terminal. 
             
 
 
 



    CHAPTER ONE          SYSTEM CONFIGURATION                     PAGE 1-18 
    ===========          ====================                     ========= 
 
                          APPENDIX 1-A: GLOSSARY (Cont) 
                          +++++++++++++++++++++++++++++ 
 
    LGN:            The last group number.  Applies to the memory map. 
 
    LSI:            Last sector index.  Applies to the memory map. 
 
    LWA:            The last work space address.  Applies to the memory 
                    map. 
 
    LIBRARY:        A   collection   of   programs  that  may  be  used  in 
                    conjunction with each other.  For example, an operating 
                    system  can  be a library of separate programs that are 
                    capable  of  calling  one  another.   Also,  refer   to 
                    "Archive" in Chapter 7. 
          
    LOAD:           The process of transferring data from a peripheral into 
                    RAM. 
                     
    LOADER:         A  program  that  transfers data from a peripheral into 
                    RAM. 
 
    MAP:            A  picture  of how data and programs are distributed in 
                    memory, or a table which shows where files are  located 
                    on a mass-storage device. 
    MEDIUM:         Generally a magnetic substance,  such a floppy disk, on 
                    the surface  of which  data can be recorded.  Media can 
                    usually  be  removed  and  replaced by other physically 
                    similar media. 
          
    OPEN:           A  command  to  the  operating  system  that  makes the 
                    contents of a specific file available to a process. 
                       
    OPERATING       A   complicated  set  of  programs  that  is  generally 
    SYSTEM:         associated with disks and other mass  storage  devices. 
                    Its  function  is  analogous  to  that  of  a policeman 
                    directing    traffic    at   a    busy    intersection. 
                    Specifically,  it  may  keep  track of large amounts of 
                    data on disk files, control  peripherals,  control  the 
                    distribution of memory among various programs, regulate 
                    the execution of programs, keep track of the amount  of 
                    time and memory that are used for various purposes, and 
                    even improve its own speed and efficiency.  The  degree 
                    of  sophistication is generally directly related to the 
                    size  and  cost of the  computer  system.  For example, 
                    HDOS is an acronym for Heath Disk Operating System. 
 
    OVERHEAD:       That portion of the computer system's time, memory, and 
                    storage required to  implement  the  functions  of  the 
                    system, and is thus not available to the user. 
                      
 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-19 
    ===========         ====================                      ========= 
     
                         APPENDIX 1-A: GLOSSARY (Cont) 
                         +++++++++++++++++++++++++++++ 
              
    OVERLAY:        An  overlay  is  a  program  that  is  kept on disk and 
                    swapped in and out of  the  memory  automatically  when 
                    needed.  Overlays save buffer space and reduce the size 
                    of the binary  program.  For example, EDIT19 uses eight 
                    overlays. 
 
    PRIMARY MEMORY: The  high-speed  RAM in which programs are executed and 
                    in  which  data is  stored so as to be more immediately 
                    accessible. 
                  
    PROMPT,         The expression that you see on the screen when you turn 
    MONITOR ROM:    on  AC  power.   The  monitor  ROM  prompt  that  Heath 
                    provides  is:  "H:".   Non-Heath monitor  ROMs  provide  
                    a different prompt. 
 
    PROMPT, SYSTEM: The unaltered HDOS  system  prompt is ">."  In HDOS 3.0 
                    the prompt may be altered by typing a  command into the 
                    file, "AUTOEXEC.BAT," or by the prompt command. 
 
    PROTECTION:     The  means by which any of the various processes of the 
                    operating system are  prevented  from  over-writing  an 
                    important area of memory or disk space. 
         
    RAM:            An  acronym  for  "Random Access Memory".    RAM allows 
                    any given memory location to be read from or written to 
                    in  the  same  amount  of  time as any other equivalent 
                    location, regardless of physical position.   
                    
    READ:           The act of examining the contents of a memory location, 
                    or the process of transferring the contents of  a  file 
                    into a buffer area of RAM. 
                      
    REAL-TIME       An  electronic counter that interrupts the processor at 
    CLOCK:          given  time  intervals.  The  stock  H89  and H8 have a 
                    real-time clock which generates interrupts at intervals 
                    of two milliseconds. 
            
    RENAME:         A  command  that  changes  the  name  of a file without 
                    affecting its contents or physical location. 
                  
    RESOURCE:       A  valuable  portion  of  a  computer system, such as a 
                    peripheral,  a  portion  of  memory,  or   a   program. 
                    Resources   can  be  shared  by  several  processes  in 
                    advanced systems.  In any case, they are  reusable  and 
                    relatively permanent. 
         
    ROM:            An  acronym  for "Read-Only Memory."  A ROM is a memory 
                    chip whose contents cannot be changed.  
                         
    ROTATIONAL      The  time  required for the desired sector of a disk to  
    LATENCY:        rotate under the disk drive head. 
                       
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-20 
    ===========         ====================                      ========= 
     
                         APPENDIX 1-A: GLOSSARY (Cont) 
                         +++++++++++++++++++++++++++++ 
 
    SECONDARY       Generally,  a  large-volume,  low-cost,  and relatively 
    MEMORY:         slow memory device.  It can be a peripheral such  as  a 
                    disk or a tape storage unit.    
            
    SECTOR:         The  minimum accessible unit of storage on a disk.  The 
                    size  may  be  determined  by   physical   or   logical 
                    parameters, or both.  In the case of the disk and HDOS, 
                    the sector size is 256 bytes; while  the  minimum  file 
                    size is one cluster, or at least two sectors. 
           
    SEEK:           The  action  taken  by a disk drive head in finding the 
                    correct track when data is read from a file or  written 
                    to  a file.  "Seek Time" partially determines the speed 
                    along with "rotational  latency."  
                        
    SEQUENTIAL      A  type  of  I/O in which a unit of storage can be made 
    ACCESS:         available for reading or writing only by reading  every 
                    unit  of  storage  which  precedes  it on the recording 
                    medium.    This   may   result   from   the    physical 
                    characteristics  of  the  storage  device,  such  as  a 
                    magnetic tape, or it may be a limitation imposed by the 
                    operating system. 
                
    SOFT ERROR:     An error in reading a disk or other storage device that 
                    may be caused by dust, noise, or an  interrupt  at  the 
                    incorrect  time.   It  is  similar  to the "hard error" 
                    except that a soft error may be corrected by an attempt 
                    to  repeat  the  failed process.  If several retries do 
                    not correct the problem, the error is reclassified as a 
                    hard error. 
            
    SOURCE:         In the case of operating system commands, the source is 
                    the original file, which is to be  renamed  or  copied. 
                    In  the  case  of  programs,  the source is the highest 
                    level  code  which  is  converted  by   the   compiler, 
                    interpreter,   or   assembler  into  machine-executable 
                    instructions, or "object code." 
          
    STRING:         A  connected sequence of characters, words, or symbols. 
                    To initiate a program, the computer requires  the  user 
                    to type a command string (i.e., EDIT19 SY1:MICRO.DOC). 
 
    SWAP:           The  act  of  removing  the  contents  of a memory area 
                    temporarily  while  the  memory  is  used   for   other 
                    purposes.  Also see "overlay." 
            
    SWITCH:         A  symbolic code that is used to issue a command to the 
                    operating system.  Also a variable that is  interpreted 
                    by a process in order to influence its flow-of-control. 
            
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-21 
    ===========         ====================                      ========= 
     
                         APPENDIX 1-A: GLOSSARY (Cont) 
                         +++++++++++++++++++++++++++++ 
 
    SYNTAX:         The  formal  or  "rigid"  order  in  which  commands or 
                    instructions must be written to  enable  the  operating 
                    system  or  other  software  process to recognize them, 
                    prior to performing an instruction. 
 
    TLB:            Terminal Logic Board  located  behind the  CPU board in 
                    the H89 Computer. 
 
    TPI:            Tracks  Per  Inch.  Used to describe the size of a disk 
                    or  disk  drive.   For  example: a double-sided 96  tpi  
                    disk contains 1600 sectors, while a double-sided 48 tpi 
                    disk contains 800 sectors of storage space. 
           
    TRACK:          A  circular  area  on  a  disk that consists of a given 
                    number of sectors.  In the case of standard  H17  5-1/4 
                    inch  disks,  HDOS  allocates  40 tracks per disk, with 
                    each track composed of 10  sectors.   In  the  case  of 
                    8-inch  H47  disks,  HDOS allocates 77 tracks per disk. 
                    The  tracks  on  a  single  density  8-inch  disk   are 
                    subdivided  into  13  sectors.   The tracks on a double 
                    density 8-inch disk are subdivided into 26 sectors.  In 
                    the  case  of  a  standard  5-1/4  inch  H37 disk, HDOS 
                    allocates  either  40  or  80  tracks  (depending  upon 
                    whether  you have a 40 or an 80 track disk drive), with 
                    each track composed of 16 sectors in the double-density 
                    recording mode.  With the H37 and H47 disk systems, the 
                    effective  number  of  tracks may be doubled by reading 
                    and/or writing to both sides to the disk. 
 
    USERFWA:        The program area of the memory map. 
 
    UTILITY:        A  program  which  is called upon by either the user or 
                    the operating system in order to perform a  function,or 
                    a   group   of  functions.   Examples  of  HDOS  system 
                    utilities are PIP, EDIT, INIT, SYSGEN, ONECOPY, etc. 
 
    VOLUME:         An  interchangeable  storage  unit,  such as a cassette 
                    tape or a floppy disk.  The volume contains data and is 
                    placed in a "drive" so that data may be "accessed."   A 
                    volume  may also refer to the number assigned to a disk 
                    during the INITILIZATION process. 
 
    WRITE:          The  act of transferring data into a memory location or 
                    register, or outputting it to  a  disk  or  peripheral. 
                    The  head  on a disk writes binary information onto the 
                    magnetic medium, which is the physical  location  of  a 
                    given file. 
    *********************************************************************** 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-22 
    ===========         ====================                      ========= 
 
                      APPENDIX 1-B: CONFIGURING HARDWARE 
                      ++++++++++++++++++++++++++++++++++ 
 
 
                               Table of Contents 
                               ================= 
 
              Introduction ............................... 1-23 
 
              Firmware ................................... 1-23 
 
              Memory Decode ROM .......................... 1-23 
 
              I/O Decode ROM ............................. 1-24 
 
              Code ROM ................................... 1-24 
 
                  MTR-88 ................................. 1-25 
 
                  MTR-89 ................................. 1-25 
 
                  MTR-90 ................................. 1-25 
 
              Other Configuration Items .................. 1-25 
 
                  Dip Switch S501 Settings ............... 1-26 
 
                       With MTR-88 ....................... 1-26 
 
                       With MTR-89 ....................... 1-27 
 
                       With MTR-90 ....................... 1-28 
 
              Using the Expansion Slots .................. 1-28 
 
              Write Protect Pullup ....................... 1-29 
 
              Drive Programming .......................... 1-29 
 
              Media Notes ................................ 1-29 
 
              H89/H90 Disk Configurations ................ 1-30 
 
              Disk Drive Programming Plug Configurations . 1-31 
 
              Pictorial 1: H17/H-88-1 Controller ......... 1-31 
 
              Pictorial 2: Z-89-37 Controller ............ 1-32 
 
              Installing the H37 Controller .............. 1-32 
 
              Power Supply Upgrade ....................... 1-33 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-23 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
                                 INTRODUCTION: 
                                 ============= 
 
 
    The  source  for  this data is mainly the Heath Publication, H-88/H-89/ 
    Z-89/Z-90 Configuration Guide, Part Number 597-2571.   The  source  for 
    pages  32  through  34  is  the  Heath Double Density Controller, Model 
    Z-89-37. 
     
    In  order  to  make  its  computer systems as flexible and as useful as 
    possible, the Heath Company and  Zenith  Data  Systems  have  developed 
    several  configurations  of  the  H88,  H89,  Z89,  and  Z90  series of 
    computers.  This application note has been prepared to assist users and 
    service  personnel  in selecting and verifying the proper configuration 
    for their desired application. 
 
 
                                   FIRMWARE 
                                   ======== 
 
 
    MEMORY DECODE ROM 
    ----------------- 
    The  Memory  Decode  ROM is located at U517 on the CPU Board.  Two ROMs 
    have been used.  Part number 444-42  was  originally  used.   This  ROM 
    precluded  the  use  of  more  than 48K of memory or CP/M.  It has been 
    superseded in all production units by 444-66 which allows the ROM based 
    48K  mode,  the ROM based 56K mode, and an all RAM 64K mode.  ALL users 
    should upgrade to this part regardless of configuration.  There are  NO 
    negative consequences connected with this upgrade. 
                  
    Associated  with  this ROM are three or four jumpers, JJ501 thru JJ504. 
    Older CPU boards have all four jumpers; they should be set as follows: 
     
    When using the old ROM (444-42) 
 
   JJ501 JJ502 JJ503 JJ504 
   ----- ----- ----- ----- 
 
  16K   0   0   0   0 (or B) 
  32K   1   0   0   0 (or B) 
  48K   0   1   0   0 (or B) 
 
    When using the new ROM (444-66) 
 
  16K   0   0  **   0 (or B) 
  32K   1   0  **   0 (or B) 
  48K   0   1  **   0 (or B) 
  64K*   1   1  **   0 (or B) 
 
    * Requires the WH-88-16 accessory PC board. 
 
     



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-24 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
     
    **  A  jumper is required between the center pin of JJ503 and pin 17 of 
    P509, or P4 of WH-88-16 (which connects  to  pin  17  of  P509).   This 
    jumper  may  have  been  soldered  on  the back of the CPU board during 
    manufacture (for 134-Z-89-FA and some  other  models),  or  it  may  be 
    ordered  as part number 1120, and installed by the user.  Neither tools 
    nor soldering are required. 
 
    Newer  CPU  boards (which only have three jumpers, JJ501 through JJ503) 
    are supplied with the new decode ROM (444-66) already installed and the 
    jumper wire incorporated directly into the PC board foil.  These boards 
    should not be used with the old ROM (444-42).  The  jumpers  should  be 
    set as follows: 
 
                               JJ501 JJ502 JJ503 
                               ----- ----- ----- 
 
                       16K       0       0     0 (or B) 
                       32K       1       0     0 (or B) 
                       48K       0       1     0 (or B) 
                       64K       1       1     0 (or B) 
 
    I/O DECODE ROM 
    -------------- 
    The  I/O decode ROM is located at U550 on the CPU board.  Two parts are 
    available: 444-43 and 444-61. 
     
    Part  number  444-43  supports  the  hard-sector single-density 5" disk 
    system (H-88-1), the three-port serial I/0 card (HA-88-3), and cassette 
    tape (H-88-5) in the expansion area. 
 
    Part  number 444-61 supports two disk devices and the three-port serial 
    I/O card, but does not support cassette tape. 
     
    Users  with  cassette  tape  must  use 444-43.  Users who have only the 
    serial I/O accessory and a 5 1/4-inch single density hard sectored disk 
    system may use either part; other users should use part number 444-61. 
 
    CODE ROM 
    -------- 
    The code ROM is located at U518.  Three ROMs are available: 
 
                  Name             Part Number     Manual Part No. 
                  ----             -----------     --------------- 
                  MTR-88           444-40          595-2349 
                  MTR-89           444-62          595-2508 
                  MTR-90           444-84          595-2696 
                  MTR-90 (newest)  444-142C        595-2696      
 
    Each  of  these  is  normally supplied with full source code and a user 
    manual. 
     
     
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-25 
    ===========         ====================                      ========= 
 
                  APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                  +++++++++++++++++++++++++++++++++++++++++ 
 
    MTR-88  is  used  with  cassette tape and the H-88-1 hard-sector single 
    density 5 1/4-inch disk system.  It cannot be used with other types  of 
    disk systems. 
 
    MTR-89 supports both the 5 1/4-inch hard sector single density disk and 
    the H/Z-47 dual 8-inch floppy disk.  Cassette tape is not supported. 
 
    MTR-90  is  a general purpose part which supports all disk mass storage 
    devices (H-77, Z-87, H/Z-47, Z-37, Z-67).  Cassette tape,  however,  in 
    NOT  supported.   This  part  is  supplied  with  Z-89-37  and Z-89-67. 
    Because this is a 4K part while both MTR-88 and MTR-89  are  2K  parts, 
    the secondary address decoder must be changed to use this part. 
 
    The secondary address decoder is located at U516. 
 
    Two parts are available, 444-41 and 444-83. 
 
    Part No. 444-41 is used with MTR-88 and MTR-89. 
    Part No. 444-83 is used with MTR-90. 
 
    There  are  four  jumpers  wires  associated  with the code ROM and the 
    secondary address decoder.  These are either JJ505,  JJ506,  JJ507  and 
    JJ508  (on  older  units)  or  JJ504,  JJ505, JJ506 and JJ507 (on newer 
    units).  These should be set as follows: 
 
                 Older Units:    JJ505   JJ506   JJ507   JJ508 
                 Newer Units:    JJ504   JJ505   JJ506   JJ507 
                                 -----   -----   -----   ----- 
 
                 MTR-88, MTR-89    0       0       0     1 (or B) 
                 MTR-90            1       *       1     1 (or B) 
 
 
    *  A  jumper  should  be  installed between the center pin of JJ506 (or 
    JJ505) and pin 14 of P508 when you are using as  MTR-90.   Part  number 
    134-1159 may be used.  Neither tools nor soldering are required. 
 
 
                          OTHER CONFIGURATION ITEMS 
                          ========================= 
 
    Unless  use is confined to cassette tape, the following parts should be 
    installed: 
 
    Part  number  444-19,  the HDOS ROM, at U520.  Two 2114 1Kx4 RAMs (part 
    Number  443-764) at U523 and U525. 
 
    A  78H12  (442-650)  on  the  power supply at U103 (only required if an 
    internal drive is installed). 
     
    In order to use the WH-88-16  memory  expansion,  it  is  necessary  to 
    change U562 from a 74LS132 (443-792) to a 74S132 (443-901). 
     



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-26 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
    OTHER CONFIGURATION ITEMS (Cont) 
    ================================ 
 
    Final  production  units  use  a  78H05SC  or MC78TO5 (442-651) at U101 
    instead of an LM309K (442-30).  In addition, U101, U102  and  U103  are 
    mounted with heat sinks (215-658) and thermal compound (352-31).  These 
    changes improve the power output and heat dissipation capacity  of  the 
    power  supply.   They  are  required and included with the Z-89-37 disk 
    controller kit, and may be incorporated into any unit if  power  supply 
    and/or heat problems are encountered. 
 
                            DIP SWITCH SETTINGS 
                            =================== 
 
    DIP switch SW501 is used to program the initial power-up configuration. 
    Its settings depend on and vary with the monitor ROM used. 
 
 
    SETTING SW501 WITH MTR-88 
    ------------------------- 
    Only the three most significant bits are used, switch sections 5, 6 and 
    7. 
     
    Sections  6 and 7 select the power up baud rate used for communications 
    with the terminal (which is normally the internal H-19  terminal  logic 
    board).  The four options are: 
     
             Section 7       Section 6       Baud Rate 
             ---------       ---------       --------- 
 
                0               0               9,600 
                0               1              19,200 
                1               0              38,400 
                1               1              57,600 
              
    The  selected  baud  rate  must  match  the baud rate set a S401 on the 
    terminal logic board.  The standard terminal logic board firmware  only 
    supports  9,600 baud at this time (19,200 can be selected and used, but 
    characters will occasionally be lost).  Therefore, both sections 6  and 
    7  will  normally  be set to zero.  Reliable higher terminal baud rates 
    are possible by installing TMSI's SuperSet on the TLB board. 
 
    You  can  set switch section 5 to force a memory test on reset or power 
    up.  To force the test, set the switch to "0".  Since the test will not 
    stop  until  the switch is reset, you must set the switch to "1" before 
    you can use the computer for normal operation. 
 
 
 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-27 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
    SETTING SW501 WITH MTR-89 
    ------------------------- 
 
 
    The settings of SW501 for use with MTR-89 are defined as follows: 
 
 
 
 
        Switch     Setting    Description 
        ------     -------    ----------- 
 
                     00*      Port 174(7CH)/177Q(7FH) has an H-88-1  
                               controlled disk (normal). 
         1,0         01       Port 174/177Q has an H/Z-47 type disk. 
                     10       Undefined. 
                     11       Undefined. 
 
                     00**     Port 170(78H)/173Q(7BH) is not in use  
                               (normal without H/Z-47). 
         3,2         01       Port 170/173Q has an H/Z-47   
                               (normal with H-47). 
                     10       Undefined. 
                     11       Undefined. 
           4          0       Boots from device at port 174/177Q  
                               (H-88-1 normal). 
                      1       Boots from device at port 170/173Q (H/Z-47). 
 
                      0       Performs memory test upon boot up  
           5                   (not currently supported). 
                      1       Does not perform memory test (normal). 
 
                      0       Sets Console to 9600 baud (normal). 
      6     1       Sets Console to 19,200 baud (not currently 
                               supported).  By adding TMSI's SuperSet 
                               baud rates higher than 19,200 may be 
                               achieved reliably. 
 
           7          0       Normal boot (normal). 
                      1       Auto boot on power up or reset   
                               (not recommended). 
 
      * Right column is switch 0. 
     ** Right column is switch 2. 
 
    SETTING SW501 WITH MTR-90 
    -------------------------  
    The settings of SW501 for use with MTR-90 are the same as those for use 
    with MTR-89 except that positions 0,  1,  2  and  3  are  redefined  as 
    follows: 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-28 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
 
        Switch     Setting    Description 
        ------     -------    ----------- 
 
                     00*      Port 174(7CH)/177Q(7FH) is H-88-1 controlled  
                               disk. 
         1,0         01       Port 174(7CH)/177Q(7FH) is H/Z-47 disk. 
                     10       Port 174(7CH)/177Q(7FH) is Z-67 disk. 
                     11       Undefined. 
 
                     00**     Port 170(78H)/173Q(7BH) is Z-89-37 controlled 
                               disk. 
         3,2         01       Port 170(78H)/173Q(7BH) is H/Z-47 disk. 
                     10       Port 170(78H)/174Q(7BH) is Z-67 disk. 
                     11       Undefined. 
 
     * Right column is switch 0. 
    ** Right column is switch 2. 
 
 
 
                         USING THE EXPANSION SLOTS 
                         ========================= 
 
    The  H-88-1  hard  sectored  disk  controller  should  be  installed at 
    P506/P512, the right connector in the right expansion area. 
 
    The  H-88-3,  HA-88-3 and Z-89-11 serial I/O boards should be installed 
    at P505/P511, the center connector in the right expansion area.   There 
    never was support for the Z-89-11 parallel card. 
     
    The Z-89-37 soft sectored double-density disk controller and the H-88-5 
    cassette I/O card should be installed at P504/P510, the left  connector 
    in the right expansion area. 
     
    Z-89-47  and  Z-89-67  interface  boards may be installed in either the 
    right or left positions in  the  right  expansion  area  (P506/P512  or 
    P504/P510).   However,  they must be jumpered differently, depending on 
    which of these positions are actually used.  See the appropriate manual 
    supplied with the interface.  If both a Z-89-47 and a Z-89-67 board are 
    used (together), the Z-89-67 should be installed at P506/P512. 
 
    Additional  boards  may  be installed in conjunction with bus expansion 
    devices such as those available from FBE Research, Mako Data  Products, 
    and Kres Engineering. 
 
    The  WH-88-16  memory  expansion  should be installed at P503/P509, the 
    right expansion slot in the left expansion area. 
 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-29 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
                             WRITE PROTECT PULLUP 
                             ==================== 
 
    A 4700 Ohm (6-472) pullup resistor is required between pins 1 and 12 of 
    P512.  This resistor is provided on the hard sectored  disk  controller 
    H-88-1)  usually  installed  at  P512.  It is also included on Z-89-67, 
    with a jumper connector to enable or disable it, depending  on  whether 
    the  Z-89-67 is installed at P506/P512 or P504/P510 (the pullup must be 
    disabled if P504/P510 is used).  Customers desiring to use a Z-89-47 at 
    P506/P512  (either by itself or in conjunction with a Z-89-37 interface 
    installed at P504/P510) will have to install this resistor between pins 
    1 and 12 of P512 on the Z-89-47 interface board.  Customers who have no 
    interface installed at P506/P512 should install  part  number  100-1816 
    directly on P512.  This part is supplied with Z-89-37. 
     
 
                               DRIVE PROGRAMMING 
                               ================= 
 
    Drive  programming  is illustrated in Pictorials 1, and 2 on pages 1-31 
    and 1-32, respectively.  There were some early H-17-1 drives which  are 
    different than those shown.  These are covered in the H-17 manuals, but 
    they have not been used for several years. 
     
    The use of H-17-4 drives with the hard sectored controller (giving 400K 
    bytes  of storage) is not supported at this time and is not expected to 
    be supported in the future. 
 
 
    The use of H-17-4 drives INTERNALLY within the H/Z-89 is not  supported 
    at this time, but is expected to be supported in early 1982.  The track 
    width and signal levels coming off the read head are substantially less 
    than  those  found in the H-17-1, and the reduced signal to noise ratio 
    which results prevents reliable operation on  the  inner  tracks  in  a 
    significant  minority  of  units.   Improved shielding for the internal 
    drive is under development and will eliminate the problem. 
     
    H-17-4  drives  are  available  from  Quikdata, Inc., 2618 Penn Circle, 
    Sheboygan, WI 53081-4250. 
 
                                  MEDIA NOTES 
                                  =========== 
    H-17-4  drives  should  ONLY be used with media certified for 96 or 100 
    TPI service; double density recording should only be done on  diskettes 
    which are certified for such use. 
     
    We  do  not recommend the use of "flippy" diskettes.  The liner used to 
    trap oxide, dust, and other contaminates inside the diskette jacket has 
    a  nap  (grain)  to it, and reversal of diskette rotation direction (as 
    occurs when a diskette is turned over) can release a large  portion  of 
    the trapped contaminates, with undersirable results. 
     
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-30 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
                              MEDIA NOTES (Cont) 
                              ================== 
 
    We  specifically  recommend  against using head cleaning diskettes; and 
    besides, it is not necessary.  It is unlikely that disk heads will EVER 
    require cleaning. 
 
 
 
 
                           H-89 DISK CONFIGURATIONS 
                           ======================== 
 
    System          Single Density          Double Density        Total 
    Components      Hard Sector             Soft Sector          Capacity 
 
    HS-89 or        One 100K                   ----                100K 
    Z-89-81         internal drive 
 
    Z-89-80         Two 100K external                              200K 
    Z-87            drive(s) 
 
    HS-89           One 100K internal          ----                200K 
    HS-77           drive & one or two                              or 
                    100K external drives                           300K 
 
    Z-89-81         One 100K internal          ----                300K 
                    drive & two 100K 
                    external drives 
 
    Z-90-80            ----                 Two 160K               320K 
                                            external drives 
 
    Z-90-80            ----                 Two 640K               1.28M 
                                            external drives 
 
    HS-89 or           ----                 One 160K               160K 
    Z-90-82                                 internal drive 
 
    HS-89              ----                 One 160K internal      320K 
    Z-89-37                                 drive & one or two      or 
    HS-77                                   160K external drives   480K 
 
    HS-89           One 100K internal       Two 640K external      1.4M 
    Z-89-37         drive                   drives 
 
    Z-90-82            ----                 One 160K internal      480K 
    Z-87                                    drive & two external 
                                            drives 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-31 
    ===========         ====================                      ========= 
 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
 
 
 
 
             DISK DRIVE DIP SHUNT PROGRAMMING PLUG CONFIGURATIONS 
             ===================================================== 
 
             ****   HARD SECTOR H-17/H-88-1 CONTROLLER   **** 
 
 
         Wangco - Siemens 82 
 
         HW U0    HW U1    HW U2 
         HS   o---o    o---o    o---o 
        DS1   o   o    o  o    o---o 
        DS2   o   o    o---o    o   o 
        DS3   o---o    o  o    o   o 
         MX   o   o    o  o    o   o 
      BLANK   o---o    o---o    o---o 
         HM   o   o    o  o    o   o 
 
 
    Tandon TM-100-4 
 
         HW U0    HW U1    HW U2 
                   HS   o   o    o   o    o   o  HS must be open when 
                 NDS0   o   o    o   o    o---o  using HUG driver. 
       NDS1   o   o    o---o    o   o 
       NDS2   o---o    o  o    o   o 
       NDS3   o   o    o  o    o   o 
         MX   o   o    o  o    o   o 
                SPARE   o---o    o---o    o---o  SPARE can be either 
                   HM   o   o    o   o    o   o  open or closed 
 
 
                             Pictorial 1 - H17 Drives 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-32 
    ===========         ====================                      =========  
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
          DISK DRIVE DIP SHUNT PROGRAMMING PLUG CONFIGURATIONS (Cont) 
          =========================================================== 
 
    ****  SOFT SECTOR Z-89-37 CONTROLLER   **** 
 
         Wangco - Siemens 82 
 
         HW U0    HW U1    HW U2 
         HS   o---o    o---o    o---o 
        DS1   o---o    o  o    o   o 
        DS2   o   o    o---o    o   o 
        DS3   o   o    o  o    o---o 
         MX   o   o    o  o    o   o 
      BLANK   o---o    o---o    o---o 
         HM   o   o    o  o    o   o 
 
 
    Tandon TM-100-4 
 
                      HW U0    HW U1    HW U2    HW U3    Hardware Unit 3  
                 HS   o---o    o---o    o---o    o---o    not supported by 
               NDS0   o---o    o   o    o   o    o   o    Heath. 
          NDS1   o   o    o---o    o   o  o   o 
          NDS2   o   o    o   o    o---o  o   o 
          NDS3   o   o    o   o    o   o  o---o 
       MX   o   o    o   o    o   o  o   o 
         SPARE   o   o    o   o    o   o  o   o 
       HM   o   o    o   o    o   o  o   o 
 
                     Pictorial 2 - H37 Soft Sector Drives 
 
 
    Note: HW Ux = HardWare Unit number, i.e., SY0:, DK0:, etc. 
 
 
 
                      ** INSTALLING THE H37 CONTROLLER ** 
 
    The  card  connector positioned on the top of the card, P3, is designed 
    for an internal drive.  It may or may not be connected.  If it  is  not 
    connected, there is no effect on the card performance. 
     
    The  card  connector  positioned  on  the  bottom  of  the card, P4, is 
    designed for external drives.  It is to be cabled to the rear panel  of 
    the H89.  Then external drives may be connected from the outside. 
 
    Although the H37 card will support  4  drives physically, the operating 
    system or the software may not. 
 
        J4  -  Jumper J4 in order to connect a drive which has been mounted 
        inside the computer.  The drive requires  a  terminating  resistor. 
        The drive is usually connected using a short 34-pin flat cable. 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-33 
    ===========         ====================                      ========= 
 
                   APPENDIX 1-B: CONFIGURING HARDWARE (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
                     INSTALLING THE H37 CONTROLLER (Cont) 
                     ==================================== 
 
        00  -  Do not jumper any pins if you want to attach 3 drives to the 
        rear panel connector.  The last drive in  the  chain  must  have  a 
        terminating resistor installed. 
 
 
    REPLACING THE KEY CHIPS 
    ----------------------- 
    In  order  to  make  the  H37 card work, the following chips on the CPU 
    board must be replaced: 
 
    CHIP REFERENCE      OLD PART        NEW PART 
    DESIGNATION 
 
    U516                8013Y (444-41)  74S188C (444-83) 
 
    U518                444-62          2732 (444-142) [MTR-90] 
 
    U550                444-61          444-61 (Not the improved part) 
 
    U558                443-754(Save)   100-1817 (Special ROM Part) 
                 (A modified 74LS240)   (A modified 74LS240) 
 
    U557                Remove (Save)   Cable plugs in here. 
                                        Unit consists of a 20-pin 
                                        socket with a 4700 ohm 
                                        resistor connected between 
                                        pins 1 and 8. 
 
    POWER SUPPLY UPGRADE  
    -------------------- 
    In addition, the power supply must be upgraded in order to handle the 
    increased current demand.  The following parts are required: 
 
    CHIP REFERENCE      QUANTITY     PART NUMBER     DESCRIPTION 
    DESIGNATION 
 
    N/A                 3-Each        215-658        Heatsink, HD 
 
    U101                1-Each        442-651        5-volt regulator 
                                   (UF78H05SC or 
                                    MC78T05) 
 
    *********************************************************************** 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-34 
    ===========         ====================                      ========= 
                         
                        APPENDIX 1-C: PORT ASSIGNMENTS 
                        ++++++++++++++++++++++++++++++ 
    +---------------------------------------------------------------------+ 
    |                         I/O PORT ADDRESS MAP                        | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | OCT | HEX | DEC |       H-8        |      H-89/90      | Super 89   | 
    |     |     |     |      Usage       |       Usage       | Usage      | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 377 |  FF | 255 | Reserved         | Reserved          | Reserved   | 
    | 376 |  FE | 254 | Reserved         | Reserved          | Reserved   | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 375 |  FD | 253 | AT: on H8-5 Card | Reserved          | Reserved   | 
    | 374 |  FC | 252 | Alt. Terminal    | Reserved          | Reserved   | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 373 |  FB | 251 | TT: on H8-5 Card | Reserved          | Reserved   | 
    | 372 |  FA | 250 | Console Terminal | Reserved ( NMI )  | Reserved   | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 371 |  F9 | 249 | Cassette on H8-5 | Cassette on H88-5 | Reserved   | 
    | 370 |  F8 | 248 | Interface Card   | Interface Card    | Reserved   | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    |                         Currently Unassigned                        | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 362 |  F2 | 242 | Reserved         | General Purpose   |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 361 |  F1 | 241 | H-8 Front Panel  | Reserved          | Reserved   | 
    | 360 |  F0 | 240 | Switches & LED's | Reserved ( NMI )  | Reserved   | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 357 |  EF | 239 | TT: on H8-4 Card | TT: Native Card   |Same as H-89| 
    | 350 |  E8 | 232 | Console Terminal | Console Terminal  |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 347 |  E7 | 231 | LP: on H8-4 Card | LP: on H88-3 Card |Same as H-89| 
    | 340 |  E0 | 224 | Line Printer     | Line Printer      |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 337 |  DF | 223 | DTE on H8-4 Card | DTE on H88-3 Card |Same as H-89| 
    | 330 |  D8 | 216 | Modem            | Modem             |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 327 |  D7 | 215 | AT: on H8-4 Card | AT: on H88-3 Card |Same as H-89| 
    | 320 |  D0 | 208 | Alt. Terminal    | Alt. Terminal     |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
    |                         Currently Unassigned                        | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 307 |  C7 | 199 | Reserved         | Reserved          |Bank Select | 
    | 300 |  C0 | 192 | Reserved         | Reserved          |            | 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 267 |  B7 | 183 | Reserved         | Reserved          |Extra Serial| 
    | 260 |  B0 | 176 | Reserved         | Reserved          |Port OnBoard| 
    +-----+-----+-----+------------------+---------------+---+------------+ 
    | 217 |  8F | 143 | Reserved         | Reserved      | Real-Time Clock| 
    | 200 |  80 | 128 | Reserved         | Reserved      | Lower 4 Bits   | 
    +-----+-----+-----+------------------+---------------+---+------------+ 
    | 177 |  7F | 127 | Primary Device   | Primary Device    |Same as H-89| 
    | 174 |  7C | 124 | H-17 Disk Drive  | H-17 ( H-47 )     |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 173 |  7B | 123 | Secondary Device | Secondary Device  |Same as H-89| 
    | 170 |  78 | 120 | H-47 ( H-37 )    | H-47 ( H-37 )     |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-35 
    ===========         ====================                      ========= 
 
                     APPENDIX 1-C: PORT ASSIGNMENTS (Cont) 
                     +++++++++++++++++++++++++++++++++++++ 
 
                              Currently Unassigned 
    +-----+-----+-----+------------------+-------------------+------------+ 
    | 077 |  3F |  63 | For Your User    | For Your User     |Same as H-89| 
    | 000 |  00 |   0 | Applications     | Applications      |Same as H-89| 
    +-----+-----+-----+------------------+-------------------+------------+ 
 
 
 
 
 
                                 ** IO PORTS ** 
                                 ============== 
 
    000.360  00F0   IP.PAD   EQU    360Q    PAD INPUT PORT 
    000.360  00F0   OP.CTL   EQU    360Q    CONTROL OUTPUT PORT 
 
        **    Front Panel Control Bits 
        *     CB.* set in OP.CTL 
 
    000.020  0010   CB.SSI   EQU    00010000B   SINGLE STEP INTERRUPT 
    000.040  0020   CB.MTL   EQU    00100000B   MONITOR LIGHT 
    000.100  0040   CB.CLI   EQU    01000000B   CLOCK INTERRUPT ENABLE 
    000.200  0080   CB.SPK   EQU    10000000B   SPEAKER ENABLE 
 
    000.360  00F0   OP.DIG   EQU    360Q        DIGIT SELECT OUTPUT PORT 
    000.361  00F1   OP.SEG   EQU    361Q        SEGMENT SELECT OUTPUT PORT 
    000.362  00F2   IP.CON   EQU    362Q        H-88/H-89/HA-8-8 
                                                  Configuration 
 
        **    Configuration Flags 
        *     These bits are read in IP.CON 
 
    000.003  0003   CN.174M  EQU    00000011B   Port 174Q Device-Type Mask 
    000.014  000C   CN.170M  EQU    00001100B   Port 170Q Device-Type Mask 
    000.020  0010   CN.PRI   EQU    00010000B   Primary/Secondary: 
        *       1=>primary == 170Q 
    000.040  0020   CN.MEM   EQU    00100000B   Memory Test/Normal Switch: 
        *       0=>Test; 1=>Normal 
    000.100  0040   CN.BAU   EQU    01000000B   Baud Rate:  0=>9600; 
                                                  1=>19,200 
    000.200  0080   CN.ABO   EQU    10000000B   Auto-Boot:  1=>Auto-Boot 
 
 
        *     These values valid ONLY in CN.174M 
 
    000.000  0000   CND.H17  EQU    00B         H-17 Disk 
    000.001  0001   CND.H47  EQU    01B         H-47 Disk 
    000.002  0002   CND.H67  EQU    10B         H-67 Disk 
    000.003  0003   CND.NDI  EQU    11B         No Device Installed 
 
 
 
 



    CHAPTER ONE         SYSTEM CONFIGURATION                      PAGE 1-36 
    ===========         ====================                      ========= 
 
                     APPENDIX 1-C: PORT ASSIGNMENTS (Cont) 
                     +++++++++++++++++++++++++++++++++++++ 
 
        *     These values valid ONLY in CN.170M 
 
    000.000  0000   CND.H37  EQU    00B         H-37 Disk 
    000.001  0001   CND.H47  EQU    01B         H-47 Disk 
    000.002  0002   CND.H67  EQU    10B         H-67 Disk 
    000.003  0003   CND.NDI  EQU    11B         No Device Installed 
 
    000.362  00F2   OP2.CTL  EQU    362Q        H-88/H-89/HA-8-8 Control 
                                                  Port 
 
        *     CB2.* set in OP2.CTL 
 
    000.001  0001   CB2.SSI  EQU    00000001B   Single Step Interrupt 
    000.002  0002   CB2.CLI  EQU    00000010B   Clock Interrupt Enable 
    000.040  0020   CB2.ORG  EQU    00100000B   ORG 0 Select 
    000.100  0040   CB2.SID  EQU    01000000B   Side 1 Select 
 
       **    Secondary Control Bits 
       **    Monitor Mode Flags 
 
    000.000  0000   DM.MR    EQU    0           MEMORY READ 
    000.001  0001   DM.MW    EQU    1           MEMORY WRITE 
    000.002  0002   DM.RR    EQU    2           REGISTER READ 
    000.003  0003   DM.RW    EQU    3           REGISTER WRITE 
 
 
 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
                                            
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                   CHAPTER 2 
 
                              GENERAL OPERATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-i 
    ===========         ==================                         ======== 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  The revision 3.0 is  detailed 
    in  chapters  1,  2,  and 3, while chapters 4 through 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    Chapter  2,  General  Operations,  tells  how  to boot, initialize, and 
    sysgen disks in a general, basic  manner.   It  tells  how  to  make  a 
    working  disk  and  configure  line  printers.  It provides information 
    about booting techniques which include booting from drive SY1: or SY2:, 
    instead of the normal technique of booting from SY0: (refer to appendix 
    2-A for details), how to program drives  (refer  to  appendix  2-B  for 
    details),  and  provides  a conversion chart (refer to appendix 2-C for 
    details). 
 
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P. O. Box 548,  #6 West Branch Mobile Home Village, 
    West Branch, IA 52358. 
       
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-1 
    ===========         ==================                         ========  
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
          GENERAL OPERATIONS .................................... 2-2 
 
          INTRODUCTION .......................................... 2-2 
 
          [1] H89 Computers with Multiple Drives ................ 2-4 
              Bootstrap, STEP 1 ................................. 2-4 
              Init, STEP 2 ...................................... 2-8 
              Sysgen, STEP 3 ................................... 2-16 
 
          [2] H89 Computers with a Single Drive ................ 2-18 
 
          [3] H8 Computers with H19 Terminals .................. 2-22 
 
          TEST17/TEST37/TEST47, STEP 4 ......................... 2-24 
 
          Set, Configuring the System, STEP 5 .................. 2-24 
 
          Preparing a Working Disk, STEP 6 ..................... 2-25 
 
          Configuring Line Printers, STEP 7 .................... 2-26 
            Printer Drivers with Multiple Units ................ 2-27 
 
          Power Down, STEP 8 ................................... 2-28 
 
          Summary .............................................. 2-29 
 
          APPENDIX 2-A  
            Booting Techniques ................................. 2-31 
 
          APPENDIX 2-B 
            Programming Drives ................................. 2-35 
 
          APPENDIX 2-C 
            Conversion Chart ................................... 2-38 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-2 
    ===========         ==================                         ======== 
     
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    At this  point,  your computer, disk drives, and peripherals, should be 
    connected and ready to operate. 
     
    The purpose of this chapter is to acquaint you with the  procedure  for 
    generating both data disks and bootable disks (i.e., disks that contain 
    the HDOS 3.0 operating system). 
     
    In case you have different types of drives (i.e., either H17  and  H37, 
    or  H17  and  H47),  simply perform the procedure which concerns itself 
    with the type of drive that you will  be  using  as  the  PRIMARY  boot 
    drive. 
     
    A word about our terminology.  Throughout the "System Setup Procedure," 
    we will refer to steps such as STEP 1, Bootstrap; STEP 2, INIT; and  so 
    on.   These "STEPS" refer to SECTIONS that have a title in full capital 
    letters, underlined with the "+" key, and a heading next to that title. 
     
    For  example,  when you are instructed to proceed to STEP 1, Boot, look 
    for BOOTSTRAP, STEP 1.  Therefore, the term "STEP" always refers to  an 
    entire section, and NOT to an individual instruction such as: 
 
        Press the SHIFT and RESET keys. 
 
    In  the  event that you are unable to complete the entire "System Setup 
    Procedure," you can safely remove the disk and turn off  the  AC  power 
    after completing any of the 8 sections indicated below. 
     
    If  you  do  not  finish the entire procedure, mark where you have left 
    off.  To continue with the procedure later, boot your system  disk  and 
    then reenter at the point in the instructions where you put your mark. 
 
    The following paragraphs divide the presentation into three segments, as  
    follows: 
 
        [1] H89 COMPUTERS WITH MULTIPLE DRIVES. 
 
        [2] H89 COMPUTERS WITH A SINGLE DRIVE. 
 
 
        [3] H8 COMPUTERS WTIH THE HEATH H19 TERMINAL. 
 
    This  chapter  will  walk  you through the eight fundamentals that will 
    show you how to set up your computer system.   The tasks  that  are  an 
    integral part of these fundamentals will be used continually as you use 
    your computer, regardless of whatever components  your  Heath  computer 
    system contains.   
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-3 
    ===========         ==================                         ======== 
                       
                              INTRODUCTION (Cont) 
                              +++++++++++++++++++ 
 
    The eight fundamental steps are as follows: 
 
        STEP 1 - Bootstrap (alias Boot) 
 
        STEP 2 - Initialization (alias Init) 
 
        STEP 3 - Sysgen 
 
        STEP 4 - Summary of Test 
 
        STEP 5 - Set 
 
        STEP 6 - Preparing a Working Disk 
 
        STEP 7 - Configuring Line Printers 
 
        STEP 8 - Power Down 
 
 
                         STANDARD OPERATING PROCEDURE 
                         ============================ 
 
    SYMBOLS:  A  direct  statement  from  the  computer  will be set off in 
    quotation marks.  For example: 
 
                             "MEDIA CHECK? <YES>?" 
 
    Commands   or  options  made  by  the  operator  will  be  set  off  in 
    apostrophes.  For example: 
 
                                    '<RTN>' 
 
    CAUTION:  Do  not  type  the  quotation or apostrophe marks.  Also, pay 
    attention to the spaces, or the absence of spaces, since HDOS  is  very 
    particular about spaces. 
 
    NOTE: A row of asterisks indicates a change of topic. 
    *********************************************************************** 
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    BOOTSTRAP       BOOTING A DISK                                   STEP 1 
    +++++++++       ++++++++++++++                                   ++++++ 
 
    Introduction 
    ------------ 
    One  of  the  primary  functions  of  a computer operating system is to 
    enable the various physical parts  of  the  computer  to  cooperate  to 
    execute  your  commands.   In order for this cooperation to take place, 
    there  must be  communication  between  HDOS  3.0  (software)  and  the 
    physical parts of the computer (hardware).  The computer cannot execute 
    any command unless HDOS is communicating with the hardware. 
     



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-4 
    ===========         ==================                         ======== 
                       
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    BOOTSTRAP (Cont)   BOOTING A DISK                                STEP 1 
    ++++++++++++++++   ++++++++++++++                                ++++++ 
 
    Bootstrap  is  a small "hidden" program stored within the hardware.  It 
    serves to establish a communications link between  HDOS  3.0   and  the 
    various  functional  parts of the computer.  The bootstrap procedure is 
    so-named because, by means of this procedure, you will be causing  HDOS 
    3.0   to  "pull  itself up by its bootstraps" -- that is, the responses 
    you give in this procedure, will enable HDOS to  lift  itself  off  the 
    disk  and place itself in the computer's memory.  Having been installed 
    in memory, HDOS 3.0  may then issue instructions to and coordinate  the 
    actions  of  the  appropriate parts of the computer in response to your 
    commands. 
     
    This  procedure  will  be referred to several times throughout the HDOS 
    3.0 manual.  BE SURE TO PERFORM THE SEQUENCE EXACTLY. 
 
                                CAUTION 
              DO  NOT INSERT ANY DISK INTO THE DRIVES UNTIL AFTER 
              AC POWER IS APPLIED TO THE COMPUTER SYSTEM!!!   USE 
              OF A POWER OUTLET BOX WITH SPIKE PROTECTION TO PLUG 
              IN COMPUTER AND PERIPHERALS IS HIGHLY RECOMMENDED. 
 
    Procedure 
    --------- 
         (1)  Insure  that  the  off-line  key is in the up position.  This 
    connects the keyboard to the computer. 
     
         (2)  Turn  on  the  AC power to the computer system.  Now apply AC 
    power to the computer and then the drives, if applicable.  If you  have 
    an  H89,  you  should hear two beeps from the computer.  If you have an 
    H90, some models beep twice and some models only beep once.  If you are 
    using a Heath ROM, an "H:" will appear in the upper left hand corner of 
    your screen.  However, if you are using a non-Heath ROM,  such  as  the 
    Kres  KMR-100 ROM, the presentation will be different.  This display is 
    referred to as the "Monitor ROM" prompt.  Press  the  right  SHIFT  and 
    RESET  keys  similtaneously, and note how the monitor prompt reappears. 
    The right-hand SHIFT and RESET keys pressed simultaneously will  always 
    return you to the monitor prompt. 
 
         (3)  Insert  the  bootable system distribution disk into the drive 
    that has been configured as "primary boot drive  SY0:."   Always  close 
    the door of the drive unit after you have inserted the disk. 
 
         (4)  Type the letter 'B' from the keyboard  (ignore the apostrophe 
    marks).  The computer will  complete  the  statement  "oot."   Now  the 
    complete statement on the screen is "BOOT." 
 
         (5)  Press  the RETURN key.  RETURN will hereafter be signified by 
    the expression <RTN>.  You should hear some soft hissing  and  clicking 
    sounds from the disk drive.  This is normal.  You will hear such sounds 
    whenever the disk drive unit reads from or  writes  to  the  disk.   In 
    addition, the drive light will turn on briefly. 
     



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-5 
    ===========         ==================                         ======== 
                       
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    BOOTSTRAP (Cont)   BOOTING A DISK                                STEP 1 
    ++++++++++++++++   ++++++++++++++                                ++++++ 
 
         (6)  If  your  H89 is  equipped with the MTR-88 ROM, HDOS will now 
    print the message: 
 
                     "TYPE SPACES TO DETERMINE BAUD RATE" 
 
    If  your  H89 is equipped with the MTR-90 ROM, or some other late model 
    non-Heath ROM, this statement will not appear.  However,  the  computer 
    will hang up until you type spaces. 
 
                                     NOTE 
              Every  time  you  are booting a freshly-initialized 
              and sysgened disk for the first time, you MUST  hit 
              the  SPACE  BAR  a few times so that the system can 
              determine the disk baud rate.  The same is true  if 
              you  change the computer baud rate on the TLB board 
              to a different value.  If there is no write-protect 
              tab  on  the disk to be booted, this baud rate will 
              be written onto the disk's boot track, and you will 
              not need to type SPACES for that disk again. 
 
 
         (7)  After you type 'B' for "BOOT," within HDOS 3.02, the computer 
    will immediately begin the boot process. 
 
         (8)  The  screen will be filled with large letters, each about 3/4 
    inch high.  The operating system title will be printed on the screen as 
    follows: 
 
    "HDOS 3.0 
    ISSUE 50-07-00" 
 
         (9) HDOS 3.02 will then print: 
    "System Has 64k of RAM."   
 
    Exception: If you don't have the standard 64k RAM, the HDOS system will 
    print out the amount of RAM your system actually has. 
 
    The program continues with: 
    "Drivers found - TT:, SY:, DK:, LP:"  
 
    Exception:  Unless  you are booting the HDOS 3.02 system bootable disk, 
    the message may include  different  drivers.   It  prints  all  of  the 
    drivers on disk whatever they are. 
 
         (10) Then the message appears: 
 
    "Date <30-Aug-89>?" 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-6 
    ===========         ==================                         ======== 
                       
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    BOOTSTRAP (Cont)   BOOTING A DISK                                STEP 1 
    ++++++++++++++++   ++++++++++++++                                ++++++ 
 
    How to enter the date: 
 
 
        (A) For HDOS 3.0: 
 
        Enter today's date in the format DD-MMM-YY.  DD is a two-digit day, 
        MMM is a three-digit month, and YY is a two-digit year.  Be sure to 
        set  off  the date data groups with hyphens.  Thus, if today's date 
        were 30 Aug 89, you would enter: '30-AUG-89'. 
 
 
        (B) For HDOS 3.02: 
 
        (1)  If you are booting up for the first time, or the first time in 
        a day, month, or year, follow the standard HDOS method of providing 
        the date, i.e.  the entire date. 
 
        (2)  If  you are booting up during the same month for the second or 
        higher  instance,  just  type  the  current  day.    For   example: 
        '30<RTN>'.  The remainder is understood. 
 
        (3)  If  you are booting up for the first time in a new month, just 
        type the day and the month.  The remainder is understood. 
 
 
    HDOS then halts and requests the time: 
 
    "Time: (00:00:00)?" 
 
                                     NOTE 
              This question only appears when you copy either the 
              CLOCK.TAS or the CLOCK89.TAS file  to  your  system 
              disk.  The file CLOCK.TAS is used with the standard 
              H89/Z90 computer system.  The file  CLOCK89.TAS  is 
              only  used  if you have a D-G Electronics CPU board 
              installed. 
 
              To  activate  the  clock,  you  must  also  add the 
              command START CLOCK to your AUTOEXEC.BAT file.   Do 
              this  using  an ordinary text editor such as PIE or 
              TXTPRO.  This procedure  prompts  the  computer  to 
              print  the clock question which appears during boot 
              to systems so prepared. 
 
    If you type in the correct time, the system clock starts up.  From that 
    time on, no matter how many times you cold boot  during  that  session, 
    the system clock keeps up with the latest time. 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-7 
    ===========         ==================                         ======== 
                       
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    BOOTSTRAP (Cont)   BOOTING A DISK                                STEP 1 
    ++++++++++++++++   ++++++++++++++                                ++++++ 
 
    After you type your choice of either the correct time or just a RETURN, 
    the system continues its  boot  procedure  until  the  system  disk  is 
    mounted. 
 
         (11) The disk comes up to boot: 
 
    "Volume 01000 Mounted in SY0:   (The volume number may vary.) 
    Label: HDOS 3.0 - 80-Track System Disk" 
 
    The HDOS system prompt appears: 
    "S:" 
 
    It  is  possible to customize your prompt.  To do so, you must type the 
    command into the file AUTOEXEC.BAT, using a text editor such as PIE  or 
    TXTPRO.  For example, if your name is BOB, type the command: 
 
                             'PROMPT: BOB+><RTN>' 
    *********************************************************************** 
    Refer  to  Appendix  A-2:  BOOTING  TECHNIQUES,  for additional details 
    concerning booting from drives other than the  one  hardware-configured 
    for SY0:. 
     
    Refer  to  Appendix A-3: PROGRAMMING DRIVES, for instructions on how to 
    hardware-program disk drives. 
    *********************************************************************** 
 



    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-8  
    ===========         ==================                         ========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT                INITIALIZING A DISK FOR THE H89              STEP 2 
    ++++                +++++++++++++++++++++++++++++++              ++++++ 
 
    Introduction 
    ------------ 
    INIT is an abbreviation for INITIALIZATION, a program designed to write 
    a map on the disk which HDOS will use to locate files.  It is necessary 
    to initialize all blank disks prior to use. 
     
    There  are  actually  two levels of  mapping  that are written onto the 
    disk during INIT.  The first is a low-level initialization of the  disk 
    surface.   This  map  is for the benefit of the floppy disk controller. 
    It lays out a pattern on the surface of the  disk  that  indicates  the 
    position  of  each  of  the  tracks  and each of the sectors on each of 
    those tracks.  The data recorded  on  each  track  includes  the  track 
    number,  the  side number, and a pattern that signals the start of each 
    of the data sectors on the track.  Each  sector header   also  includes 
    the  sector  number,  as  well as a block of 256 bytes of  dummy  data. 
    This process is repeated until all tracks are formatted.  This  process 
    enables the floppy disk controller to read the track and sector that is 
    currently passing under the heads, instead of counting steps from track 
    zero,  or  counting milliseconds from the appearance of the index hole. 
    The second level of  mapping  is referred  to  as   HIGH-LEVEL.    This 
    causes  the  three  system  files  to  be transferred to the disk being 
    initialized.  Among other things, the files that are  transferred  are: 
    GRT.SYS, RGT.SYS, and DIRECT.SYS. 
     
    When  INIT  is complete, the disk that has been initialized  is said to 
    be a  DATA DISK,  since it contains no system files that  would  enable 
    it to boot the disk.  The chief advantage of a data disk is that it can 
    store  more files than a disk of the same capacity that has been INITed 
    and then SYSGENed.  This is not much of a problem for H37 disk, due  to 
    their  relatively  large storage space, but it is a problem for the H17 
    disks, due to their relatively low storage space. 
     
    INIT  is a conversational program in that it asks you questions to help 
    you to decide what you want to do.  If this is your first time  through 
    INIT,  you  will  doubtless  find the questions helpful.  If you are an 
    experienced INIT user, refer to "INIT Options," Chapter 3, page 3-7. 
 
    In  SYSGEN,  STEP  3,  you will copy the HDOS Operating System files to 
    your SYSTEM VOLUME.  Thereafter you will be able to substitute your own 
    SYSTEM  VOLUME  for  the  DISTRIBUTION  DISK, supplied in the HDOS 3.02 
    package, thus keeping your  distribution  disk  safe  from  inadvertent 
    error.   For now you should have your bootable system distribution disk 
    installed in SY0: and a blank disk installed in SY1:. 
 
                                     NOTE 
              Certain portions of the INIT program differ between 
              computer systems with H37 and/or H47 drives  versus 
              computer    systems   with   H17   drives.    These 
              data differences will be explained in the text. 
 
 



 
    CHAPTER TWO         GENERAL OPERATIONS                         PAGE 2-9  
    ===========         ==================                         ========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
    Procedure for multiple H37 Drives: 
    ---------------------------------- 
         (1)  At the HDOS prompt, type 'INIT<RTN>'. 
 
         (2)  INIT   will  introduce  and  describe  itself.   Below  this 
    paragraph the following message will be printed: 
 
    "YES/NO)^<NO>?" 
 
         (3)  Type  'YES',  and  the  following  message  will print on the 
    screen: 
     
    "Dismounting all Disks" 
 
    Drive SY2: was empty, so no message is given. 
 
    "Volume 60000, Dismounted from SY1: 
    Label: HDOS 3.02 - MANUAL FILES CHAPTER 1" 
 
    "Volume 10, Dismounted from SY0: 
    Label: HDOS 3.02 - DISTRIBUTION DISK" 
 
    "Remove the disk(s).  Hit RETURN when ready:" 
 
    Remove the disk mounted in SY1:. 
 
         (4) When the query: 
 
    "Device<SY0:>?" 
 
    is displayed, type: 
 
    'SY1:<RTN>' 
 
    The system will print: 
 
    "Insert the volume you want to initialize into SY1: 
    Remember, any data on this volume will be destroyed." 
 
    and then: 
 
    "Hit RETURN when ready. 
    Ready?" 
 
         (5) Type '<RTN>'.  The computer will check SY1: and report: 
 
    "The volume in the drive ..... 
    Apparently has not been initialized before."  
 
    (Assuming that you are using a new disk.) 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-10 
    ===========         ==================                        =========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
    "Type NO to cancel.  Type YES to  
    erase and initialize the disk.  (YES/NO)?" 
 
         (6) Type 'YES<RTN>'  
 
         (7) The computer will instruct: 
 
    "Enter a volume serial number between 0 and 65535." 
 
         (8) Type '10<RTN>'.  (Just an example.) 
 
         (9) The computer will instruct: 
 
    "Enter a volume label of 60 characters or less." 
 
         (10) Type 'SYSTEM VOLUME<RTN>'. 
 
    "Enter BOOT step rate: (30,20,12,6)<30>." 
 
         (11)  For a  double-sided  drive  connected to the H37  controller 
    enter: '6<RTN>'. 
 
    Most  double-sided  drives will operate at this step time.  In case you 
    notice read/write errors  on  a  specific  drive,  you  may  decide  to 
    initialize future disks at a steptime of 12. 
 
    The computer stamps the boot step rate you selected onto the disk, and 
    the following message is printed on the screen: 
    
    "Double density? <YES>" 
    "Double sided? <YES>" 
    "80 tracks? <YES>" 
 
         (12) Your response should be '<RTN>' to the first two questions in 
    most  cases.  However, your response to the third question depends upon 
    what kind of disk drive you are INITing on.  In case you are INITing on 
    a 48 tpi drive, simply type 'NO<RTN>'.  This will  inform  the  program 
    that  you want the disk to be initialized at 48 tpi, not at 96 tpi.  If 
    you were attempting to INIT a 48 tpi disk on a 48  tpi  drive,  but  in 
    error, typed a return to the last question, you could damage the drive. 
     
    Procedure for computer systems with multiple H17 drives: 
    -------------------------------------------------------- 
         (11)  For  computer  systems  with multiple H17 drives, no message 
    concerning  the  BOOT step rate will appear   since  most  single-sided 
    drives  are  factory  set  to  step  at  a  super-conservative  rate of 
    30 milliseconds.   In  addition   the  H17  controller   card   imposes 
    limitations on drive speed in the form of WAIT STATES. 
  
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-11 
    ===========         ==================                        =========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
    Instead, the following message is printed on the screen: 
 
    "Number of sides (1 or 2)? <1> 
    "Recording density (1=48 tpi, 2=96 tpi)? <1>" 
 
         (12)  If you have two or more single-sided drives connected to the 
    H17  controller,  respond  to  the  first question  by typing: '<RTN>'. 
    Then respond to the second question by typing: '<RTN>'. 
     
    If  you  have  one  or  more  double-sided  drives connected to the H17 
    controller,  respond to the  second  question  by  typing:  '2'.   Then 
    respond to the second question by typing: '2'. 
 
                                    CAUTION 
              You can damage a disk drive during this step if you 
              instruct the computer to INIT a disk in  a  48  tpi 
              drive at 96 tpi.  Take care! 
 
    For computer systems with multiple H37 or H17 drives: 
    ----------------------------------------------------- 
         (13)  After  you  have  instructed the computer as to how you want 
    your disk INITed and hit the last '<RTN>', the computer starts the INIT 
    process. 
     
    The  computer  shows  you  the  status  of the INIT as it goes along by 
    printing a line of asterisks.  If you are initializing a  48  tpi  disk 
    the line of asterisks will print halfway across the screen. 
 
    If  you are initializing a 96 tpi disk the line of asterisks will print 
    all the way across the screen.  However, when you initialize a  48  tpi 
    disk,  the line of asterisks will only print halfway across the screen. 
 
    The line of asterisks looks like this for a 48 tpi drive: 
                                        
    "************************************" 
 
         (14) At  the  completion  of the INIT process, the computer prints 
    the following message on the screen: 
 
    "MEDIA CHECK? <YES>?" 
 
    To start the media check, type: '<RTN>' (NO SPACES!) 
 
                                     NOTE 
              Even  if  you  have  first-quality,  top brand-name 
              disks, it is ALWAYS a good idea to  run  the  media 
              check,  since  you never know if there might be bad 
              sectors on any disk.  The media check will  provide 
              a positive check for you. 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-12 
    ===========         ==================                        =========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
 
    When  the  media check begins, it will also start printing a horizontal 
    row of asterisks, such as that printed by the INIT process  above.   If 
    media check finds bad sectors it will write the number of the addresses 
    on the screen. 
 
    For computer systems with multiple H17 drives: 
    ---------------------------------------------- 
         (14)  You  will  not  be  given  an opportunity to perform a media 
    check. 
     
    For computer systems with multiple drives: 
    ------------------------------------------ 
 
         (15)  You  will  be  asked  if  you  have any bad sectors.  If bad 
    sectors have been identified, you may now type in their addresses. 
 
    The computer prints: 
 
    "Enter the number of bad sectors, one at a time. 
    Hit RETURN after each entry, and when finished. 
    Sector?" 
 
                  NOTE: DETERMINING BAD SECTORS FOR H17 DISKS 
                  ------------------------------------------- 
              Prior to running INIT for your H17 disks, there are 
              two methods of determining bad sectors: 
               
              The first method is to cross over  to  HDOS  2  and 
              perform the TEST17 "Media Check."  If you decide to 
              do this, be sure to write down on a piece of  paper 
              the  bad  sectors  determined  by the test, if any. 
              Follow-up this action by initializing your disks in 
              HDOS 3.02 and plug in the bad sector addresses when 
              you get to this place in the program. 
               
              The  second method is to use other software such as 
              "BAD.ABS" which is explained  in  Chapter  7,  page 
              7-38, or the equivalent. 
               
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-13 
    ===========         ==================                        =========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
 
                       NOTE: OPTIMIZING H17 DRIVE SPEED 
                       -------------------------------- 
              The   H17   step  rate  may  be  speeded  up  on  a 
              disk-to-disk basis, but not during INIT.  The  best 
              method  is to first run the Seek Time test, part of 
              TEST17 from within HDOS 2.  This will determine the 
              maximum  error-free step rate of individual drives. 
              Once this rate is determined, mark the drive with a 
              stick-on  label  with the maximum reliable steprate 
              determined by test.  After this, EACH  DISK  to  be 
              used  in  that drive may be speeded up by using the 
              SET command (but not during  INIT).   For  example, 
              type:  'SET  ^SY1:^HELP<RTN>.'  A list of drive SET 
              options will appear  on  the  screen.   Then  type: 
              'SET^SY1:^STEP^nn<RTN>',  where  the  expression nn 
              stands for the best step rate determined  by  test. 
              The  SET  command  must  be  repeated for each data 
              disk.  After you determine the slowest drive in the 
              chain, set all of the drives to that speed. 
 
 
         (16)   If bad sectors  are found by the media check, you must type 
    the bad sector  numbers one at a time after the question "Sector?"  For 
    example: 
 
    "Sector?"'159<RTN>' 
 
    If,  on  the  other  hand,  no  bad  sectors were detected, just type a 
    '<RTN>' after "Sector?"  and continue.  The computer prints: 
 
    "Disk Initialization complete." 
 
    The computer prints: 
 
    "Insert the volume you wish to initialize into SY1:; 
    Remember, any data on this volume will be destroyed." 
 
 
         (17) You now have three options: 
 
    (A) INIT a new disk: 
    -------------------- 
    If  you want to INIT another disk just remove the disk that was freshly 
    INITed and insert another disk that you want to INIT.  Type '<RTN>'  to 
    start.   A good practice at this time is to apply a self-stick label on 
    the completed disk, so that you can identify it later.  The  option  to 
    INIT  multiple  disks  in  a  continuous  fashion  is a big help and is 
    time-saving. 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-14 
    ===========         ==================                        =========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
    For systems with multiple H37 or H17 drives: 
    -------------------------------------------- 
 
    (B) INIT a new disk in a different drive:. 
    ------------------------------------------ 
    You  might  want to do this if your computer system consists of both 48 
    and 96 tpi drives. 
 
    To do this after the computer prints: 
 
    "Hit RETURN when ready, 
    Ready?" 
 
    Hit 'CTRL-D' once. 
 
    The computer will ask: 
 
    "Device <SY0:>?" 
 
    Type 'SY2:' for example, where SY1: is an 80 track drive, and SY2: is a 
    40 track drive.  At this time, you will be  instructed  to  place  your 
    disk into SY2:.  Then the INIT process repeats. 
 
    (C) Exit INIT. 
    -------------- 
    To exit after the computer prints: 
 
    "Hit RETURN when ready, 
    Ready?" 
 
    Hit: 'CTRL-D' twice. 
 
    At this time the computer will print on the screen: 
 
    "Do you have any more disks to initialize?  (YES/NO)^<NO>?" 
 
    Hit  a  '<RTN>'  and  the  computer completes the INIT process and then 
    mounts the disk in SY0: without requiring further  instructions.   Then 
    it prints: 
 
    "Volume 00000, mounted on SY0: 
    Label: HDOS 3.0 - Distribution Disk" 
 
    The HDOS 3.02 system prompt reappears.  
 
         (18)  Before  you  forget  what  contents  you had planned for the 
    initialized disks, you are strongly urged to identify the disk(s)  with 
    label(s). 
     
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-15 
    ===========         ==================                        =========  
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    INIT (Cont)         INITIALIZING A DISK FOR THE H89              STEP 2 
    +++++++++++         +++++++++++++++++++++++++++++++              ++++++ 
 
    Remove  the disk you have just initialized.  With a felt tip pen (NEVER 
    PENCIL OR BALLPOINT) once the label is affixed to the  disk  write  the 
    volume  number,  10,  for  example  and  disk title, SYSTEM VOLUME on a 
    standard disk label, and attach the label to the disk. 
    *********************************************************************** 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-16 
    ===========         ==================                        =========  
           
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    SYSGEN                     SYSTEM GENERATION                     STEP 3 
    ++++++                     +++++++++++++++++                     ++++++ 
 
    Introduction 
    ------------ 
    SYSGEN is an abbreviation for "System Generation."  In  this  procedure 
    you will copy HDOS 3.02 system files from the distribution disk to your 
    SYSTEM VOLUME.  After performing this procedure, you will  be  able  to 
    substitute  the  SYSTEM  VOLUME  into  any  of the preceding steps that 
    formerly required the distribution disk.  If you  have  performed  this 
    procedure before, refer to "SYSGEN Options," Chapter 3, page 3-10. 
 
    During  the SYSGEN operation, the computer is instructed to perform two 
    main tasks.  One main task is to copy system files (or other  files  by 
    your  command)  from  the source disk to the destination disk.  Another 
    main task is to set flags on files and add HDOS boot data on track 0 of 
    the destination disk. 
 
    When  the  following  command  examples  contain  the  symbol [^], this 
    indicates that a space must be inserted.  Do not type  the  symbol  [^] 
    instead of the space, just type the space. 
 
                                     NOTE 
              There  is essentially no difference in SYSGEN for a 
              computer system with  multiple  H37,  H47  and  H17 
              drives.    systems   with   multiple   H17  drives. 
              Therefore, the following instructions will apply to 
              all these configurations. 
 
    Procedures 
    ---------- 
         (1)  Insert  the  bootable  distribution  disk into SY0: and press 
    <RTN> to boot it. 
 
         (2)  For  information  concerning the three forms of SYSGEN, refer 
    to  Chapter  3, SYSTEM OPTIMIZATION.  To perform SYSGEN in the standard 
    fashion, proceed as follows: 
     
    Type: 'SYSGEN<RTN>'   HDOS prints: 
 
                                   "SYSGEN 
                                  Version 3.0 
                               ISSUE: #50.07.00"  
 
    "Destination Device<SY0:>?" 
 
         (3) Type: 'SY1:<RTN>' and the computer prints: 
 
    "Dismounting all Disks:" 
  
    "Volume 00010.  Dismounted from SY0:. 
    LABEL: SYSTEM VOLUME" 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-17 
    ===========         ==================                        ========= 
 
    [1] H89 COMPUTERS WITH MULTIPLE DRIVES 
 
    SYSGEN (Cont)              SYSTEM GENERATION                     STEP 3 
    +++++++++++++              +++++++++++++++++                     ++++++ 
 
    "Remove the disks. 
    Hit RETURN when ready!" 
 
         (4) Press the RETURN key.  The computer prints: 
 
    "Insert the Source Diskette in SY0: 
     Hit Return when Ready:" 
 
         (5) Press the RETURN key.  The computer prints: 
 
    "Insert the Destination Diskette in SY1: 
     Hit Return when Ready:" 
 
         (6)  The  computer  whirs and buzzes for a period of time, and the 
    red leds on the drives SY0: and SY1: turn on and off for a few seconds, 
    as  they  normally do when files are being transferred from one disk to 
    another.  Then the computer finishes its task and is momentarily quiet. 
     
    The computer prints: 
 
    "5 Files Copied:" 
 
    The files that it copies are as follows: 
 
        1. HDOS30.SYS   40 
        2. SYSCMD.SYS   40 
        3. TT.DVD       13 
        4. PIP.ABS      49 
        5. SY.DVD       20 
 
    Remember,  the  files:  GRT.SYS, RGT.SYS, and DIRECT.SYS were copied to 
    the destination disk during the INIT procedure.    After the files that 
    SYSGEN copies to the disk, you now have a total of 8 system files. 
 
    Then HDOS 3.0 automatically mounts SY0:, requiring no instructions. 
 
    "Volume 00010, Mounted on SY0:;  
    Label: HDOS 3.0 - SYSTEM VOLUME" 
 
    Go on to Step 5, "SET." 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-18 
    ===========         ==================                        ========= 
 
    [2] H89 COMPUTERS WITH A SINGLE DRIVE 
 
    BOOT                BOOTING A DISK                               STEP 1 
    ++++                ++++++++++++++                               ++++++  
 
    An  H89  Computer  with a single drive boots a disk exactly like an H89 
    Computer with multiple drives.  For details on booting, refer  to  Page 
    2-3. 
    *********************************************************************** 
 
    INIT                INITIALIZING A DISK                          STEP 2 
    ++++                +++++++++++++++++++                          ++++++ 
 
    Introduction: 
    ------------- 
    For details concerning "Introduction," see page 2-8. 
 
    With  respect to performint INIT, there are some differences between an 
    H89 with multiple drives and an H89 with a single drive.  The following 
    data illustrates how to INIT a blank disk or a disk to be recycled. 
 
    Procedure 
    --------- 
         (1) At the HDOS 3.02 prompt, type 'INIT<RTN>' 
 
         (2) INIT will introduce and describe itself.  Then it will ask you 
    if  you  want  to continue.  Below this paragraph the following message 
    will be printed: 
 
    "(YES/NO)^<NO>?" 
 
         (3) Type 'YES', and the following message will print on the 
    screen:   
 
    "Dismounting all Disks" 
 
    "Volume 00000, Dismounted from SY0: 
    Label: HDOS 3.02 - SYSTEM DISTRIBUTION DISK" 
 
    "Remove the disk(s).  Hit RETURN when ready:" 
 
    At this time remove the disk in SY0:. 
 
    NOTE: The INIT program is a stand-alone program.  It loads into memory 
    and runs without needing a system volume in SYO:. 
 
         (4) When the query: 
 
    "Device<SY0:>?" 
 
    is displayed, type '<RTN>' 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-19 
    ===========         ==================                        ========= 
 
    [2] H89 COMPUTERS WITH A SINGLE DRIVE 
 
    INIT (Cont)         INITIALIZING A DISK                          STEP 2 
    +++++++++++         +++++++++++++++++++                          ++++++ 
 
    The system prints: 
 
    "Insert the volume you wish to initialize into SY0:; 
    Remember, any data on this volume will be destroyed." 
 
         (5) Insert the disk to be initialized into drive SY0: and then the 
    system prints: 
 
    "Hit RETURN when ready. 
    Ready?" 
 
         (6) Type '<RTN>' 
 
    The computer prints: 
 
    "The volume in the drive ..... 
    Apparently has not been initialized before." 
 
    (Assuming that you are using a new blank disk.) 
 
    Without pause, the computer prints: 
 
    "Type NO to cancel.  Type YES to 
    erase and initialize the disk. (YES/NO)?" 
 
         (7) Type 'YES<RTN>' 
 
    The computer instructs: 
 
    "Enter a volume serial number between 0 and 65535." 
 
         (8) As an example, type: '10<RTN' 
 
    The computer instructs: 
 
    "Enter a volume label of 60 characters or less." 
 
         (9) Type 'SYSTEM VOLUME<RTN>' 
 
    NOTE:  For  computer  systems  with a single drive connected to the H17 
    controller, no message concerning the BOOT step rate will appear.  Most 
    single-sided  drives  are  factory  set to step at a super-conservative 
    rate of 30 milliseconds.  In addition, the H17 controller card  imposes 
    limitations on drive speed in the form of WAIT STATES. 
 
    The computer prints the following message on the screen: 
 
    "Number of sides (1 or 2)? <1>" 
    "Recording density (1-48 tpi, 2=96 tpi)? <1>" 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-20 
    ===========         ==================                        ========= 
 
    [2] H89 COMPUTERS WITH A SINGLE DRIVE 
 
    INIT (Cont)         INITIALIZING A DISK                          STEP 2 
    +++++++++++         +++++++++++++++++++                          ++++++ 
 
         (10)  If  you  have  one  single-sided  drive connected to the H17 
    controller, respond  to  the  first  and  second  questions  by  typing 
    '<RTN>'.  This is the default response. 
 
    If  you  have  one  double-sided drive connected to the H17 controller, 
    respond to the first and second questions by typing '2'. 
 
                                    CAUTION 
              You can damage a disk drive during this step if you 
              instruct the computer to INIT a disk in  a  48  tpi 
              drive at 96 tpi. 
 
    After  you  have  instructed  the computer as to how you want your disk 
    INITed and hit <RTN>, the computer starts the INIT process. 
     
    In HDOS 3.0,  the computer shows you the status of the INIT as it  goes 
    along  by  printing  a  horizontal  line  of  asterisks.   If  you  are 
    initializing a single-sided 48 tpi disk, the  line  of  asterisks  will 
    print halfway across the screen. 
 
    Initializing  an  H17 disk does not provide you with the opportunity to 
    do a media check.  Instead, you will be  asked  if  you  have  any  bad 
    sectors.   If  bad  sectors  have  been identified, you may now type in 
    their addresses. 
 
                           NOTE: FINDING BAD SECTORS 
              One  way  to find whether there are any bad sectors 
              is to boot HDOS 2.0 and perform the  TEST17  "Media 
              Check."   HDOS  3.0   does  not  offer these tests, 
              since they do not run in the HDOS 3.0  environment. 
              After this check is made, the data  determined  the 
              data  should be recorded so that it may be typed in 
              when the computer asks for it. 
               
              Another  way  to  find  whether  there  are any bad 
              sectors  is  to  use  the  utility  program  called 
              "BAD.ABS,"  or  an   equivalent.   This  program is 
              briefly  described in  Chapter 7, page 7-38, and is 
              available  from  Kirk  Thompson as an add-on to the 
              HDOS 3.0/3.02 Operating System  Manual.   "BAD.ABS" 
              may be run after the INIT is completed. 
 
    When the computer is finished INITing your disk, it instructs: 
 
    "Enter the number of bad sectors, one at a time. 
    Hit RETURN after each entry, and when finished." 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-21 
    ===========         ==================                        ========= 
 
    [2] H89 COMPUTERS WITH A SINGLE DRIVE 
 
    INIT (Cont)         INITIALIZING A DISK                          STEP 2 
    +++++++++++         +++++++++++++++++++                          ++++++ 
 
         (11)  If you have determined whether there any bad sectors on your 
    disk by  running the "Media Check" in HDOS 2.0, now is the time to type 
    in their addresses.  For example: 
 
    "Sector?"'100159<RTN>  
 
    If you have more than one bad sector, every time the computer prints: 
 
    "Sector?" 
 
    You type in the addresses until all the addresses are done.  Then, when 
    the computer prints the next "Sector?" just type a <RTN>. 
 
    If  you  decide  to  ignore  this process or if you have not determined 
    whether any bad sectors exist, you may just type <RTN> after the  query 
    "Sector?"  to enable the program to move on to the next step.  However, 
    this practice is discouraged, unless you intend to use "BAD.ABS" later. 
 
    After you type <RTN>, the computer prints: 
 
    "Insert the volume you wish to initialize into SY0:; 
    Remember, any data on this volume will be destroyed." 
 
    "Hit RETURN when ready" 
 
         (12)  At this time you have three options.  Refer to page 2-13 for 
    details.  However, if you are done with the INIT program, just type: 
 
    'CTRL-D' twice. 
 
    The computer will ask: 
 
    "Do you have any more disks to initialize? (Yes/No)^(NO>?" 
 
    Just type '<RTN>' or 'NO'. 
 
    If  you  remove your freshly INITed disk, and swap it with the bootable 
    system disk, the HDOS Operating System will  reboot  your  system  disk 
    automatically. 
 
    Now  go  on  to  STEP 3 for instructions on SYSGEN, or how to make your 
    data disk bootable.  These instructions are immediately following. 
    *********************************************************************** 
 
 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-22 
    ===========         ==================                        ========= 
 
    [2] H89 COMPUTERS WITH A SINGLE DRIVE 
 
    SYSGEN              SYSTEM GENERATION                            STEP 3 
    ++++++              +++++++++++++++++                            ++++++ 
 
    The  Heath Company has kindly provided for those with a computer system 
    having only one drive.  SYSGEN is a stand-alone  program.   This  means 
    that  once  started,  the  program continues on to completion with only 
    minimal cooperation from the user. 
     
    You  don't  NEED  multiple  drives  to  SYSGEN  disks.  However, having 
    multiple drives makes things more convenient. 
     
    Insure that the program SYSGEN.ABS is on it, and then BOOT up with your 
    normal  system  disk.   Type:  'SYSGEN<RTN>'.   SYSGEN  starts  up   by 
    identifying  itself  and  then  it gives you a chance to abort.  If you 
    continue, the program will print: 
 
    "Destination Device <SY0:>?" 
 
    Type:  '<RTN>'  and  switch  disks.  Remove your normal system disk and 
    insert the disk you have just INITed during STEP  2,  INIT.   Then  the 
    SYSGEN  program  begins.   After  it  copies  the five system files the 
    program is complete. 
 
     
    At this time, insert  your normal system disk.  HDOS 3.0 does the rest, 
    as it brings your system disk up to BOOT without the need  for  further 
    instructions. 
     
    For details, follow the computer/user dialogue starting on page 2-16. 
    *********************************************************************** 
 
    [3] H8 COMPUTERS WITH H19 TERMINAL 
 
    BOOTSTRAP        BRINGING A DISK TO BOOT LEVEL                   STEP 1 
    +++++++++        +++++++++++++++++++++++++++++                   ++++++ 
 
    Introduction 
    ------------ 
    One of the primary functions of  a  computer  operating  system  is  to 
    enable  the  various physical parts of the computer to cooperate toward 
    the execution of your commands.  In order for this cooperation to  take 
    place,  there  must  be  communication between HDOS  (software) and the 
    physical parts of the computer (hardware).  The computer cannot execute 
    any command unless HDOS is communicating with the hardware. 
 
    Bootstrap is a small program stored within the hardware which serves to 
    establish  a  communications link between HDOS and the various physical 
    parts of the computer system.  The  bootstrap  procedure  is  so  named 
    because,  by means of this procedure, you will be causing HDOS to "pull 
    itself up by its bootstraps" -- that is, the responses you give in this 
    procedure  will  enable  HDOS  to lift itself off the disk and into the 
    computer's memory.  Having been installed  in  memory,  HDOS  can  then 
    issue  instructions  to  and coordinate the actions of  the appropriate 
    parts of the computer system in response to your commands. 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-23 
    ===========         ==================                        ========= 
 
    [3] H8 COMPUTERS WITH H19 TERMINALS 
 
    SYSGEN              SYSTEM GENERATION                            STEP 3 
    ++++++              +++++++++++++++++                            ++++++ 
 
    Procedures 
    ---------- 
         (1) First apply A-C power to the H8 and your terminal.   
 
         (2) Apply A-C power to your disk drives. 
 
         (3) Install the distribution disk in the disk drive unit that  has 
    been  hardware  configured  as primary boot drive 0.  Close the door of 
    the drive unit after you have inserted the disk. 
 
                                     NOTE 
              All attempts to run HDOS 3 with an H8 using a PAM-8 
              ROM will be doomed to failure.  HDOS 3 is  "ORG-0," 
              and  requires  that  both  the  Org 0 board and the 
              XCON8 ROM be installed.  The  PAM-8  ROM  will  not 
              work. 
               
         (4)  If  you are using the XCON8 ROM with your H8, press the 1 key 
    on the H8 front panel.  The front panel LEDS will display: 
 
                        Pri H17 or 
                        Pri H37 or 
                        Pri H47 
 
    depending  upon  which kind of drive you have hardware configured to be 
    SY0: on the Org-zero level. 
 
    If  you  have  the H8-4 card installed, regardless of what you enter at 
    the H8 front panel, the front panel leds will display: SPACE.  However, 
    this is ROM dependent.  There are some non-Heath ROMs available that do 
    not show SPACE. 
 
                                     NOTE 
              The  unique  features of the H8 have been presented 
              above.  Essentially, comparing the H8 to  the  H89, 
              the initial steps of the BOOT sequence are the only 
              thing that differs. 
    *********************************************************************** 
               



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-24 
    ===========         ==================                        ========= 
 
    TEST17/TEST37/TEST47                                             STEP 4 
    ++++++++++++++++++++                                             ++++++ 
 
    NOTE:  TEST17/TEST37/TEST47  must  be  run  on  HDOS Version 2.0, as it 
    is not available in HDOS Version 3.0. 
 
    Three  test  programs  are provided: TEST17/TEST37/TEST47.  These tests 
    provide checks for testing both the disk  media  and  the  disk  drives 
    themselves.   Each of these tests contain the same type of tests as the 
    other,  but  each  has  been  designed  to  operate   under   different 
    conditions.   For  example,  TEST17 tests H17, 5-1/4 inch hard-sectored 
    disks and drives, while TEST47  tests  8-inch  disks  and  drives,  and 
    TEST37 tests H37, 5-1/4 inch soft-sectored disks and drives. 
 
    Therefore, due  to  the  close  similarity  between  the  three  tests, 
    describing the testing processes may be combined into one section. 
 
    The  programs,  TEST17.ABS,  TEST37.ABS, and TEST47.ABS are included in 
    the HDOS 2.0 distribution disks.  Therefore, those  persons  interested 
    are  invited  to  perform  the tests desired in HDOS 2.0.  It should be 
    noted that these tests will not run in the HDOS 3.02 environment. 
    *********************************************************************** 
 
    SET                       SYSTEM OPTIMIZATION                    STEP 5 
    +++                       +++++++++++++++++++                    ++++++ 
 
    NOTE: When the following command examples contain the symbol [^],  this 
    indicates  that  a  space must be inserted.   Do not type the symbol [^] 
    instead of the space; just type the space. 
 
    This section will enable you to communicate effectively  with  HDOS  by 
    using  some  special  features  of  your computer. 
 
         (1)  At  the  HDOS  system  prompt,  type:'SET^TT:^BKS<RTN>'. This 
    instructs the system to allow you to backspace (using the BACKSPACE, or 
    DELETE keys) in order to delete characters. 
 
         (2) At the next HDOS system prompt, type:'SET^TT:^NOMLI<RTN>'.This 
    instructs  the  system to allow you to input lower case letters as well 
    as upper case. 
 
         (3) At the next HDOS system prompt, type:'SET^TT^NOMLO<RTN>'. This 
    tells HDOS to display all lower case input as lower case output instead 
    of expressing it all in capital letters. 
 
         (4) At the next HDOS system prompt,type:'SET^WIDTH 255<RTN>'. This 
    tells  HDOS  to  set  an  "unlimited"  right-hand margin.  This will be 
    useful for certain applications, such as working  spreadsheets,  typing 
    source code, etc. 
 
         (5) At the next HDOS system prompt, type:'SET^TT:^1SB<RTN>'.  This 
    sets the terminal driver to one stop bit. 
 
         (6) At the next HDOS system prompt, type:'SET^TAB'.  This lets the 
    terminal process tabs faster. 
 



 
    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-25 
    ===========         ==================                        ========= 
 
    SET (Cont)                SYSTEM OPTIMIZATION                    STEP 5 
    ++++++++++                +++++++++++++++++++                    ++++++ 
 
    For more information about the SET command and SET  options,  refer  to 
    the SET section of Chapter 3, page 3-19, "System Optimization." 
 
    Leave the SYSTEM VOLUME in the drive and go on to Step 6, "Preparing  a 
    WORKING  DISK."    Put  your  original distribution disk away in a safe 
    place, separate from the working disks  that  you  will  create.    You 
    should  not use it again unless something accidentally damages your new 
 
    working SYSTEM VOLUME disk. 
    *********************************************************************** 
 
 
    SYSGEN/COPY            PREPARING A WORKING DISK                  STEP 6 
    +++++++++++            ++++++++++++++++++++++++                  ++++++ 
 
    Introduction 
    ------------ 
    In this section you will prepare a system volume which will contain the 
    most-used files contained in the  Heath  distribution  disk,  done  the 
    "easy  way."   Since  this  disk will contain the essential HDOS system 
    files, you will be able to use it to perform Bootstrap. 
 
    This  section  presumes  that you will be starting with a disk that has 
    been INITed. 
 
    Procedure 
    --------- 
         (1) At the HDOS system prompt, type:'SYSGEN /MIN<RTN>'. 
 
         (2) When the message "DESTINATION DEVICE<SY0:>" is printed,  type: 
    'SY1:<RTN>'. 
 
         (3)  HDOS  will  instruct you to remove the disks.  Instead, type: 
    '<RTN>'. 
     
         (4) Since both source disks and destination disks are  mounted  in 
    their  respective  drives, SYSGEN will begin copying the minimum number 
    of system files that are required to make the disk bootable. 
 
         (5)  After  performing SYSGEN in HDOS 3.0, the system disk in SY0: 
    is automatically re-mounted, and HDOS is ready for your commands. 
 
         (6)  Copy only the files on your DISTRIBUTION DISK that you desire 
    to have on your destination  disk.   For  example,  use  the  following 
    command: 
 
                    'COPY SY1:BASIC.ABS=SY0:BASIC.ABS<RTN>' 
 
    *********************************************************************** 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-26 
    ===========         ==================                        ========= 
 
    CONFIGURING LINE PRINTERS                                        STEP 7 
    +++++++++++++++++++++++++                                        ++++++ 
 
    If  you have an H14, H24 (TI-810), H25, H44 (Diablo), or MX-80 printer, 
    this section will instruct you how to incorporate it into your  system. 
    With  an H-89  there is no jumper to control the port address.  The H89 
    has two printer ports on the rear panel: 340Q and 320Q.  If you have an 
    H8  computer,  make  sure  that the jumpers on your serial I/O card are 
    configured for address 340Q.  If you need to  set  the  jumpers,  first 
    turn off the AC power, perform the change, and return to this manual to 
    continue. 
     
         (1) Insert your SYSTEM VOLUME and boot up the system. 
 
         (2) At the HDOS system prompt, copy all of the device driver files 
    to a freshly initialized data disk. 
 
         (3)  The following  is  an  enhanced  list  of  all of the printer 
    drivers on the HDOS 3.0 distribution disks: 
 
           FILENAME    SIZE    DATE     FLAGS    MODE      PRINTER 
 
          AT84.DVD      5    6-OCT-86    WC D    Serial     *AT 
          AT85.DVD      5    6-OCT-86    WC D    Serial     *AT 
          H1484.DVD     6    7-OCT-86    WC D    Serial      H14 
          H1485.DVD     6    7-OCT-86    WC D    Serial      H14 
          H2484.DVD     6    7-OCT-86    WC D    Serial      H24(TI-810) 
          H2584.DVD    10    5-OCT-86    WC D    Serial      H25 
          H4484.DVD     8    9-OCT-86    WC D    Serial      Diablo 
          MX8084.DVD    8   10-OCT-86    WC D    Serial      MX-80 
          MX8011.DVD    8   10-OCT-86    WC D    Parallel    MX-80 
 
    This is a  directory of all of the HDOS 3.02 line printer device driver 
    files.     
 
    NOTES: 
    1.  * AT: Alternate Terminal - configured at port 320Q via an H8-4 card 
    for the H8 Computer, or port 320Q for the H89 Computer. 
                                                                                 
    2.  * AT:  Alternate  Terminal - configured at address 374Q via an H8-5 
    card for the H8 Computer. 
 
    In most cases you only need one of the files, and the one that you need 
    depends upon what line printer you are using, and also  whether  it  is 
    connected in the serial or parallel mode.  For instance, if you have an 
    H14 printer, you should select H1484 if you are using the serial  mode, 
    or H1485 if you are using the parallel mode. 
 
    To  access the parallel mode, you must be either using the Heath H89-11 
    parallel card, or some non-Heath vendor's parallel card. 
 
 
 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-27 
    ===========         ==================                        ========= 
 
    CONFIGURING LINE PRINTERS (Cont)                                 STEP 7 
    ++++++++++++++++++++++++++++++++                                 ++++++ 
 
                                UNOFFICIAL NOTE 
    At  this  time  there  are  some  printer drivers provided by non-Heath 
    vendors that will print your files in the HDOS  3.0  environment.   For 
    example,  Quikdata  sells the "Ultimate Driver" written by Bill Lindley 
    of Lindley Systems.  Quikdata's address is: Quikdata Computer Services, 
    Inc., 2618 Penn Circle, Sheboygan, WI, 53081.  Kirk Thompson, editor of 
    the Staunch 8/89'er Newsletter, may also  have  some  printer  drivers. 
    Contact  Kirk  at the following address: Mr.  Kirk L.  Thompson, Lot #6 
    West Branch Mobile Home Village, West Branch, IA, 52358. 
 
         (4)   The next step  is  to copy the appropriate printer driver to 
    your System Volume.  After you have selected the  printer  driver  that 
    you  want  to use, copy it to your System Volume in accordance with the 
    following example: 
 
                     'COPY SY0:AT84.DVD=SY1:AT84.DVD<RTN>' 
 
         (5)   Having  copied the device  driver to your System Volume, you 
    must rename it.   According  to  the  rules  for  device  drivers,  the 
    filename must be composed of two letters, and the extension must always 
    be ".DVD."  Rename the device driver as follows: 
     
                       'RENAME SY0:LP.DVD=AT84.DVD<RTN>' 
 
    After  renaming  a  device driver, you must reboot in order to get HDOS 
    3.02 to recognize the driver.  
 
    In  the  HDOS  3.0   environment,  one  may  have many printer drivers. 
    However, each of the drivers must have a different two-letter filename. 
    Some  common  examples  of  filenames  for printer drivers are: UD.DVD, 
    EP.DVD,  etc.   However,  the  primary  printer  driver should be named 
    LP.DVD, since many user programs have been built  to  search  for  that 
    driver  before they can continue with their assigned task.  One example 
    is QUERY!2. 
     
    HDOS  will  now  recognize commands to utilize LP:, the primary printer 
    driver, the next time  you  boot  from  the  working  disk.   For  more 
    information  about  configuring  line  printers  and other peripherals, 
    refer to the PERIPHERALS" section of Chapter 3, System Optimization. 
      
    PRINTER DRIVERS WITH MULTIPLE UNITS: 
    Some printer drivers, such as the Lindley driver for HDOS 3.0/3.02 will 
    enable you to make your printer print  out  in  different  modes.   For 
    example,  10,  12,  15,  17, or 20 characters per inch (CPI), or 6 or 8 
    lines per inch (LPI) draft mode, letter quality  mode,  etc,  depending 
    upon whatever features have been built-in to your printer.  These modes 
    are controlled by printer codes. 
     
    These  printer  codes  are  obtained  from  your  printer  manual.  For 
    example, in the Panasonic KX-P1124 Printer Manual, the codes are listed 
    under  the  chapter for Mode Commands.  One example is the printer code 
    for EMPHASIZED PRINTING: for Hex to turn it on, type 1B  45.   To  turn 
    it off type 1B  46. 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-28 
    ===========         ==================                        ========= 
 
    CONFIGURING LINE PRINTERS (Cont)                                 STEP 7 
    ++++++++++++++++++++++++++++++++                                 ++++++ 
 
    Each  text  editor  has  different  ways of imbedding these codes.  For 
    example, in EDIT19 to set the printer codes, follow these procedures: 
 
         1. Put the cursor on the line where you want the printer code. 
 
         2. Press the "ERASE" key to go into Command Mode. 
 
         3. Type C<RTN>. 
 
         4. The line to have the printer codes added will appear in the 
            command screen. 
 
         5. Type CTRL-D, then the first byte of the control code. 
 
         6. Type CTRL-D again for the second byte. 
 
         7. Continue typing CTRL-D and follow up with a third byte, and 
            continue this until the last printer code is typed. 
 
         8. Press RETURN and the line will be restored to the editing  
            screen.   
 
         9. Press ERASE to return the cursor to the editing screen. 
 
        10. Note the bullet-shaped control codes in the text, where you 
            placed them while in the command screen. 
 
    Often  it  is necessary to translate the codes provided in your printer 
    manual to other types of notation.  For example: If your  manual  shows 
    the control codes in decimal, but the printer driver requires the codes 
    to be converted to OCTAL,  you  need  a  conversion  chart.   Refer  to 
    Appendix  2-C,  page  2-38  for  a  decimal to octal to hex to to ASCII 
    conversion chart. 
     
    Remember  to  reboot  after  you create these code strings, so that the 
    system will recognize your printer drivers. 
 
    Leave the disk in the drive and go on to STEP 8, "Power Down." 
    *********************************************************************** 
 
    POWER DOWN                                                       STEP 8 
    ++++++++++                                                       ++++++ 
 
    Part of the operating system resides in memory at all times,  and  part 
    of  it  resides  on  the  disk.    Any alterations you have made to the 
    portion of the system that is being stored in memory  may  or  may  not 
    have  been  written to the disk.  Thus, whenever you are finished using 
    your computer, perform one of the following procedures to  insure  that 
    any  configuration changes you have made to the system are written back 
    to the disk: 
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-29 
    ===========         ==================                        ========= 
 
    POWER DOWN (Cont)                                                STEP 8 
    +++++++++++++++++                                                ++++++ 
 
    If  the  message "Install a Bootable disk in SY0: Hit RETURN to reboot' 
    is displayed on the terminal, such as occurs after running INIT, it  is 
    always  safe  to  remove the disk and turn off the power.  Be sure that 
    you remove all disks before turning off the A-C power, since disks left 
    in the drives during power-down may be magnetically damaged. 
 
    If the HDOS system prompt is displayed on the terminal: 
 
         (1) Type 'BYE<RTN>'. 
 
         (2) Remove all disks. 
         
         (3)  Turn  off the  A-C power to the  drives, computer, and  power 
    bar.   It  is a good practice to turn off the power to the drives first 
    before  turning  off  the  power  to  the  computer  to   avoid   drive 
    head-banging.   If you have a power bar, just leave the switches on the 
    computer and disk drives on and switch off the power bar. 
 
    *********************************************************************** 
    
                                    SUMMARY 
                                    +++++++ 
    You now have two bootable  disks.    Volume  1,  SYSTEM  VOLUME,  is  a 
    complete  copy of the distribution disk.  Volume 10, WORKING DISK, is a 
    subset of the SYSTEM VOLUME and contains the files necessary to operate 
    the system as well as BASIC. 
 
    You  will need to perform parts of the "System Set-Up Procedure" again. 
    All new disk must be initialized.  If you use H17 disks,  we  recommend 
    that  you  run the M (Media Check) option to TEST17.ABS, or equivalent. 
    This check will tell you whether there are any bad sectors on the disk. 
 
    Another  option is to use the utility "BAD.ABS," which may be purchased 
    separately from Kirk Thompson, since it is quicker and easier to use. 
 
    If there are any bad sectors, use INIT to instruct HDOS not to write to 
    any of the bad sectors.  Remember that even if the media check finds no 
    bad sectors, you must reinitialize the the disk upon which the test was 
    performed if you use the Media Check associated with TEST17.ABS 
     
    Since the SYSTEM VOLUME is a duplicate of the  DISTRIBUTION  disk,  you 
    can  substitute  your  SYSTEM  VOLUME  into any procedure that formerly 
    required the DISTRIBUTION disk.  A system volume does not have to be an 
    exact  copy of the distribution disk.  A system volume is simply a disk 
    that contains HDOS system files.  All disks that have been SYSGENed are 
    system  volumes.   In this sense the  WORKING DISK is actually a system 
    volume.  Only system volumes may be used to perform  Bootstrap,  so  if 
    you  have  a  one-drive system, you will probably want to SYSGEN all of 
    your disks. 
 
    To  create several SYSTEM VOLUMES each with a specific system resource, 
    such as EDIT, DBUG, ASM, or BASIC: 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-30 
    ===========         ==================                        ========= 
 
    SUMMARY (Cont)                                                   STEP 7 
    ++++++++++++++                                                   ++++++ 
 
         (1) Perform Bootstrap using your new SYSTEM VOLUME. 
 
         (2)  Initialize the blank disk.  Name it anything you like, but it 
    is a good practice to name your disks according to  their  function  so 
    you  can distinguish among them.  Note that each volume name and number 
    should be unique -- that is, you should avoid assigning the same volume 
    number or disk label to two different disks. 
 
         (3) Run SYSGEN.  The SYSTEM VOLUME is the  source  and  the  blank 
    disk is the destination. 
 
         (4) Run ONECOPY if you have a single drive computer system, or PIP 
    if   you  have  a  multiple  drive  system.   See  Chapter  3,  "System 
    Optimization" for more information about ONECOPY and PIP.   Instead  of 
    specifying  *.*  after  the  OC:  or P: prompt, specify the name of the 
    individual file or files that you want to be copied to your new volume. 
     
         (5) Run SET, using the same commands you used in the preceding SET 
    section. 
 
         (6) Perform the Power-Down procedure. 
 
    If you are using 5-1/4 inch drives as your  primary  boot  drives,  you 
    will  need  to  use  either PIP or ONECOPY to transfer system utilities 
    such as ASM, DBUG, and EDIT from your SOFTWARE TOOLS disk.  The use  of 
    both PIP and ONECOPY is documented in Chapter 3. 
 
    If  you  have  a multiple disk drive system, the COPY command will copy 
    either single files or multiple files most handily.  One  neat  utility 
    program  that is furnished with the HDOS 3.02 Operating System programs 
    is called "MegaPip," or "MP.ABS." 
     
    In addition,  certain well-respected vendors have  programs  that  will 
    also  copy  files.   For  instance,  T & E Associates provide two disks 
    called "HDOS Enhancements."  These disks include the files: DM.ABS  and 
    FM.ABS.   These  programs enable one to easily copy files singly or the 
    entire  disk,  while  verifying  the  copies.   These   programs   were 
    originally  designed  for HDOS 2.0, but they  work fine in the HDOS 3.0 
    environment.  The address for T &  E  Associates  is:  P.O.   Box  352, 
    Millersville, MD 21108, phone: (301) 987-4748. 
 
    You  will  probably  want to proceed from here directly to the HDOS 3.0 
    Manual, Chapter 3.  At some point  you  will  want  to  scan  the  data 
    provided  in the appendixes for chapters 1, 2, and 3.  This information 
    will come in handy when you  start working HDOS 3.0 in earnest.   Refer 
    back  to Chapter 2, "General Operations" for details on INIT and SYSGEN 
    as required. 
    *********************************************************************** 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-31 
    ===========         ==================                        ========= 
 
                       APPENDIX 2-A: BOOTING TECHNIQUES 
                       ++++++++++++++++++++++++++++++++ 
 
    DETAILS CONCERNING BOOTING: 
 
    ASSUMPTION:  These  instructions  assume  that you have a multiple disk 
    drive computer system with three  disk  drives  connected  to  the  H37 
    soft-sector  controller and two drives connected to the H17 hard-sector 
    controller.  Even if you  have  fewer  drives  than  that,  or  have  a 
    different  type  of  controller  such as the H47  as long as you have a 
    minimum of two drives connected  to  each  type  of  controller,  these 
 
    instructions  will  work.  If your system is different from that shown, 
    you will have to modify the instructions to fit your system. 
 
    (1) Decide which type of drive that you want to use the most: H17, H37, 
    or H47, hard or soft-sectored.  Due to considerations of speed and disk 
    storage capacity, most people choose to make  either  the  H37  or  H47 
    types  their primary boot drives.  Remember:  primary drives are always 
    drives located on the SYn: drive chain.  Secondary  drives  are  always 
    located on the DKn: drive chain. 
 
        (A) If you desire to use the hard sector  drives  as  primary  boot 
    drives, ignore step (1) or whatever doesn't apply to your system. 
 
        (B) If you desire to use  the  H37 or H47 drives  as  primary  boot 
    drives,  you  must  make  one simple, power off, hardware adjustment to 
    your CPU board.  The following instructions apply if you  are  using  a 
    MTR-90  Monitor  ROM,  Heath  part  number  444-142, 444-41, or 444-83. 
    (Also some non-Heath Monitor ROMs such as the Kres KMR-100.) 
 
               (a) With  A-C power  shut off and the line cord disconnected 
    from the wall socket, open your computer top cover.  Disconnect the fan 
    cable and remove the top cover.  DIP Switch SW501  is  located  on  the 
    lower  right  of  the  H89/Z90  CPU  card.  The switch is marked with a 
    legend printed on the board.  Be sure you identify the correct switch. 
 
                (b) Instruct your computer to designate the  H37  drives as 
    primary by insuring that all seven of the little switches on DIP Switch 
    SW501 are set to 0 (zero).  Similarly, if you want to designate the H47 
    as  primary  drives,  set DIP Switch SW501 to the following: PIN 1 = 1, 
    PIN 3 = 1.  All other pins are set to zero.  This  is  easily  done  by 
    using  the  eraser  end  of  a long wooden pencil to perform any switch 
    changes that are required.  The one and zero positions  are  marked  on 
    the part. 
 
                (c) Step (b) will insure that the high capacity drives will 
    function  as  the primary booters and that the H17 drives will function 
    as  the secondary booters, provided that the drives have been correctly 
    physically designated.   You  may  have  to  redesignate  them  now  by 
    adjusting the programming plug on the disk drive. 
 
    NOTE: To physically designate a drive means  to  disconnect  the  drive 
    from  your  computer  system  and  adjust  the  programming plug to the 
    appropriate settings.  For details on how to program drives,  refer  to 
    Appendix 2B, page 2-35. 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-32 
    ===========         ==================                        ========= 
 
                    APPENDIX 2-A: BOOTING TECHNIQUES (Cont) 
                    +++++++++++++++++++++++++++++++++++++++ 
 
    If the configuration of your computer system at  first  designated  the 
    SYn: chain of drives as "hard sector," and the drives were single-sided 
    400-sector types, you will have  to  gain  access  to  the  drives  and 
    manually  reset the programming plugs to change them to be either DK0:, 
    DK1:, or DK2.  Likewise, your soft sector, double-sided drives must  be 
    set to SY0:, SY1, and SY2 in a like manner. 
 
    (2) Normally  you boot the drive that has been configured as SY0:.  The 
    first command given to the computer when at  the  monitor  ROM  prompt, 
    usually the "H:" prompt is: 
 
                               'B<RTN>' 
 
    It is also possible to boot from the second or third primary drive.  In 
    the  case  of  booting  from  drives  other  than  the drive physically 
    programmed to be SY0:, the command is: 
 
    For Booting SY1: 'B1<RTN>'         For Booting SY2: 'B2<RTN>' 
 
    (3) If you want to boot from the secondary drives,  assuming  that  you 
    would like to boot from hardware configured drive DK0: or DK1:, respec- 
    tively, the commands are: 
 
    For Booting DK0: ';SD<RTN>'         For Booting DK1: ';SD1<RTN>'    etc. 
 
 
    BOOTING THEORY 
    ============== 
 
    If  you have an H89 computer with two or more drives, and are using one 
    of the following combinations: H17 + H37, H17  +  H47,  or  H37  +  H47 
    drives,  when you boot from a drive other than the one designated SY0:, 
    all the drives change their names.  In order to operate  the  computer, 
    you have to be able to predict what the new name will be for each drive 
    that you have.  The following data is presented in the form  of  charts 
    which show this information presented in an easy-to-read fashion. 
 
    It  is  important to note that whatever drive you boot from, whether it 
    be H17, H37, or H47, that drive and others connected to the  same  disk 
    controller become SY0:....  SYn:, and the drives connected to the other 
    disk controller become DK0:....  DKn:. 
 
    The alternate device, DKn:, always has a logical number the same as the 
    physical  drive  number.    DK0:  is the drive physically designated as 
    hardware unit 0 (zero), DK1: is  the  drive  physically  designated  as 
    hardware  unit  1 (one), etc.  The primary drive logical numbers rotate 
    among all the possible unit numbers, whether or not  a  disk  drive  is 
    physically  connected.    Note  in  the tables shown below, the logical 
    drive names rotate as you boot from physical units 0, 1, 2, or 3. 
 
    The  system  shown is composed of both H17 and H37 drives.  Drives SY0: 
    through SY2: are H17, hard-sector.  Drives DK0: through DK2:  are  H37, 
    soft-sector. 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-33 
    ===========         ==================                        ========= 
 
                    APPENDIX 2-A: BOOTING TECHNIQUES (Cont) 
                    +++++++++++++++++++++++++++++++++++++++ 
 
 
                  BOOT MAP: COMBINATION OF H17 AND H37 DRIVES 
 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |   BOOT   |  H17  |  H17  |  H17  |  H37  |  H37  |  H37   |  H37  | 
     |   DRIVE  |  #0   |  #1   |  #2   |  #0   |  #1   |  #2    |  #3   | 
     +===================================================================+ 
     |  H17 (0) |  SY0: |  SY1: |  SY2: |  DK0: |  DK1: |  DK2:  |  DK3: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |  H17 (1) |  SY2: |  SY0: |  SY1: |  DK0: |  DK1: |  DK2:  |  DK3: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |  H17 (2) |  SY1: |  SY2: |  SY0: |  DK0: |  DK1: |  DK2:  |  DK3: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |  H37 (0) |  DK0: |  DK1: |  DK2: |  SY0: |  SY1: |  SY2:  |  SY3: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |  H37 (1) |  DK0: |  DK1: |  DK2: |  SY3: |  SY0: |  SY1:  |  SY2: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |  H37 (2) |  DK0: |  DK1: |  DK2: |  SY2: |  SY3: |  SY0:  |  SY1: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
     |  H37 (3) |  DK0: |  DK1: |  DK2: |  SY1: |  SY2: |  SY3:  |  SY0: | 
     +----------+-------+-------+-------+-------+-------+--------+-------+ 
 
 
                  BOOT MAP: COMBINATION OF H17 AND H47 DRIVES 
 
     +----------+---------+---------+---------+------------+------------+ 
     |   BOOT   |   H17   |   H17   |   H17   |     H47    |    H47     | 
     |   DRIVE  |   #0    |   #1    |   #2    |  #0 (LEFT) |  #1 (RIGHT)| 
     +==================================================================+ 
     |  H17 (0) |  SY0:   |  SY1:   |  SY2:   |    DK0:    |    DK0:    | 
     +----------+---------+---------+---------+------------+------------+ 
     |  H17 (1) |  SY2:   |  SY0:   |  SY1:   |    DK0:    |    DK1:    | 
     +----------+---------+---------+---------+------------+------------+ 
     |  H17 (2) |  SY1:   |  SY2:   |  SY0:   |    DK0:    |    DK1:    | 
     +----------+---------+---------+---------+------------+------------+ 
     |  H47 (0) |  DK0:   |  DK1:   |  DK2:   |    SY0:    |    SY1:    | 
     +----------+---------+---------+---------+------------+------------+ 
     |  H47 (1) |  DK0:   |  DK1:   |  DK2:   |    SY1:    |    SY0:    | 
     +----------+---------+---------+---------+------------+------------+ 
 
    HOW TO USE THE CHARTS 
    It  is  easy  to boot from the drive physically designated as SY0:, but 
    there may be times when you would like to boot from the drive  next  to 
    it  which  is  configured  as SY1:.  One good reason for this is if you 
    have a computer system composed of three H37 drives,  where  the  first 
    drive  is  a  40  track  drive,  and the second and third drives are 80 
    track.  If you want to produce a 40 track soft sectored disk, you  must 
    boot  from  one or the other of the 80 track drives.  In that case, the 
    logical drive names will change.  Another good reason is if one of your 
    drives, say, the drive normally used as SY0: should fail.  
 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-34 
    ===========         ==================                        ========= 
 
                    APPENDIX 2-A: BOOTING TECHNIQUES (Cont) 
                    +++++++++++++++++++++++++++++++++++++++ 
 
    To  use the charts provided, keep in mind the type of system  you  have 
    (i.e.,  H17  + H37 or H17 + H47), and then simply determine the type of 
    drive you wish to boot from.  With  that  data  available,  go  to  the 
    appropriate  table,  and  scan down the left hand column until you find 
    the type of drive you want to boot from and the number. 
 
    For example: you want to boot from an H37 drive physically jumpered  as 
    SY1:.  On the extreme left column, find the H37 (1).  Scan that line to 
    the right and find the  associated  drive  names  that  apply  to  your 
    system.    You  may have to study the tables carefully before the logic 
    pattern becomes apparent.  If you are still not certain, one sure-fire 
    test  is  to perform a "DIR" to the drives, first SY1:, then SY2:, etc. 
    The drive where the red light comes on bears the name you directed  the 
    DIR to. 
 
    Even if you only have two drives connected to the H37  controller,  the 
    mapping  stays  the  same.    If you have two H37s jumpered as physical 
    units 0 and 1, then boot from drive 0, everything will make sense:  the 
    drives will respond to SY0: and SY1:.  But if you boot from  the  drive 
    jumpered  as  physical  drive 1, the names change in an unexpected way. 
    The boot drive (physical unit 1) becomes logical  drive  SY0:  but  the 
    other  drive  (physical  unit  0)  becomes logical drive SY3:.  In this 
    case, one would reasonably think that the drive (physical unit 0) would 
    become  logical drive SY1:, but it doesn't.  Any call going out to SY1: 
    or SY2: will prove it.  To unlatch the lockup this causes,  type CTRL-Z  
    twice. 
 
    DEFINITIONS: 
    Physically jumpered or designated drives  are  drives  that  have  been 
    physically  set  to  operate  as  SY0: through SY3: and/or DK0: through 
    DK2:.  To physically jumper or designate a drive one  must  adjust  the 
    drive plug that resides on the logic card of the disk drive. 
 
    Logical drive names may be  completely  divorced  from  the  physically 
    jumpered  or  designated drive names.  A logical drive name is one that 
    HDOS requires when a program is being run.  Logical drive names  change 
    around without anything physical being done to them. 
    *********************************************************************** 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-35 
    ===========         ==================                        ========= 
 
                       APPENDIX 2-B: PROGRAMMING DRIVES 
                       ++++++++++++++++++++++++++++++++ 
 
    There are two different types of disk drives suitable for use with  the 
    H8, H89, and Z90 on the market today.  The older style is the full-size 
    drive, and the newer style is the  half-height  drive.    Although  the 
    drives are different in appearance, the general manner of designating a 
    drive is the same. 
 
    TERMINATING RESISTOR 
    The last drive on a chain must contain a terminating  resistor.    This 
    applies  whether  you  have  a  single drive system or a multiple drive 
    system.  This terminating resistor looks like a standard  microcircuit, 
    but  instead  of the conventional circuitry, it consists of a series of 
    resistors in a row.  These resistors are connected from one pin to  the 
    other  pin  across the body of the device.  Each drive is sold with its 
    own terminating resistor.  Therefore,  insure  that  the  correct  part 
    number of terminating resistor is installed.    CAUTION: Do not install 
    a terminating resistor in every drive!   
 
    FULL SIZE DRIVES: 
    Full size drives are manufactured by Tandon, Siemens, Control Data, and 
    a number of other manufacturers. 
 
    To set up a computer system, one must give each drive a different name. 
    These names are SY0: thru SY3: or DK0: thru DK2. 
 
    The means to designate a drive and make it different from  its  fellows 
    is  to  adjust the programming plug which is found on the logic card of 
    the drive assembly.    Look  for  an integrated  circuit  socket  which 
    contains  a  jumper block instead of a chip. 
 
    H37 SOFT SECTOR DRIVE PROGRAMMING: 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | NAME  |  HS   |  DS0: |  DS1: |  DS2: | DS3:  | MX  | BLANK |  HM   | 
    +=====================================================================+ 
    | SY0:  |(SHORT)|(SHORT)| OPEN  | OPEN  | OPEN  |OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | SY1:  |(SHORT)| OPEN  |(SHORT)| OPEN  | OPEN  |OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | SY2:  |(SHORT)| OPEN  | OPEN  |(SHORT)| OPEN  |OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | SY3:  |(SHORT)| OPEN  | OPEN  | OPEN  |(SHORT)|OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
 
    H17 HARD SECTOR DRIVE PROGRAMMING: 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | NAME  |  HS   |  DS0: |  DS1: |  DS2: | DS3:  | MX  | BLANK |  H#   | 
    +=====================================================================+ 
    | DK0:  |(SHORT)| OPEN  | OPEN  |(SHORT)| OPEN  |OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | DK1:  |(SHORT)| OPEN  |(SHORT)| OPEN  | OPEN  |OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
    | DK2:  |(SHORT)|(SHORT)| OPEN  | OPEN  | OPEN  |OPEN | OPEN  | OPEN  | 
    +-------+-------+-------+-------+-------+-------+-----+-------+-------+ 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-36 
    ===========         ==================                        ========= 
 
                    APPENDIX 2-B: PROGRAMMING DRIVES (Cont) 
                    +++++++++++++++++++++++++++++++++++++++ 
 
    Blank  jumper  blocks may be purchased from Quikdata Computer Services, 
    Inc., 2618 Penn Circle, Sheboygan, WS 53081.  T0 program a given  drive 
    first determine whether you want to designate a soft sector drive (H37) 
    or a hard sector drive (H17).  Consult the proper  table  and  look  at 
    your drive logic circuit card.  Notice the information printed near the 
    drive jumper block socket.  Orient your jumper block to match the  data 
    on  the  circuit  card  and make your jumper block like the information 
    shown on the table.  When you  are  done,  there  should  be  only  two 
    different circuits shorted.  All the others should be open. 
 
    HALF-HEIGHT DRIVES: 
    A so-called half-height drive is a drive that is nearly half the  width 
    of  the standard full size drives.  It is called half-height because on 
    the newer computers it is mounted on its side and from  that  angle  it 
    lives up to its description, "half-height." 
 
    Similar to the full size drives, the half-height drives have a program- 
    ming  jumper  block  on  the  logic  circuit card.  However, instead of 
    having a microcircuit socket that a programming plug fits  into,  these 
    type  of  drives  have  a series of paired pins that stick out from the 
    card in a row.  Similar nomenclature is printed  on  the  circuit  card 
    near  the set of jumpers.  The object is to fit the tiny shorting piece 
    over the pin so as to short the pins.  Only one jumper bar need be set. 
 
    Some drives may have two sets of these paired pins.  Look for  the  set 
    that  has the following type of data printed next to it:  HS, DS0, DS1, 
    DS2, DS3, MX, BLANK, and HM.  This set is usually positioned toward the 
    rear of the card. 
 
    Unfortunately, the method of having the set of programming set of  pins 
    is  not  standard.   There seems to be two different methods that drive 
    manufacturers use.  One type is to call their pins: DS1, DS2, DS3,  and 
    DS4.    The  other  type is to call their pins: DS0, DS1, DS2, and DS4. 
    Some drives only offer only three possible pins: DS0, DS1, and  DS2  or 
    DS1,  DS2, and DS3.  Before you purchase a new drive, check to see that 
    there are four sets of programming pins  so  that  you  can  have  four 
    drives on the H37 soft sector controller if you desire. 
 
 
    Visually inspect the logic circuit card and check for printed legends. 
 
    For example, if the data printed on the circuit  card  says  DS1,  DS2, 
    DS3, DS4, fit the second shorting bar as follows: 
 
     +---------------------------------+---------------------------------+ 
     |PROGRAMMING FOR SOFT SECTOR (H37)|PROGRAMMING FOR HARD SECTOR (H17)| 
     |===================================================================| 
     |  SY0: ==============> DS1       |   DK0: ===============> DS3     | 
     |  SY1: ==============> DS2       |   DK1: ===============> DS2     | 
     |  SY2: ==============> DS3       |   DK2: ===============> DS1     | 
     |  SY3: ==============> DS4       |                                 | 
     + --------------------------------+---------------------------------+ 
 



    CHAPTER TWO         GENERAL OPERATIONS                        PAGE 2-37 
    ===========         ==================                        ========= 
 
                    APPENDIX 2-B: PROGRAMMING DRIVES (Cont) 
                    +++++++++++++++++++++++++++++++++++++++ 
 
 
    For  example,  if  the data printed on the circuit card says: DS0, DS1, 
    DS2, DS3, fit the second shorting bar as follows: 
 
     +---------------------------------+---------------------------------+ 
     |PROGRAMMING FOR SOFT SECTOR (H37)|PROGRAMMING FOR HARD SECTOR (H17)| 
     |===================================================================| 
     |    SY0: ==============> DS0     |    DK0: ===============> DS2    | 
     |    SY1: ==============> DS1     |    DK1: ===============> DS1    | 
     |    SY2: ==============> DS2     |    DK2: ===============> DS0    | 
     |    SY3: ==============> DS3     |                                 | 
     +---------------------------------+---------------------------------+ 



    CHAPTER TWO            GENERAL OPERATIONS                    PAGE 2-38 
    ===========            ==================                    ========= 
 
                                 APPENDIX 2-C 
                  DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION 
                  +++++++++++++++++++++++++++++++++++++++++++ 
 
    DECIMAL OCTAL  HEX   ASCII  CTRL-n      DECIMAL OCTAL  HEX   ASCII 
 
      0     000    00    NUL    CTRL-@      48      060    30    0 
      1     001    01    SOH    CTRL-A      49      061    31    1 
      2     002    02    STX    CTRL-B      50      062    32    2 
      3     003    03    ETX    CTRL-C      51      063    33    3 
      4     004    04    EOT    CTRL-D      52      064    34    4 
      5     005    05    ENQ    CTRL-E      53      065    35    5 
      6     006    06    ACK    CTRL-F      54      066    36    6 
      7     007    07    BEL    CTRL-G      55      067    37    7 
      8     010    08    BS     CTRL-H      56      070    38    8 
      9     011    09    HT     CTRL-I      57      071    39    9 
     10     012    0A    LF     CTRL-J      58      072    3A    : 
     11     013    0B    VT     CTRL-K      59      073    3B    ; 
     12     014    0C    FF     CTRL-L      60      074    3C    < 
     13     015    0D    CR     CTRL-M      61      075    3D    = 
     14     016    0E    SO     CTRL-N      62      076    3E    > 
     15     017    0F    SI     CTRL-O      63      077    3F    ? 
     16     020    10    DLE    CTRL-P      64      100    40    @ 
     17     021    11    DC1    CTRL-Q      65      101    41    A 
     18     022    12    DC2    CTRL-R      66      102    42    B 
     19     023    13    DC3    CTRL-S      67      103    43    C 
     20     024    14    DC4    CTRL-T      68      104    44    D 
     21     025    15    NAK    CTRL-U      69      105    45    E 
     22     026    16    SYN    CTRL-V      70      106    46    F 
     23     027    17    ETB    CTRL-W      71      107    47    G 
     24     030    18    CAN    CTRL-X      72      110    48    H 
     25     031    19    EM     CTRL-Y      73      111    49    I 
     26     032    1A    SUB    CTRL-Z      74      112    4A    J 
     27     033    1B    ESC    CTRL-[      75      113    4B    K 
     28     034    1C    FS     CTRL-\      76      114    4C    L 
     29     035    1D    GS     CTRL-]      77      115    4D    M 
     30     036    1E    RS     CTRL-^      78      116    4E    N 
     31     037    1F    US     NOTE 1      79      117    4F    O 
     32     040    20    SP                 80      120    50    P 
     33     041    21    !                  81      121    51    Q 
     34     042    22    "                  82      122    52    R 
     35     043    23    #                  83      123    53    S 
     36     044    24    $                  84      124    54    T 
     37     045    25    %                  85      125    56    U 
     38     046    26    &                  86      126    56    V 
     39     047    27    '                  87      127    57    W 
     40     050    28    (                  88      130    58    X 
     41     051    29    )                  89      131    59    Y 
     42     052    2A    *                  90      132    5A    Z 
     43     053    2B    +                  91      133    5B    [ 
     44     054    2C    ,                  92      134    5C    \ 
     45     055    2D    -                  93      135    5D    ] 
     46     056    2E    .                  94      136    5E    ^ 
     47     057    2F    /                  95      137    5F    _ 
 
 



    CHAPTER TWO         GENERAL OPERATIONS                       PAGE 2-39 
    ===========         ==================                       ========= 
 
                                 APPENDIX 2-C 
              DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION (Cont) 
              ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    DECIMAL    OCTAL    HEX    ASCII      DECIMAL    OCTAL    HEX    ASCII 
 
     96        140      60     `         112         160      70     p 
     97        141      61     a         113         161      71     q 
     98        142      62     b         114         162      72     r 
     99        143      63     c         115         163      73     s 
    100        144      64     d         116         164      74     t 
    101        145      65     e         117         165      75     u 
    102        146      66     f         118         164      76     v 
    103        147      67     g         119         167      77     w 
    104        150      68     h         120         170      78     x 
    105        151      69     i         121         171      79     y 
    106        152      6A     j         122         172      7A     z 
    107        153      6B     k         123         173      7B     { 
    108        154      6C     l         124         174      7C     | 
    109        155      6D     m         125         175      7D     } 
    110        156      6E     n         126         176      7E     ~ 
    111        157      6F     o         127 NOTE 2  177      7F     DEL 
 
 
    NOTE 1: DECIMAL 31:  CTRL-SHIFT-HYPHEN 
    NOTE 2: DECIMAL 127: DELETE KEY 
    *********************************************************************** 
 
 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                   CHAPTER 3 
 
                              SYSTEM OPTIMIZATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-i 
    =============       ===================                        ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  The revision 3.0 is  detailed 
    in  chapters  1,  2,  and 3, while chapters 4 through 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    Chapter  3,  System  Optimization, describes the most efficient ways to 
    perform the basic functions of the HDOS 3.02 Computer System. 
 
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  #6 West Branch Mobile Home Village, West Branch, IA 
    52358. 
 
 
     
 
 
 
 
 
 
     
     
     



     
    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-1 
    =============       ===================                        ======== 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
           INTRODUCTION .................................... 3-2 
 
           BOOTSTRAP ....................................... 3-2 
             Bootstrap Options ............................. 3-5 
 
           INITIALIZATION (INIT) ........................... 3-6 
             Init Options .................................. 3-7 
               The Standard Method ......................... 3-8 
               The Shortcut Method ......................... 3-8 
      
           SYSGEN ......................................... 3-10 
             Sysgen Options ............................... 3-10 
               The Most Efficient Way ..................... 3-11 
               Copy All Files ............................. 3-11 
 
           ONECOPY ........................................ 3-12 
             Onecopy Options .............................. 3-14 
 
           PIP NOTES ...................................... 3-14 
 
           CONCATENATION .................................. 3-15 
 
           WILDCARDS ...................................... 3-15 
             Option 1 ..................................... 3-16 
             Option 2 ..................................... 3-18 
 
           SET, SYSTEM OPTIMIZATION ....................... 3-19 
             Notes on HDOS Stand-Alone .................... 3-19 
 
           PERIPHERALS .................................... 3-25 
 
           PATCH .......................................... 3-30 
 
           NON-ESSENTIAL FILES ............................ 3-31 
 
           SUMMARY ........................................ 3-32 
 
           APPENDIX 3-A 
             Error Messages ............................... 3-33 
 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-2 
    =============       ===================                        ======== 
 
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    The purpose of this chapter is to show you easier methods to accomplish 
    some standard tasks in HDOS 3.02 and also provide additional detail not 
    available anywhere else in the manual. 
    *********************************************************************** 
 
    UTILITY OPTIMIZATION           BOOTSTRAP 
    ++++++++++++++++++++           +++++++++ 
 
    The Bootstrap procedure is normally performed from the drive  that  has 
    been  hardware  configured  as primary drive 0 (SY0:).  Only disks that 
    have been SYSGENed (system volumes)  are  bootable  disks.    The  term 
    "Bootstrap"  describes  the process by which a series of small programs 
    lifts the operating system off of the  disk  and  into  the  computer's 
    memory.  This process is described in the following paragraphs. 
 
    Turning on the A-C power to your computer activates a Read-Only  Memory 
    (ROM)  chip  on  the  CPU  board,  which  contains a program called the 
    "Monitor ROM Bootstrap Program."  If you have an H89, this  ROM  prints 
    "H:"  at the upper left hand corner of the console terminal screen.  If 
    you have an H8, the Monitor ROM lights the  LEDs  on  the  front  panel 
    monitor.  The ROM then awaits input. 
 
    The  valid  Bootstrap  inputs  vary  according  to  which  ROM you have 
    installed in your computer and what kind of  computer  you  are  using. 
    Regardless  of  what  you  enter  and  how, whether 'B<RTN>' at the H89 
    terminal or '1' on the H8 front panel LEDs, or 'RST/0' and 'GO' on  the 
    H8,  the Monitor ROM interprets your input as an instruction to jump to 
    the starting address of the controller Bootstrap ROM. 
 
    Having assumed control, the disk controller  Bootstrap  ROM  moves  the 
    disk read-write head into a position where it can access the first nine 
    sectors of the disk.  The read-write head accesses the  disk  and  then 
    reads  in  a program in the first nine sectors off of the disk and into 
    memory.  These nine sectors are the  "disk  Bootstrap  sectors,"  which 
    means  that  these sectors contain a program which is capable of moving 
    HDOS off of the disk and into the computer's memory.  How  the  loading 
    of  these sectors into memory is accomplished depends upon what type of 
    device you are using to perform Bootstrap. 
 
    In the case of the H47 (8-inch disk), or the H37 (5-1/4 inch disk), the 
    Bootstrap  ROM  loads  the first two of these nine sectors into memory. 
    The first two bootstrap sectors contain a disk driver which enables the 
    Bootstrap ROM to find the other seven sectors.  The other seven sectors 
    contain the disk Bootstrap program itself.  The two sectors that are in 
    memory  then  cause  the  Bootstrap ROM to read the other seven sectors 
    into memory. 
 
    In the case of the H17 (hard sector disk) all  nine  bootstrap  sectors 
    are  read  into memory at once, as the disk driver program is contained 
    within the H17 Bootstrap ROM.  The first two sectors of  a  5-1/4  inch 
    disk are "dummied."  The other seven bootstrap sectors contain the same 
    loading program as their counterparts on an 8-inch disk. 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-3 
    =============       ===================                        ======== 
 
                                BOOTSTRAP (Cont) 
                                ++++++++++++++++ 
 
    The program contained in the nine bootstrap sectors which  are  now  in 
    memory  assumes  control  from  the  Bootstrap  ROM, and determines the 
    address of the console terminal.  The system then checks  the  disk  to 
    see  if  the  terminal baud rate is written there.  If the baud rate of 
    the terminal has been stored on disk as a result of a previous boot-up, 
    the  system  proceeds.  If the system cannot find a baud rate stored on 
    the disk, it waits for you to press the  space  bar,  so  that  it  can 
    determine  the  baud  rate.    The  number  of  spaces HDOS requires to 
    determine the baud rate will vary.  Terminals which  transmit  at  9600 
    baud  should require three or four spaces.  Terminals which transmit at 
    a less frequently used baud rate, such as 110,  may  require  that  you 
    type six spaces. 
 
    Having  determined the port address and baud rate of your terminal, the 
    system displays on the terminal, the message: 
 
    "Boot?" 
 
    If  you  do  not  receive this message, repeat the Bootstrap procedure. 
    Make sure you are using a disk that  contains  the  HDOS  system  files 
    (i.e.,  the  distribution  disk  or  a  copy  of  it).   Also, check to 
    ascertain whether you have  correctly  installed  the  disk  controller 
    board  and  interconnecting  cable.   If  your  H8 is interfaced to the 
    terminal by means of an H8-4 card, check the cabling between  the  card 
    and  your  terminal.   If your hardware has been properly installed and 
    you still cannot get the system to boot up, refer to the  "In  Case  of 
    Difficulty" section of the appropriate hardware manual. 
 
    If you type 'B' or <RTN> after the "Boot?"  message, the nine bootstrap 
    sectors load the file called HDOS30.SYS  into  memory.   HDOS30.SYS  is 
    composed  of  two parts: one part is always resident in memory whenever 
    the operating system is running, and the other part is "one-time" code, 
    which is used only when the system is being booted up.  If there are no 
    errors in reading HDOS30.SYS into memory, the bootstrap  sectors  begin 
    to  execute  the  one  time  code portion of HDOS30.SYS.  The bootstrap 
    sectors then transfer the terminal baud  rate  and  terminal  interface 
    type on to the permanently resident portion of HDOS30.SYS.  The work of 
    the  bootstrap sectors is now complete, and the one-time  code  assumes 
    control.   First,  this code determines how much memory is installed in 
    your computer.  The one-time code then moves the  permanently  resident 
    portion  of HDOS30.SYS into the upper 3k of RAM.  Having done this, the 
    one-time code prints: 
 
    "System Has 64K of RAM"   (NOTE: HDOS 3.0 is Org-zero.) 
 
    "HDOS 3.0 
    Issue # 50.07.00" 
 
    The  one-time code now scans the disk directory for file entries of the 
    form XX.DVD.  These .DVD files are device driver files, which HDOS uses 
    to  communicate  with  the peripheral devices in your system, including 
    the disk drives. 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-4 
    =============       ===================                        ======== 
 
                               BOOTSTRAP (Cont) 
                               ++++++++++++++++ 
 
    Based  upon  information  it finds in the .DVD files, the one time code 
    builds a device table, which lists the characteristics of each  device. 
    These  characteristics  include  such  information  as  whether a given 
    device is capable of transmitting data, whether the device  is  capable 
    of   receiving   data,  or  whether  the  device  is  capable  of  both 
    transmitting and receiving data.  After building the device table,  the 
    one time code checks both memory and the disk for a date, provided that 
    the SET HDOS NO-DATE option has  not  been  implemented  (see  the  SET 
    section  of  Chapter 2 for details).  If there is a date both in memory 
    and on the disk, the one time code substitutes the date in memory  into 
    the  (DD-  MMM-YY)  format  of  the  date  message.  If a date has been 
    recorded on the disk only, then the one time code substitutes that date 
    into  the (DD- MMM-YY) format of the date message.  If there is no date 
    recorded either in memory or on the disk, the one time code prints: 
     
    "Date (dd-mmm-yy)?"                           
 
    Since  you are using HDOS 3.0 or later, the date entry is much simpler. 
    First, if you boot up on HDOS 3.0 or later, on the same  day,  and  you 
    have  already supplied the date information, the question will not even 
    be asked.  If you are booting a day or so later and you  are  still  in 
    the  same month and year, all you have to supply is the day, and then a 
    <RTN>.  If you enter a new month, you will have to supply the  day  and 
    the month. 
 
    After you have entered a date, or simply typed <RTN>, the one time code 
    stores the date data in memory. 
 
    After storing the date, the one time code mounts the disk in SY0:,  and 
    then prints: 
 
    "Volume nnn, Mounted on SY0: 
    Label:  System Volume" 
 
    If either the date or terminal baud rate in memory is not the  same  as 
    the  date  or  terminal baud rate on disk, the one-time code writes the 
    baud rate and date that are in memory to the disk, unless the disk that 
    is  being  booted  is  write-protected.   Thus, each disk that has been 
    booted at least once, and which is not write-protected has  a  terminal 
    baud  rate  and  date written on it.  The effect of this is that you do 
    not need to type spaces when you are booting  a  disk  which  you  have 
    previously  used  to  boot  up  the system, unless you have altered the 
    terminal baud rate since you last booted that disk.  In  the  same  way 
    you  never really need to enter a date unless you want catalog listings 
    of the contents of that disk to accurately reflect the  date  on  which 
    each file was created. 
 
    Since the one-time code cannot write the date and baud rate onto  write 
    protected disks such as the distribution disk,  you  must  always  type 
    spaces  when  you  boot  from  a  write-protected  disk.  The date that 
    appears when you boot a write-protected disk is  the  date  such  disks 
    were created. 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-5 
    =============       ===================                        ======== 
 
                               BOOTSTRAP (Cont) 
                               ++++++++++++++++ 
 
    The  final  function  of  the  one-time  code is to turn control of the 
    system over to a file called  SYSCMD.SYS.   SYSCMD.SYS  is  the  system 
    command  processor  which  processes  all your commands and invokes sub 
    programs, such as INIT, as needed  to  execute  your  commands.  It  is 
    SYSCMD.SYS  that  displays the HDOS prompt.  This prompt indicates that 
    HDOS is in the command mode and awaits your instructions. 
    *********************************************************************** 
 
                               BOOTSTRAP OPTIONS 
                               +++++++++++++++++ 
 
    As  we  mentioned  earlier, HDOS records the TLB (Terminal Logic Board) 
    baud rate on the disk.  If you boot using a terminal  whose  baud  rate 
    does  not  match the TLB baud rate stored on the disk, you will receive 
    binary garbage, or nothing at all, instead of the "Boot?"  message.  If 
    this happens, hit the terminal 'BREAK' key and then press the space bar 
    a few times.  HDOS will determine the new baud rate and print "Boot?." 
      
    Whenever the message "Boot?"  is displayed on the screen, you have four 
    options. 
     
         (1) First, if you type "H," or any character except "I," or "B," 
    or <RTN>, the system will print: 
 
               "LEGAL COMMANDS: 
                BOOT - BOOT HDOS 
                HELP - PRINT THIS LIST" 
 
               "Boot?" 
                    
         (2) Second, if you type "I," the system will ignore prologues. 
 
         (3)  The third option is to do absolutely nothing.  HDOS will wait 
    several seconds for some response to the  "Boot?"   message,  and  will 
    then boot itself up to the "DATE (DD-MMM-YY)?"  prompt, if applicable. 
 
         (4)  The  forth option is normal boot-up.  You can boot the system 
    from the "Boot?"  message by typing either a '<RTN>' or the letter 'B'. 
    *********************************************************************** 
             
 
                                                     
                                                     
 
                                                                            
                                                                            
                                                                            
                                      
 
                                                                            
                                                                            
                                                                            
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-6 
    =============       ===================                        ======== 
 
 
                             INITIALIZATION (INIT) 
                             +++++++++++++++++++++ 
 
    INIT  is  a  program  designed  to prepare HDOS disks for data storage. 
    INIT is a stand-alone utility.  This means that HDOS  writes  the  INIT 
    program  into  a  memory  buffer,  and  then  runs  the program without 
    accessing the disk which contains the utility. 
 
    When  you  type  INIT<RTN>,  HDOS  loads  INIT  into  a  memory buffer, 
    dismounts all disk(s), and then passes  control  to  INIT.   INIT  then 
    scans the HDOS device table for the disk drive device driver entries. 
 
    Having found these, INIT checks the end of the disk  driver  files  for 
    INIT parameters.  These parameters are assembly language routines which 
    initialize the disk surface, among other things.  INIT then  loads  the 
    drivers  and parameters into memory, ignoring any device driver entries 
    which lack INIT parameters, and continues by printing the message: 
 
    "Device <SYO:>?" 
 
    After you have entered a destination device name and inserted  a  disk, 
    INIT  tries  to  read  the  volume  name, which is located on the tenth 
    sector of the first track.  If it finds a volume name, it prints it. If 
    it does not find a volume name, INIT assumes that the disk has not been 
    previously initialized.  INIT then asks  whether  you  really  want  to 
    initialize  the  disk.   If you type NO, INIT exits to the HDOS Command 
    Mode Level.  If you type YES, INIT asks for a volume number and  label, 
    which it stores in memory. 
 
    After you have entered a volume name  and  number,  the  initialization 
    process  begins.    INIT  erases  the  information  on the first track, 
    formats the track into ten 256-byte sectors, and then proceeds  to  the 
    next  track, repeating this procedure until all tracks have been erased 
    and formatted.  INIT then writes nine Bootstrap sectors onto the  first 
    track  of the disk.  It retrieves the volume name and serial number you 
    entered from memory, and writes this data to the tenth  sector  of  the 
    first track. 
 
    INIT now asks for the numbers of bad sectors.  As you enter the  sector 
    numbers,  if applicable, INIT builds a map that indicates where the bad 
    sectors are and then writes this map to the disk.  INIT then  finds  20 
    consecutive  sectors  and uses 18 of these to write the DIRECT.SYS file 
    to the disk.  DIRECT.SYS is a file that contains  the  directory  which 
    HDOS  uses to locate files.   
 
    INIT  uses  the other two sectors to store a file called GRT.SYS, which 
    HDOS uses to determine which sectors on the disk are  not  being  used. 
    After  transferring DIRECT.SYS and GRT.SYS to the disk, INIT prints the 
    message "Disk Initialization Complete." 
 
    Since  HDOS uses DIRECT.SYS and GRT.SYS to locate and store your files, 
    and since DIRECT.SYS and GRT.SYS are transferred only by means  of  the 
    INIT  program,  you  must initialize all new disks and disks which have 
    been run through the TEST17, TEST37, or TEST47 procedures. 
    *********************************************************************** 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-7 
    =============       ===================                        ======== 
 
 
                                 INIT OPTIONS 
                                 ++++++++++++ 
 
    To run INIT, perform Bootstrap from SY0:, using a distribution disk  or 
    a system volume which contains the INIT program.  You can run INIT from 
    the HDOS prompt, in either of two ways: 
 
 
    The Standard Method: 
    -------------------- 
 
    NOTE:  Within  the  following  paragraphs,  computer  dialogue  will be 
    enclosed by quotation marks.  The responses of  the  operator  will  be 
    enclosed by apostrophe marks. 
 
         (1)  If  you  simply  type 'INIT<RTN>', the  program will describe 
    itself, and ask if you really want to proceed.  If you  type  YES<RTN>, 
    the  program  will  dismount  the  disk(s)  and  continue.  If you type 
    NO<RTN> or simply <RTN>, you will return to the beginning of Bootstrap. 
    If  you  have typed YES, it will ask which drive you want to use as the 
    destination device.  
 
    The screen will display: 
 
    "Device: <SY0:>?" 
 
    If you have only one drive in your system, type <RTN>  at  this  point. 
    This  will cause SY0: to be used as the destination drive.  If you have 
    a multiple drive system, you can type the name of  one  of  your  other 
    drives.  For example: 
 
    "Device: <SY0:>?" 
 
    'SY1:<RTN>' 
 
    In this example, the operator instructed INIT to use drive SY1: as  the 
    destination drive.  The source drive for INIT is always SY0:. 
 
 
    The Shortcut Method: 
    -------------------- 
         (2) The second method of running INIT is to type INIT and then the 
    name of the disk drive you want to use as the destination  drive.   For 
    example: 
 
    'INIT SY1:<RTN>' 
 
    The effect of this example is to run INIT as usual, except  that  after 
    dismounting  the disks, INIT will proceed to instruct you to insert the 
    volume you wish to initialize.   Using  this  method  of  running  INIT 
    eliminates the need to wait for INIT to print the description of itself 
    and the message asking whether you really want to proceed.    Moreover, 
    since  in using this method you have already told INIT which disk drive 
    you want to be the destination drive, INIT  doesn't need to  print  the 
    "Device <SY0:>?" message. 



    CHAPTER THREE       SYSTEM OPTIMIZATION                        PAGE 3-8 
    =============       ===================                        ======== 
 
 
                              INIT OPTIONS (Cont) 
                              +++++++++++++++++++ 
 
    Having determined which drive is to be used as the  destination  drive, 
    INIT will ask you to insert the disk you wish to initialize.  After you 
    have inserted the disk and typed <RTN>.  INIT will identify the volume, 
    unless  it  is  a  brand  new  disk.    It will then ask if you want to 
    proceed, as follows: 
 
    "Type NO to cancel, type YES to erase and 
     Initialize the disk. (YES/NO)?" 
 
    If you type 'NO<RTN>', INIT will repeat the message which instructs you 
    to insert the disk you want to initialize so  you  can  insert  another 
    disk at this point.  If you type 'YES<RTN>' in response to the message, 
    the procedure will continue. 
 
    If  you are initializing an 8-inch disk, INIT will ask whether you want 
    the initialized disk  to  be  double  density.   If  you  do  want  the 
    initialized  disk  to  be  double  density,  type 'YES<RTN>', or simply 
    '<RTN>'.  However, if you want the disk  to  be  single  density,  type 
    'NO<RTN>'. 
 
    INIT  will  now  ask  you  for a volume serial number.  This can be any 
    integer between 0 and 65535.  It is a good idea that your disks have  a 
    unique volume number. 
                                                                            
    When INIT asks you to enter a volume label, enter anything you like, as 
    long  as  it  is  from 1 to 60 characters long.  It is good practice to 
    assign meaningful labels to your disk,  such  as  SYSTEM  VOLUME,  DATA 
    FILES, etc.  In this way, the label will help you to determine which of 
    your disks contains a given file.  After you have entered the label and 
    entered a '<RTN>', INIT will begin to initialize the disk. 
 
    The  initialization  process  will  take  several  seconds.  When it is 
    almost complete, you will be asked to enter  the  numbers  of  any  bad 
    sectors  on  the  disk  you  are initializing.  You will not be able to 
    identify these sectors until you have  run  the  M  option  of  TEST17, 
    TEST37,  or TEST47, unless you are using a non-Heath device driver that 
    adds a media check option to the  INIT  code.   If  you  have  run  the 
    appropriate  test,  or  determined  the  bad  sectors  by an equivalent 
    method, enter the address number of each sector  and  type  a  '<RTN>'. 
    This  will instruct INIT to "flag" the bad sectors so HDOS will not try 
    to write to them.  If the Media (M) test found  no  bad  sectors,  just 
    type '<RTN>'. 
 
    INIT  will  again  print the message instructing you to insert the disk 
    you want to initialize.  If you do have another disk to be initialized, 
    insert  it and type '<RTN>', and then continue.  If you do not have any 
    more  disks  to initialize, type 'CTRL-D' twice.  Then INIT will ask if 
    you have more disks to initialize.  Type  either  'NO<RTN>'  or  simply 
    '<RTN>'.  You will return to SYSCMD.SYS, HDOS Command Mode upon exit. 
    *********************************************************************** 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-10 
    =============       ===================                       ========= 
 
                                    SYSGEN 
                                    ++++++ 
 
    The SYSGEN program is a stand-alone utility designed  to  generate  the 
    HDOS  system.  The effect of this process is to transfer essential HDOS 
    files from the source disk to an initialized destination disk. 
 
    NOTE:  Relative  to the following text, when the computer prints on the 
    screen, the message is set  off  by  quotation  marks.   Computer  user 
    responses are set off by quotation marks. 
     
    When  you  type  'SYSGEN<RTN>',  HDOS  loads  the SYSGEN program into a 
    memory buffer and passes control to the SYSGEN  program.   SYSGEN  then 
    asks  you  for  a  destination  device.   If the destination device you 
    specify is not SY0:, SYSGEN loads a disk driver for that  drive.   Then 
    SYSGEN  dismounts  all  disks,  mounts  the  source  disk,  and, if the 
    destination drive is not SY0:, SYSGEN mounts the destination disk.   If 
    the  destination  drive  is  SY0:,  SYSGEN  instructs you to insert the 
    destination. 
 
    Having mounted the disk(s), SYSGEN copies the HDOS 3.0 system files: 
 
                HDOS30.SYS - the nucleus 
                SYSCMD.SYS - the command processor 
                TT.DVD ----- computer screen driver 
                PIP.ABS ---- the "handyman file" 
                SY.DVD ----- primary drives controller 
 
    If the source drive and destination drive are both SYn: drives,  SYSGEN 
    copies  only  the  SY:  device  driver to the destination disk.  If the 
    destination drive is a DKn: drive, SYSGEN copies both disk drivers from 
    the  source  drive  to  the destination, and renames them appropriately 
    during the transfer.  SYSGEN then sets a flag which identifies the disk 
    as  having been SYSGENed.  It then copies the files which are contained 
    in an internal list within the SYSGEN program.  When  all  these  files 
    have been copied, SYSGEN prints the message: 
 
    "nn Files Copied" 
 
    and returns you to the HDOS Command Mode. 
 
    NOTE: When the following command examples  provided  in  this  section, 
    contain  the  symbol [^], this indicates that a space must be inserted. 
    Do not type the symbol [^] instead of the space. 
    *********************************************************************** 
 
                                SYSGEN OPTIONS 
                                ++++++++++++++ 
 
    SYSGEN can be performed in three different ways: 
 
    (1) The standard way 
    -------------------- 
    The command: 
 
                'SYSGEN<RTN>' 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-11 
    =============       ===================                       ========= 
 
                             SYSGEN OPTIONS (Cont) 
                             +++++++++++++++++++++ 
 
    This  is the simplest fashion in which SYSGEN is entered.  This version 
    of the command will copy all of  the  system  files  and  a  few  other 
    important files to the destination disk.  However, it is not always the 
    best way to go, especially when there is a disk space limitation. 
 
 
    (2) The most efficient way 
    -------------------------- 
    The command: 
 
                ">"'SYSGEN^/MIN<RTN>' (NO SPACES!) 
 
    will initiate the SYSGEN program  as  usual,  except  that  the  SYSGEN 
    program  will  copy  only the MOST ESSENTIAL HDOS system files from the 
    source disk to the destination  disk.  That is, the  /MIN  switch  will 
    cause  SYSGEN  to transfer only the minimum number of HDOS system files 
    which are indispensable to the system.  These files are: 
 
                 FILENAME      SIZE 
 
                HDOS30.SYS ---- 40 
                SYSCMD.SYS ---- 40 
                TT.DVD -------- 13 
                PIP.ABS ------- 49 
                SY.DVD -------- 20 
 
    If you SYSGEN to a drive other than an SYn: drive, SYSGEN will transfer 
    both types of disk drivers and rename them appropriately. 
 
    The /MIN switch is useful if you want to store a large amount  of  data 
    on  a  disk,  and  you also want to use that disk to perform Bootstrap. 
    Note that "ERRORMSG.SYS" is not transferred,  so  all  volumes  created 
    with  this  switch  will show error codes (digits) instead of codes and 
    messages. 
 
    (3) Copy all files  
    ------------------ 
    The command: 
 
                ">"'SYSGEN^*.*/Q'  (NO SPACES) 
 
    will initiate SYSGEN and copy all the files from the source disk to the 
    destination disk.  Thus, using 'SYSGEN^*.*' will clone the source disk. 
    Using  the  *.*  switch  eliminates the need to use ONECOPY to transfer 
    non-system files such as BASIC.ABS and ASM.ABS.  Using  the  /Q  switch 
    provides  a  means  of accepting or rejecting given files to be copied, 
    since all files are listed one by one and the operator can type  either 
    a 'Y' to copy the file, or a 'N' to reject the file. 
 
    After  having  been  invoked  by  HDOS,  SYSGEN will print the message: 
    "Device<SY0:>?"  At this point, you can either type '<RTN>' or you  can 
    type  a  disk drive name and '<RTN>'.  If you simply type '<RTN>', HDOS 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-12 
    =============       ===================                       ========= 
 
                             SYSGEN OPTIONS (Cont) 
                             +++++++++++++++++++++ 
 
 
    will use SY0: as both the source and destination drives.  If  you  have 
    only one drive, this is your only option.  If you have a multiple drive 
    system, you can avoid having to swap back and forth between source disk 
    and  destination  disk,  by typing the name of one of your other drives 
    after the "Device<SY0:>?  message.  For example: 
 
    "Device<SY0:>?"'SY1:<RTN>' 
 
    In  this  example,  the  operator made SY1: the destination drive.  The 
    "Device<SY0:>?"  message is the last opportunity to type  'CTRL-D'  and 
    exit from the SYSGEN procedure. 
 
    When  SYSGEN  asks you to remove the disk(s), you have two options: you 
    can either use the disk from which you booted to perform SYSGEN, or you 
    can  remove  the diskette from which you booted and insert another disk 
    which  contains  all  the  necessary  HDOS  system  files.   Only   the 
    distribution  disk  and  SYSGENed disks (except disks created using the 
    SYSGEN/MIN switch) contain  the  SYSGEN  program  unless  you  manually 
    copied  the  file SYSGEN.ABS to your disk using either the COPY command 
    or PIP.  If you want to SYSGEN  from  the  disk  you  used  to  perform 
    Bootstrap, do not  remove  the disk and simply type '<RTN>'.  If you do 
    want to replace the disk you used to boot the system, remove  the  boot 
    disk, replace it,  and  then type '<RTN>'.  If you do replace the disk, 
    make sure that the name of the alternate disk driver is the same as the 
    boot disk and the disk with which you replace the boot disk (i.e., both 
    should  be  named  SY.DVD  or both should be named DK.DVD).  It is good 
    practice to boot from a disk that contains the SYSGEN program  and  the 
    driver in order to avoid having to switch disks. 
 
    When SYSGEN is complete, the system will return you to the beginning of 
    the  Bootstrap procedure.  After SYSGENing, perform Bootstrap using the 
    destination disk.  This will insure that the  disk  has  been  properly 
    SYSGENed. 
 
    Remember that the first time you boot any new disk, HDOS will  need  to 
    determine  the  disk  baud rate.  Therefore, you will need to press the 
    space bar one or more times to get the disk to boot. 
    *********************************************************************** 
 
 
                                    ONECOPY 
                                    +++++++ 
 
    ONECOPY enables you to copy files from one disk to another  using  only 
    one  disk  drive.  ONECOPY is useful if you have only one drive in your 
    system.  You have the option of copying one file, or multiple files  in 
    a  single  operation,  as  will be explained under "ONECOPY" in Chapter 
    Two, "General Operation."  Because ONECOPY accesses drive  SY0:  exclu- 
    sively,  it requires that you swap back and forth between a source disk 
    and a destination disk.   Unlike  SYSGEN,  ONECOPY  cannot  generate  a 
    usable  system  volume.    This  utility  cannot link a set of programs 
    together to be used as an operating system. 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-13 
    =============       ===================                       ========= 
  
                                ONECOPY (Cont) 
                                ++++++++++++++ 
 
    To  use  ONECOPY,  (OC.ABS on the system disk) you need a system volume 
    (the distribution disk or  a  copy  of  it)  installed  in  SY0:.   The 
    diskette  to  which  you  will copy files must have been initialized by 
    means of the INIT program. 
 
    ONECOPY is a stand-alone utility.  This  means  that  HDOS  writes  the 
    ONECOPY  program into a memory buffer and then runs the program without 
    accessing the disk which contains the utility. 
 
    When you specify source files, at the  OC: prompt, the ONECOPY  program 
    instructs  you  to insert a source disk, and then searches the disk you 
    insert to insure that your source disk contains  the  specified  source 
    files.    If the source disk does contain the files you have specified, 
    ONECOPY loads the contents of the files into a memory buffer  and  then 
    asks  you  to insert the destination disk.  The program will then write 
    the contents of the buffer onto the destination  disk,  repeating  this 
    process until all files you have selected have been copied. 
 
    NOTE:  Within the following paragraphs, statements made by the computer 
    are set off by a pair of quotation marks, while responses by  the  user 
    are set off by a pair of apostrophes. 
 
    To copy single files using ONECOPY, use the format: 
 
    "OC:"'FNAME.EXT,FNAME.EXT<RTN>'    
 
    Note that you can specify only one, or many filenames in this format: 
 
 
    "OC:"'*.EXT,*.EXT<RTN>' or 
 
    "OC:"'FNAME.EXT<RTN>' 
 
    Practical Example:  "OC:"'BASIC.ABS.*,ERRORMSG.SYS<RTN>' 
 
    or, to copy all the files on the disk: 
 
    "OC:"'*.*<RTN>' 
 
    Like PIP, ONECOPY recognizes the /VER, /L, /L,S, /S, and /B,S switches. 
 
    As  in PIP, ONECOPY utilizes the /MOU switch, although the effect of OC 
    /MOU differs from PIP /MOU.  /MOU makes it  possible  to  switch  disks 
    whenever the OC: prompt is displayed.  Thus: 
 
    "OC:"'/MOU<RTN>' 
 
    "Insert New Disk" 
 
    At  this point, you should insert an initialized disk and type a <RTN>. 
    The OC: prompt will again be displayed: 
 
    "OC:" 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-14 
    =============       ===================                       ========= 
 
                                ONECOPY (Cont) 
                                ++++++++++++++ 
 
    The new disk is now the source.  You may specify any number of files to 
    be copied from it, and you may use any of the switches to  obtain  file 
    listings.   If you wish to switch to yet another disk, type /MOU again, 
    remove the disk, and  insert  another.   Note  that  ONECOPY^/MOU  both 
    dismounts and mounts a disk, while the PIP switch, PIP^/MOU serves only 
    to mount a disk.  In this sense, OC^/MOU corresponds  more  closely  to 
    PIP/RES than to PIP/MOU. 
    *********************************************************************** 
 
 
                                ONECOPY OPTIONS 
                                +++++++++++++++ 
 
    When you are using ONECOPY with  either  the  distribution  disk  or  a 
    system  volume which is a duplicate of the distribution disk, the valid 
    file choices under ONECOPY are: 
 
                SYSGEN.ABS                           
                INIT.ABS             
                BASIC.ABS                           
                SY.DVD                
                DK.DVD 
 
    Exactly  which files you select will depend upon your requirements.  If 
    you type 'OC^*.*', all files in the preceding list will be copied  from 
    the distribution disk or system volume to the destination disk. 
 
    To exit from the OC: prompt of ONECOPY, type 'CTRL-D'. 
    *********************************************************************** 
 
                                   PIP NOTES 
                                   +++++++++ 
 
    The  PIP.ABS  utility  program has been substantially modified for HDOS 
    3.02.  For details, refer to Chapter 5, "PIP/PLUS." 
    ************************************************************************ 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-15 
    =============       ===================                       ========= 
 
                                 CONCATENATION 
                                 +++++++++++++ 
 
    Concatenation  is  the  process of joining two or more small files into 
    one. 
     
    When  multiple  file  designations are used with the CO[py] command, or 
    with a copy command within PIP/Plus, the result will be a file that  is 
    a  combination  of the files which are specified on the right-hand side 
    of the = symbol.  An example which utilizes the  files  listed  in  the 
    previous example follows: 
 
    ">"'COPY^BIGFILE.DOC=NEWFILE.DOC,ERRORMSG.SYS<RTN>' 
 
    The result of this command is a file on SY0: called BIGFILE.DOC,  which 
    is  a  concatenation  of  NEWFILE.DOC  and ERRORMSG.SYS.  The following 
    example illustrates concatenation using the PIP/Plus copy format: 
 
    "P:"'BIGFILE.TXT=NEWFILE.DOC,ERRORMSG.SYS<RTN>' 
 
    NOTE:  You  must  use  a  comma  between  each  filename  and  have  no 
    intervening spaces on the command line. 
    *********************************************************************** 
 
                                   WILDCARDS 
                                   +++++++++ 
 
    Multiple Listing: 
    ----------------- 
    There are two ways to manipulate more  than  one  file  with  the  same 
    command.    The  simplest  way  is to use more than one filename in the 
    source or destination fields of the commands.  For example: 
 
               'TYPE NEWFILE.DOC,ERRORMSG.SYS<RTN>' 
               "THIS IS A TEST" 
               "128 CTRL-C Struck" 
               "129 CTRL-B Struck" 
               "130 Data Exhausted" 
               "Type a CTRL-C" 
               "Error Message No. 1" 
               etc. 
 
    The contents of both files are printed on the console.  Typing CTRL-C 
    terminates the output. 
 
    Using Wildcards: 
    ---------------- 
    A  wildcard  is a simple expression for grouping a number of files that 
    have identical filenames or extensions or identical parts of filenames. 
    Wildcards  are  used  to  manipulate  files  quickly and with the least 
    possible effort.  HDOS allows the use of two main types  of  wildcards. 
    Option  1:  *.*  and  Option  2:  ?????.   Details  are provided in the 
    following paragraphs. 
    *********************************************************************** 
 
 



   CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-16 
    =============       ===================                       ========= 
 
                               WILDCARD OPTION 1 
                               +++++++++++++++++ 
                            (Wildcard Example: *.*) 
                      
    This  option  allows  you to manipulate files by groups based upon some 
    common characteristic.  For example, you may  want  to  group  all  the 
    EDIT19 files  and copy them off to another disk with one command.  This 
    command may be phrased like this: 
 
    ">"'CO SY2:=SY1:EDIT19.*.*<RTN>' 
 
    Therefore,  the  *.*  wildcard is yet another way of accessing multiple 
    files.  It can be used with CAT, COPY, and DELETE. 
 
                  DVn:*.EXT   or   DVn:FNAME.*   or   DVn:*.* 
 
    The  effect of the wildcard option is to permit you to access all files 
    that have the unmodified portion  of  the  filename  in  common.   HDOS 
    recognizes  *.DOC,  for  example,  as a command to search for all files 
    that match the format *.DOC, in other words, any filename (*.)  with an 
    extension  of  .DOC.   The  following  example illustrates the use of a 
    wildcard to obtain a directory listing: 
 
    ">"'PIP<RTN>' 
    "P:"'*.SYS/B/S<RTN>' 
 
       GRT.SYS          HDOS30.SYS     SYSCMD.SYS 
       ERRORMSG.SYS     RGT.SYS        GRT.SYS        DIRECT.SYS 
 
    This  is  a brief listing of the essential system files.  Note that all 
    the filenames have the same  .SYS  extension,  while  all  the  primary 
    filenames are unique. 
 
    You can substitute the * into either the FNAME or the .EXT  field,  and 
    you  may use * in both the FNAME and .EXT fields.  Thus, *.* is a valid 
    command which signifies that you want to manipulate all  the  files  on 
    the disk, since all files match the *.* reference. 
 
    The  *.*  command  is  particularly  useful  for  copying  files within 
    ONECOPY.  If you type *.* after the OC: prompt, ONECOPY will  COPY  all 
    non-system and system files (unless the system files are hidden with an 
    S flag) from the system volume to another disk. 
     
    If you have a multiple  drive  system,  you  can  transfer  many  files 
    between  any  two drives in one operation.  First, mount an initialized 
    disk in the drive to which you want to transfer files, and then,  using 
    either COPY or PIP/Plus, specify drive names in the format: 
                        
                ">"'DVn:*.*=DVn:*.*'  or  ">"'CO SY1:*.*=SY0:*.*' 
 
    or in HDOS 3.02, simply: 
 
                ">"'CO^SY1:*.*=SY0:' 
 
    Note the lack of filename for the destination. 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-17 
    =============       ===================                       ========= 
 
                           WILDCARD OPTION 1 (Cont) 
                           ++++++++++++++++++++++++ 
                            (Wildcard Example: *.*) 
 
    In either case, all files will be transferred from the source drive to 
    the destination drive.  HDOS 3.02 is unique in this regard. 
 
    If  you  are copying files between drives, the *.* wildcard enables you 
    to transfer a  given  file  in  such  a  way  that  the  copy  that  is 
    transferred  will have the same name as the original, as is illustrated 
    in the following example: 
     
    ">"'CO^SY1:*.*=SY0:BASIC.ABS<RTN>' 
 
    The  effect  of the preceding command is to create a file on SY1: named 
    BASIC.ABS.  Of course, you could  have  produced  the  same  effect  by 
    typing: 
 
    ">"'COPY^SY1:BASIC.ABS=SY0:BASIC.ABS<RTN>' 
 
    The  *  wildcard  may  also  be used to rename files during the copying 
    process.  This is the abbreviated method which is quicker than the long 
    way to accomplish the same thing.  An example of the long way is: 
 
    ">"CO^DK1:*.TXT=SY0:NEWFILE.DOC<RTN> 
 
    The effect of this example was to copy NEWFILE.DOC to a  file  on  DK1: 
    called  NEWFILE.TXT.  The next example illustrates the use of wildcards 
    to rename multiple files in a multiple drive copy operation: 
 
    ">"'CO^SY2:*.TXT=DK0:*.DOC<RTN>' 
 
    In  this  example, the operator copied all files on the disk mounted in 
    DK0: that have the .DOC extension to the disk in SY2:, and assigned the 
    extension .TXT instead of .DOC to the new files in SY2:.  The FNAMEs of 
    the files on DK0: were preserved during the transfer. 
 
    You can also copy files using  a  combination  of  both  wildcards  and 
    multiple  designations,  but  you  may  only  designate multiple source 
    files.  Thus, the following is a  valid  combination  of  wildcard  and 
    multiple file designation: 
 
    ">"'CO^SY1:*.*=HELP.DOC,ERRORMSG.SYS<RTN>' 
 
    While the following is an invalid combination of wildcard and multiple 
    file designation: 
 
    ">"'CO^SY1:*.CAT,*.DOG=HELP.DOC,ERRORMSG.SYS<RTN>' 
 
    This second example is invalid because more than one file was specified 
    in the destination field of the command. 
 
    The  fundamental  formula  to  use  for copying files is: DESTINATION = 
    SOURCE. 
    *********************************************************************** 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-18 
    =============       ===================                       ========= 
 
                               WILDCARD OPTION 2 
                               +++++++++++++++++ 
                       (Wildcard Example: ????????.???) 
 
    You can use another type of wildcard as a substitute for letters  in  a 
    portion  of  a  filename.    This wildcard is the "?."  Since the FNAME 
    portion of a filename may be up to eight characters in length, and  the 
    .EXT  portion  may be up to three characters, the wildcard ????????.??? 
    is the same as *.*. 
 
    If you use "?" in the FNAME portion of a file designation, you must use 
    at  least  as many "?" marks as there are characters in the name of the 
    file you want to manipulate.  Thus: 
 
    ">"'C[at]????.ASM<RTN>' 
 
 
    will list those .ASM files whose FNAME field contains four characters 
    or less. 
 
    The "?" can be used along with the "*" wildcard.  For example,  if  you 
    had  several  files  on the disk in SY0: called CHAPTER1.DOC, CHAPTER2. 
    TXT, and CHAPTER3.DOC, the command. 
 
    ">"'C[at] CHAPTER?.*<RTN>' 
 
    would list all three of these documents. 
 
    Note that you can use the C[at] command and the /L and /S switches with 
    multiple file designations and wildcards, but you may not refer to more 
    than  one device in the same command.  The next example is INVALID, and 
    will cause an error message: 
     
    ">"'C^SYSHELP.DOC,SY1:HDOS.ACM<RTN>' 
 
    This example is INVALID because both SY0: and SY1: are used in the same 
    CAT command.  Also, the space after the comma on .DOC and  before  SY1: 
    should  be  deleted when using this form.  The following is a VALID use 
    of CAT with a multiple file designation: 
     
    ">"'C^SYSHELP.DOC,HDOS.ACM<RTN>' 
 
    There  is also a restriction on the use of the *.* wildcard with C[at]. 
    If you type C[at]*.*<RTN>, the computer will produce a listing  of  all 
    non-system  files.  If you want to list all files on the disk using the 
    *.* wildcard with C[at], you will  have  to  use  the  /S  modifier  to 
    override the S flag on the system files, as in the following example: 
 
    ">"'C^DK2:*.*/S<RTN>' 
 
    This may also be used with a partial filename.  For example: 
 
    ">"'C^SY1:BOZO.*<RTN>' 
    *********************************************************************** 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-19 
    =============       ===================                       ========= 
 
 
                         SET - SYSTEM OPTIMIZATION 
                         +++++++++++++++++++++++++ 
                                                  
    SET (System I/O Configuration) 
    ++++++++++++++++++++++++++++++ 
 
    The  SET  command  is  used to configure your system for the particular 
    input  and  output  devices  that  you  have.   Input  and  output  are 
    abbreviated  as  "I/O."   For  example,  you can use the SET command to 
    specify how many characters your terminal can handle on  one  line,  to 
    set  the  step  rate  of your disk drives, to set the baud rate of your 
    line printer, and so on.  The general form of the SET command is: 
 
    ">"'SET^DVn:^OPTION<RTN>' 
 
    You can obtain this general command format for  SET  from  the  command 
 
    mode by typing: 
 
    ">"'SET^HELP<RTN>' 
 
    Or, if you want to know the possible SET options for  a  given  device, 
    type: 
 
    ">"'SET^DVn:^HELP<RTN>' 
 
    For  instance,  if  you  wanted  to  determine  the  possibilities  for 
    optimizing the configuration of your line printer, type: 
 
    ">"'SET^LP:^HELP<RTN>' 
 
    Once  you have SET a given option, HDOS writes it on the disk so you do 
    not have to  re-SET  the  option  each  time  you  reboot  the  system. 
    However,  your  initial  configuration is not indelible; unless you set 
    the "W" (write protect) flag on the device driver file after using SET. 
    Therefore,  if you alter your hardware - or for any reason at all - you 
    can re-SET the option.  Any changes you make by means of SET remain  in 
    effect until you reuse the command. 
 
    IMPORTANT  NOTE:  You  MUST  reboot  your  computer  system in order to 
    incorporate the changes you make with SET.ABS. 
 
    ....................................................................... 
 
    SET HDOS STAND-ALONE 
    ++++++++++++++++++++        
 
    Within  HDOS 3.0, there is no separate command to SET HDOS STAND-ALONE. 
    All disks created by the HDOS  3.0  system  are  automatically  set  to 
    stand-alone. 
 
    SET HDOS STAND-ALONE<RTN> is a command that applies only to HDOS 2.0. 
    ....................................................................... 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-20 
    =============       ===================                       ========= 
 
                       SET - SYSTEM OPTIMIZATION (Cont) 
                       ++++++++++++++++++++++++++++++++ 
 
    Like  PIP/Plus,  the  SET  program  has been assigned a version number, 
    which you can display by entering: 
 
    ">"'SET^VER<RTN>' 
                               
    The tables that follow summarize the SET options,  default  values  for 
    the options, and the devices to which the SET command applies.  Table A 
    lists all HDOS devices.  Table B lists the SET options for HDOS; Tables 
    C  through  K  list  the options for each device.  The options that are 
    preset on the distribution disk are marked with an asterisk  [*].    To 
    make  the  most of this information, you will probably want to refer to 
    the "Peripherals" section, which follows immediately. 
 
    ....................................................................... 
 
                                    Table A 
                                 HDOS DEVICES 
                                 ------------ 
 
    Device Name         Description 
    -----------         ----------- 
        SY:             Handles system disk drives (primary boot). 
        DK:             Handles alternate disk drives (secondary boot). 
        TT:             Handles console terminal, input and output. 
        LP:             Handles line printer. 
        AT:             Handles alternate terminal. 
    ....................................................................... 
 
                                    Table B 
                                SET HDOS OPTION 
 
    Option              Description 
    ------              ----------- 
 
      HELP              Prints SET HDOS options. 
     *DATE              User prompted for date at boot-up. 
      NODATE            Suppress date prompt at boot-up. 
 
    NOTE: "NODATE" files created under HDOS Version 3.0 cannot be cataloged 
    under previous versions of HDOS. 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-21 
    =============       ===================                       ========= 
 
 
                                  SET (Cont) 
                                  ++++++++++ 
                          (System I/O Configuration) 
 
    ....................................................................... 
 
                                    Table C 
                             SET DRIVE SYn: OPTION 
                             SET DRIVE DKn: OPTION 
                             --------------------- 
                 
    STEP  n Sets the speed at which any 5-1/4 inch primary boot drive steps 
    between tracks on the disk.  Step time for all 5-1/4 inch  SYn:  drives 
    is  set using this command.  The step time for 8-inch drives is preset. 
    Use TEST17 to determine the value of "n:."  It should be between 16 and 
    30 for H17 (hard sector) disk drives.  The H37 controller (soft sector) 
    allows only the selection of 6, 12, 20, or  30  milliseconds  for  this 
    parameter.  The seek time of the slowest drive is the fastest seek time 
    you can use for all drives on that branch of your system, for example: 
    H17.   The  HDOS  distribution disk is factory-set at a step rate of 30 
    milliseconds.  If you re-set the seek time of your disk drives,  choose 
    values in increments of "2" for 
    the H17 type drives. 
    ....................................................................... 
 
                                    Table E 
                                SET TT: OPTION 
 
    Option       Description 
    ------       ----------- 
 
      HELP       Prints the SET options for TT:. 
            
    * NOBKS      Tells  HDOS  that your terminal cannot backspace.   If you 
                 attempt to delete mistyped characters, HDOS will print the 
                 deleted  characters  between  back  slashes [\] instead of 
                 allowing you to back up over them and erasing them. 
          
      BKS        Enables  backspacing to correct typing errors.  The cursor 
                 backs up to the character being deleted, and it is  erased 
                 from the screen. 
 
    * BKM        Causes BACKSPACE (CTRL-H) to be treated as DELETE. 
      NOBKM      Lets HDOS receive the BACKSPACE character. 
 
    * MLI        Maps (changes) lower case input to upper case.   
      NOMLI      Allows lower case input to HDOS.  
 
    * MLO        Maps (changes) lower case output to upper case.   
      NOMLO      Allows lower case output from HDOS. 
 
    * NOTAB      HDOS expands TAB (CTRL-I) into spaces. 
      TAB        Lets the terminal process TABs faster! 
             
                                                   



                                       
    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-22 
    =============       ===================                       ========= 
 
 
                                  SET (Cont) 
                                  ++++++++++ 
                          (System I/O Configuration) 
 
 
                                    Table E 
                             SET TT: OPTION (Cont) 
                             --------------------- 
 
      * 2SB      Uses two stop bits. (Universal)        
        1SB      Uses one stop bit. (Normal) 
 
      WIDTH nn   Sets  the  terminal  screen  width to nn  characters.  The   
                 default value is 80.   HDOS starts a new line if more than 
                 nn characters  are  sent to the  screen.   The value of nn  
                 must be SET between 20 and 255.     It is best to SET this  
                 unit to 255 to accommodate long programming lines. 
 
      FILL c n   Sets  "c"  as the ASCII code for the character which needs 
                 "n" null characters inserted after it.   Fill  is  usually 
                 needed   after  a  carriage  return  (13)  on  some  slow, 
                 hard-copy terminals.  This allows time for the  completion 
                 of  the  return  motion  before  the  next  characters are 
                 printed. 
 
    With most terminals, you should SET the following options: 
 
                SET^TT:^1SB             SET^NOMLI 
                SET^TT:FILL 13 0        SET^NOMLO 
                SET^BKS                 SET^TAB 
                SET^WIDTH 225 
 
 
    *  The asterisk indicates a preset option from the distribution disk. 
 
    NOTE: The following tables, F through K, pertain to an array of printer 
    drivers provided by HDOS 3.0 to implement the specified printers.  They 
    will work in HDOS 3.0, but probably not in HDOS 2.0.  These drivers are 
    available on the HDOS 3.0 Distribution Disks.  For  details,  refer  to 
    Table L on page 3-27. 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-23 
    =============       ===================                       ========= 
 
 
 
                                  SET (Cont) 
                                  ++++++++++ 
                          (System I/O Configuration) 
 
 
                                    Table F 
                               AT84.DVD (Serial) 
                              AT85.DVD  (Serial) 
                              ================== 
 
          Options for A Serial Alternate Terminal With H8-4 Interface. 
 
          Options for a Serial Alternate Terminal with H8-5 Interface. 
 
    Option          Description 
    ------          ----------- 
      
      HELP          Prints the SET options for AT84.DVD. 
      HELP          Prints the SET options for AT85.DVD. 
 
      1SB           SETs for one stop bit. 
      2SB           SETs for two stop bits. 
 
      MLC           SET for changing lower case to upper case. 
      NOMLC         SET for providing both upper and lower case. 
 
      WIDTH n       SET for setting "n" characters for the width of 
                    the printer.  If more than "n" characters are sent, 
                    a new line is started.  The range of "n" is 0 thru 132. 
                    If zero is used, the new line feature is disabled. 
                    The default is 132. 
 
      PAD n         Sends "n" pad characters after a carriage return. 
                    Pad is needed on some slow, hard-copy terminals. 
                    This allows time for completion of the return before 
                    the next characters are printed.  Default is zero. 
 
      PORT n        SETs the port address to "n."  Default value of "n" is 
                    320Q. 
 
      BAUD n        SETs the baud rate.  You must set only standard rates, 
                    such as 1200, 2400, 4800, etc.  Default value is 300. 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THREE       GENERAL OPERATIONS                        PAGE 3-24 
    =============       ==================                        ========= 
 
                                  SET (Cont) 
                                  ++++++++++ 
                           (System I/O Configuration 
 
 
                                    Table G 
                        Options for H1484.DVD (Serial) 
                        Options for H1485.DVD (Serial) 
                               Heath H14 Printer  
                               ================= 
 
    Option         Description 
    ------         ----------- 
 
      HELP         Prints the SET options for H1484.DVD (serial). 
      HELP         Prints the SET options for H1485.DVD (serial. 
                                                                            
      6LPI         SETs the H14 Line Printer for 6 lines per inch. 
      8LPI         SETs the H14 Line Printer for 8 lines per inch. 
 
      PAGE n       SETs  the  number  of  lines per page to "n."  If "n" is 
                   zero, lines are printed continuously.  Default value  is 
                   60. 
 
      PORT n       SETs  the  port address for LPH14 to "n."  Default value 
                   of "n" is 340Q. 
 
      WIDTH m,n    SETs  the  Width  Control  switch  position.  "n" is the 
                   narrow position, and "m" is wide.  The only legal values 
                   are  80,  96, and 132.  The default setting is "n" = 80, 
                   "m" = 132. 
 
      BAUD n       SETs  the  baud  rate  for the LPH14.  You must set only 
                   standard baud rates, such as: 1200,  2400,  4800,  etc. 
                   Default is 4800. 
    ....................................................................... 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-25 
    =============       ===================                       ========= 
 
                                  PERIPHERALS 
                                  +++++++++++ 
 
    Device Drivers for HDOS 3.0 
    --------------------------- 
    To facilitate  expansion  and  maintenance  of  the  system,  HDOS  was 
    designed  in  a  modular  fashion;  e.g.,  a number of subprograms that 
    communicate with one another.  Each of these subprograms is responsible 
    for  a  logically  distinct  task.    For example, the subprogram which 
    processes commands is separate from that which processes I/O.  When the 
    command  processor  needs  input,  it  asks  the  I/O handler for data. 
    Likewise, when the command processor generates output,  it  passes  the 
    data  along to the I/O handler.  To compare HDOS to a person, one might 
    liken the command processor to the brain, the external  peripherals  to 
    the  sense organs, and the I/O handlers, such as device drivers, to the 
    nerves which translate and transmit data from the sense  organs  to the 
    brain. 
 
    HDOS  does  not  directly  communicate  with  peripherals.   Rather, it 
    communicates with peripherals indirectly by means  of  device  drivers. 
    Any  device  that  is  to  be  interfaced  to  HDOS  must  therefore be 
    interfaced by means of a device driver.  When  HDOS  writes  to  device 
    XX:,  it  merely  supplies the bytes to be written, invokes the driver, 
    and relies upon the driver to convert the data into the format required 
    by  the  specific  device.  Thus, only device drivers "know how to talk 
    to" peripheral devices.  Since device drivers are not inherent parts of 
    the operating system, HDOS I/O is quite flexible.   
 
    To  manage  the  various  devices in the system, HDOS maintains a table 
    which supports a virtually unlimited number  of  device  drivers.   The 
    Device  Table  size  is  dynamically  determined at boot time.  The two 
    mandatory device drivers are SY.DVD and  TT.DVD.   SY.DVD  is  used  to 
    control  the  primary  disk  drive  units,  while  TT.DVD  controls the 
    terminal and screen. 
 
    TT.DVD  is  no  longer  an integral part of HDOS, but is an independent 
    device driver.  It transfers to a disk being made  bootable  at  SYSGEN 
    time,  as does SY.DVD.  In addition to the standard device driver entry 
    points, TT.DVD includes  routines  to  process  the  following  SCALLs: 
    .SCIN, .SCOUT, .PRINT, .CONSL, and .CLRCO.  TT.DVD also supports higher 
    baud rates up to 38400 baud. 
 
    Whenever  the  system  is  booted,  HDOS  scans  the disk directory for 
    entries in the form of "xx.DVD."  Then uses these entries  to  build  a 
    device driver table.  The size of this device driver table is dependent 
    upon how many such entries are found.   For  example,  a  disk  freshly 
    SYSGENed  would normally only have two device drivers on it: SY.DVD and 
    TT.DVD.  Therefore, the device driver table would be composed  of  only 
    two entries.  If you copy 13 more device drivers to that bootable disk, 
    the next time the disk is booted the table size changes to 15 entries. 
 
    Once HDOS 3.0 has entered the device drivers in the Device Table during 
    bootup, they remain usable as  long  as  the  current  system  disk  is 
    mounted  in  SY0:,  or  unless  you  wish to unload them.  In HDOS 3.0, 
    device drivers may be cleanly unloaded.  Drivers  may  also  be  loaded 
    and/or loaded and locked in memory. 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-26 
    =============       ===================                       ========= 
 
                              PERIPHERALS (Cont) 
                              ++++++++++++++++++ 
 
    Device Drivers for HDOS 3.0 (Cont) 
    ---------------------------------- 
    For example, the command: 
 
    ">"'UNL[oad] xx.DVD<RTN>' 
 
    unloads device driver xx.DVD. 
 
 
    Also, the command: 
 
    ">"'L[oad] xx.DVD<RTN>' 
 
    loads device driver xx.DVD, 
 
    and the command: 
 
    ">"'FLO[ad] xx.DVD<RTN>' 
 
    both loads and locks device driver xx.DVD in memory. 
 
 
    Device Driver Structure 
    ----------------------- 
    Device  driver  filenames  must  be  only  two characters long, and the 
    extension must be .DVD.  The two-character filename is used  to  define 
    the  device name.  For example, the driver of your primary line printer 
    should be called "LP.DVD."  You may also have  secondary  line  printer 
    drivers  on  the  disk, such as "EP.DVD" and "UD.DVD."  If you see more 
    than one line printer driver on a bootable disk,  you  must  know  that 
    each of the drivers have different characteristics. 
 
    If you  intend to program device drivers in  HDOS 3.0 the "SET" part of 
    the driver may be larger than 2 sectors.  It may extend to  16  sectors 
    in multiples of 2 sectors. 
 
 
    HDOS 3.0 Supplied Device Drivers 
    -------------------------------- 
    HDOS  3.0  provides  a  number of general-purpose device drivers on the 
    distribution disks.  These device drivers are designed  to  accommodate 
    both Heath and non-Heath peripherals, and are as follows: 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-27 
    =============       ===================                       ========= 
 
                              PERIPHERALS (Cont) 
                              ++++++++++++++++++ 
 
                            TABLE L: DEVICE DRIVERS 
                            ======================= 
 
    Printer Drivers: 
    ---------------- 
       AT84.DVD   An alternate terminal configured at port 320Q via an H8-4 
                  card for the H8  computer,  or  port  320Q  for  the  H89 
                  computer.  (Serial) 
 
       AT85.DVD   An  alternate  terminal configured at address 374Q via an 
                  H8-5 card for the H8 computer.  (Serial) 
 
       H1484.DVD  A Heath H14 Printer driver for an H-4 interface.   
                  (Serial) 
 
       H1485.DVD  A Heath H14 Printer driver for an H8-5 (H8 Computer). 
                  (Serial) 
 
       H2484.DVD  A Heath H24 Printer (TI-810 equivalent) driver for an  
                  H8-4 interface.  (Serial) 
 
       H2584.DVD  A Heath H25 Printer driver for an H8-4 interface.   
                  (Serial) 
 
       H4484.DVD  A Diablo H44 Printer driver for an H8-4 interface.   
                  (Serial) 
 
       MX8084.DVD An Epson MX-80 printer driver for an H8-4 interface. 
                  for Port 340Q.  (Serial) 
 
       MX8011.DVD An Epson MX-80 printer driver for an Z89-11 interface. 
                  (Parallel) 
 
    Other Drivers: 
    -------------- 
       TT.DVD     The console device driver.  Also processes all terminal- 
                  related SCALLs. 
 
       ND.DVD     Null device, often referred to as the "bit bucket." 
 
       H17.DVD    H17 device driver. (Hard-sector) 
 
       H37.DVD    H37 device driver. (Soft-sector) 
 
       H47.DVD    H47 device driver. (8-inch) 
 
       IOMEGA.DVD Bernoulli Box device driver.  CAUTION: See source code 
                  before using this driver. 
 
 
 
 
 



 
    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-28 
    =============       ===================                       ========= 
 
                              PERIPHERALS (Cont) 
                              ++++++++++++++++++ 
 
    Incorporating Device Drivers 
    ---------------------------- 
    The  following  paragraphs  outline  the  procedure  you  would  use to 
    incorporate any of the drivers supplied, except ND.DVD, which  requires 
    no software configuration. 
 
         1.   Decide which device drivers you will need.  Keep in mind that 
    the maximum number of user-selectable drivers is nearly unlimited.  For 
    instance,  assume  that  an  H14 line printer is to be included in your 
    system.  In such a case, you would  have  to  select  either  H1484.DVD 
    (parallel) or H1485.DVD (serial) as your device driver. 
 
         2.   Configure  your  hardware  to match the specifications of the 
    selected device driver.  (Refer to Chapter 2, SET STEP 5, for details.) 
     
 
         3.    Copy  the  device  drivers  to  the  appropriate  two-letter 
    filename.  For example, to utilize H1484.DVD and modify its filename to 
    DB.DVD: 
 
    'REN[ame] DB.DVD=H1484.DVD<RTN>' 
 
         4.   Enter  a  BYE command, and then reboot HDOS.  It is necessary 
    that you reboot because the HDOS Device Table is built only  upon  boot 
    up.   If you rename H1484.DVD to DB.DVD and then immediately try to use 
    DB: or LP: without rebooting the system, HDOS will  not  recognize  any 
    commands  to  either  of  them,  since  there  was no LP: or DB: in the 
    directory when HDOS last built the Device Table.  For the  same  reason 
    you will not be able to use the SET command to configure the new device 
    driver until it has been given  a  2-letter  name  and  HDOS  has  been 
    re-booted.   The use of a printer driver such as UD.DVD (configured for 
    HDOS 3.02) is an exception.  No boot is necessary. 
     
    By way of example, an  illustration  implementing  DB:  with  a  Diablo 
    printer is given below: 
 
    'REN[ame] DB.DVD=H4484.DVD' 
    'BYE<RTN>' 
 
    "Volume 100, Dismounted from SY0: 
    Label: System Volume" 
 
    "System Down"  To reboot hit SHIFT/RESET<RTN> 
 
    "HDOS 3.0  
     ISSUE # 50-07-00" 
  
    "System has 64k RAM" 
 
    "Drivers found: TT: SY: DK: LP: DB:" 
 
    "Date <10-Mar-90>?"'16<RTN>' 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-29 
    =============       ===================                       ========= 
 
                              PERIPHERALS (Cont) 
                              ++++++++++++++++++ 
 
    Incorporating Device Drivers (Cont) 
    ----------------------------------- 
 
    "Time (00:00:00>?"'15:46:50<RTN>' 
 
    "S:" 
 
 
    From  now  on,  the  new  device  will  appear as part of the operating 
    system.  You may now use the device  drivers  LP:  and  DB:  throughout 
    HDOS.   You  can SET options, send data to it for printing, and copy it 
    to other disks.  Note: When you copy a device driver, its SETTINGS will 
    be the same on both disks. 
    *********************************************************************** 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-30 
    =============       ===================                       ========= 
 
                                     PATCH 
                                     +++++ 
 
    NOTE:  An  absolute  binary  program  is one with .ABS in its filename. 
    SYSPATCH.ABS is an HDOS utility used to patch absolute binary programs. 
    SYSPATCH may be used to patch user-written programs which have not been 
    write  protected.   SYSPATCH  can  modify  any  Heath-supplied   system 
    programs,  but  it  will  not  patch  assembly source programs or BASIC 
    programs.  See the comments below. 
 
    You can PATCH locations in your program that are not defined within the 
    program,  but those locations must follow the current last-word address 
    of your program.  Thus, if your program occupied  locations  042200  to 
    050000,  you  could extend the program by entering PATCHes to locations 
    greater than 050000. 
 
    To use SYSPATCH: 
 
         1. Run SYSPATCH, using the command format RUN 
    'DVn:SYSPATCH', or simply 'DVn:SYSPATCH'. 
 
         2. SYSPATCH  will  prompt  you  for a filename.  Enter the device 
    name and the name of the binary file you wish to PATCH.  For example: 
 
    'SY1:DEMO2.ABS<RTN>' 
    
         3. SYSPATCH  will  now  prompt  you  with  "ADDRESS?"   Enter the 
    address of the first PATCH as a byte-octal number.  For example: 
 
    "ADDRESS?"'042200' 
 
         4. SYSPATCH  will then display an address and byte value, followed 
    by a backslash [\].  You can reply in one of three ways: 
 
                A. Type a 3-digit new value. 
 
                B. Type '<RTN>' to leave this byte unchanged. 
 
                C. Type 'CTRL-D' to bring back the "ADDRESS?" prompt. 
 
         5.  When you have finished PATCHing your program, type 'CTRL-D' in 
    response  to  the  'ADDRESS?'   prompt.   SYSPATCH will then insert the 
    PATCHes into your program. 
 
    NOTE:  Data to end of this section refer to HDOS 2.0 PATCH.ABS.  It was 
    included to provide similar examples for using SYSPATCH. 
 
    Though  originally thought able to patch only non-Heath programs, after 
    publication of the HDOS 2.0 source by Heath, HUG's software genius, Pat 
    Swayne,  discovered some of the tricks to use PATCH on system files and 
    Heath-written device drivers.  Details may be found in REMARK #28 (May, 
    1982),  where  assembly  source for a program for removing ALL flags is 
    presented.  However, essential  information  is  also  given  in  other 
    places.                                                                 
     
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-31 
    =============       ===================                       ========= 
 
                                 PATCH (Cont) 
                                 ++++++++++++ 
    REMark  #19,  August  1981, is the first real break in the dam blocking 
    information on the subject.  Pat Swayne discusses methods  of  reducing 
    the  size  of the system and utilities by eliminating the patch history 
    sector at the end of EDIT, PATCH,  INIT,  SYSGEN,  TEST47,  ASM,  XREF, 
    DEBUG, PIP, HDOS.SYS, and HDOSOVL1.SYS.  He gives assembly source for a 
    program to accomplish this. 
     
    And beginning in REMark #27, April  1982,  Pat  presents  a  series  of 
    patches,  including  the patch "ID's," "prerequisite codes," and "check 
    codes" necessary for a number of system files.  I  refer  you  to  this 
    material  for  specifics,  but  will include a summary, here, of which, 
    what, and where.  If you have eliminated the patch history  sectors  of 
    these programs with Pat's REDUCE, you shouldn't need the special codes. 
    And most of these are for HDOS 2.0, but a few are for 1.6, so check the 
    references.   NOTE:  The  following  list provides examples, but is not 
    applicable to HDOS 3.02! 
     
     Program    Purpose of Patch                        REMark Issue 
 
    ----------------------------------------------------------------------- 
    ASM.ABS      Fixes bug when making XREF listing      #44 Sept 83, p. 39 
    BASIC.ABS    FREEZE & UNFREEZE only program          #29 June 82, p.  7 
                 Permits CHR$(0) & chars > CHR$(127)     #42 July 83, p. 59 
    DEBUG.ABS    Corrects bug in STEP command            #29 June 82, p. 28 
    EDIT.ABS     Corrects bug in CTRL-C processing       #29 June 82, p. 28 
    HDOSOVL0.SYS Corrects bug in .NAME SCALL processor   #30 July 82, p. 35 
    LPMX80.DVD   To use GRAFTRAX option                  #30 July 82, p. 32 
    ONECOPY.ABS  Finish copying w/ destination mounted   #45 Oct  83, p. 72 
    PATCH.ABS    Ignore patch history on W-flagged files #28 May  82, p. 36 
    PIP.ABS      List filenames when copying/deleting    #27 Apr  82, 
                   with wildcards                          last ad page 
                 Similar patch for ver. 1.6              #29 June 82, p. 28 
 
    A number of patches for other HUG and Heath software are also bracketed 
    by these issues. 
 
    NOTE:  SYSPATCH does not PATCH  the  program until the entire series of 
    PATCHes has been entered and CTRL-D has been typed in response  to  the 
    ADDRESS?  prompt.  Until that time, you may use CTRL-C or CTRL-Z CTRL-Z 
    to  cancel  the  patch  session  and   leave   your   file   unchanged. 
    *********************************************************************** 
 
                              NONESSENTIAL FILES 
                              ++++++++++++++++++ 
 
    If  you have a computer system with H37 or H47 drives, you will want to 
    keep all of the files on your system disk that you use  regularly.   We 
    suggest  that you delete all of the device driver files except the ones 
    that support your printer and disk drives.  For example, in the typical 
    computer  system  with H37 and H17 drives, essential device drivers are 
    as follows: 
     
        SY.DVD     DK.DVD     TT.DVD 
        LP.DVD     UD.DVD 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-32 
    =============       ===================                       ========= 
 
                           NONESSENTIAL FILES (Cont) 
                           +++++++++++++++++++++++++ 
 
    If  you  have a computer system with H17 drives only, there may be some 
    files that you want to delete.  Do  NOT,  however,  delete  any  system 
    files,  or you may not be able to use your system disk.  Files that are 
    candidates for deleting from your system disk copies would include: 
 
        OC.ABS 
        HELP.    
        SYSHELP.DOC 
 
    Since  the  functions  provided by the programs residing on these files 
    will no longer be  available  on  this  particular  disk,  we  strongly 
    recommend  that you keep at least one master system volume, in addition 
    to the abridged system disk.  At any rate, even  though  HDOS  provides 
    built-in  safeguards such as write-protection, the effect of incidental 
    common menaces  such  as  dust,  extremes  of  temperature,  and  power 
    outages,  not  to  mention  "operator  error," can easily wipe out much 
    tedious labor.  For this reason, you should always keep  backup  copies 
    of your own important files as well as the HDOS system files. 
 
    It is too easy to damage a disk.  In one careless moment, or if you get 
    distracted, a week's work may be lost.  Even if there is an  expert  in 
    your area who knows the HDOS system sufficiently so that he can apply a 
    disk editor to the disk, even then not all files may be recovered.  The 
    only answer is  to  BACK  UP your work -- not daily -- but whenever you 
    complete an important file. 
 
    **  BACK UP ** BACK UP ** BACK UP ** BACK UP ** BACK UP ** BACK UP **   
    *********************************************************************** 
 
                                    SUMMARY 
                                    +++++++ 
 
    Your  system  should  now  be  configured  for  your  terminal  and any 
    peripherals, and the drive seek times  should  be  optimized  for  your 
    drives. 
 
    The  examples  used throughout this procedure are only a small sampling 
    of the possible commands and  functions  of  HDOS.   By  varying  these 
    examples,  you will acquire "hands on" experience.  Experimentation can 
    cause no damage, thanks to  the  error-detection  and  write-protection 
    facilities  of  HDOS.   If  you  should accidentally delete or damage a 
    file, you can always re-SYSGEN from the distribution disk.   Therefore, 
    do  not be timid about exploring and enjoying the capabilities of HDOS. 
    In case you type a command wrong, HDOS prints an error message on  your 
    screen.   This  is  the worst that will happen.  It is recommended that 
    experiments be done on expendable copies. 
 
    Refer to Appendix 3-A: for a list of HDOS 3.02 error messages. 
    *********************************************************************** 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-33 
    =============       ===================                       ========= 
 
                 APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES 
                 +++++++++++++++++++++++++++++++++++++++++++++  
 
    This  section  describes  the  error messages generated by the HDOS 3.0 
    Operating System.  Error messages fall  into  two  general  categories: 
    those  which  start  with  ?nn,  where nn = two digits, and those which 
    don't.  Error messages with no ?nn are produced by the program you  are 
    currently  running.   For  example,  if  you are using the text editor, 
    EDIT, and get a message with no ?nn in it, look in the text editor part 
    of  the  manual  for  an  explanation.   Messages  with ?nn in them are 
    produced by some component  of  the  HDOS  operating  system,  and  are 
    discussed  here.   The messages are grouped together according to their 
    ?nn number. 
     
 
    ?00 - Bootstrap Errors 
    ====================== 
 
    Error messages which start with ?00 are generated by the  system  while 
    it is being booted up. 
 
    ?00 DISK READ ERROR DURING BOOT 
 
        An unrecoverable (hard) disk error  occured  during  the  bootstrap 
    process.    Try  booting  again.   If the problem persists, either your 
    drive or your disk is bad.    Try  booting on a different disk drive or 
    with a different bootable disk. 
 
    ?00 * ERROR *  nnn (sector number) 
 
        An  unrecoverable  hard-disk error occured  while checksumming  the 
    disk.   The sector number printed immediately after this message is the 
    one containing the error. 
 
    ?00 REQUIRED FILE HDOS30.SYS MISSING 
 
        The file HDOS30.SYS is not on the volume in SY0:.  The disk has not 
    been SYSGENed, or has been SYSGENed incorrectly.  Reinitialize  it  and 
    then SYSGEN it correctly. 
 
    ?00 THIS DISK HAS NOT BEEN PROPERLY SYSGENED 
 
         Some  error  in  the format of the HDOS system files was detected. 
    The disk cannot be booted.  The disk must be  reinitialized,  and  then 
    SYSGENed.  If it contains valuable data, boot from a different disk and 
    copy the useful data from the defective disk first! 
 
    ?00 THIS DISK MUST BE INITIALIZED AND THEN SYSGENED BEFORE IT CAN BE 
    USED 
 
         This disk must be initialized before you can use it.  This message 
    normally appears when you try to boot up a new disk that  has  not  yet 
    been initialized, attempt to mount a CP/M disk under the HDOS Operating 
    System, or attempt to boot a disk that has been destroyed. 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-34 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?00 - Bootstrap Errors (Cont) 
    ============================= 
 
    ?00 THIS DISK MUST BE SYSGENED BEFORE IT CAN BE BOOTED 
 
        This disk has not been SYSGENed, and thus cannot  be  booted  as  a 
    system disk.  Use SYSGEN to make it a system disk. 
 
    ?01 - Build Phase Errors 
    ======================== 
 
    These error messages appear during the second half of the boot  process 
    when  the  HDOS  operating  system  is being built into memory from the 
    system disk.  Most of these messages indicate damage to  the  files  on 
    disk.   First, try rebooting the system.  If the problem persists, then 
    this disk cannot be booted as a system disk.    If  you  own  two  disk 
    drives, mount the disk in SY1: and copy the files you want to keep onto 
    a different disk.    If you own only one disk drive, use ONECOPY (after 
    booting up on some other disk) to copy off your important files.  Then, 
    reinitialize the disk and reSYSGEN it. 
 
    ?01 DISK I/O ERROR DURING BOOT 
 
        An unrecoverable (hard) disk error occurred on the system disk, and 
    the  boot operation cannot proceed.  The disk volume may be bad, or you 
    may have a bad drive.  Retry the boot. 
 
    ?01 DISK STRUCTURE IS CORRUPT 
 
         The directory and/or the free space table on this disk is damaged, 
    and HDOS cannot restore the damaged files.  CAUTION: Do NOT attempt to 
    contact Heath Technical Services,  as this help is no longer available. 
    NOTE:  It  may  be  possible  to  run  a program such as CRASH.ABS from 
    Software Wizardry or SUPERZAP from the Software  Toolworks  to  restore 
    the disk to a usable form, or at least recover some of the files. 
 
    ?01 FORMAT ERROR IN DRIVER FILE 
 
        The file does not contain a valid driver program. 
 
    ?01 HDOS REQUIRES AT LEAST 24K! 
 
        Your system does not contain enough RAM to run HDOS, or the RAM  is 
    faulty,  or  it is not addressed correctly.  Use a memory diagnostic to 
    make sure that the RAM is working properly,  and  is  jumpered  to  the 
    correct address. 
 
    ?01 SYSTEM NOT SYSGENED PROPERLY, OR FILES DAMAGED 
 
        A system file is damaged.  This can be the result of a software or 
    hardware error. 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-35 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?01 - Build Phase Error (Cont) 
    ============================== 
 
    ?01 UNABLE TO MOUNT SYSTEM DISK 
 
        The system volume from which you are attempting to boot up does not 
    contain the file SY.DVD, the system disk driver. 
 
 
    ?02 - Error Messages 
    ====================  
 
    These messages are generated by the operating system and may appear  at 
    any  time.    Usually  they  are  in  response to some request from the 
    program you are running which, in  turn,  is  usually  caused  by  some 
    command  from you.  Normally, HDOS looks up these error messages in the 
    file SY0:ERRORMSG.SYS to give an understandable message.  If  the  file 
    SY0:ERRORMSG.SYS is missing, or if the system disk has been dismounted, 
    HDOS will simply type the error message number.  The numbers are listed 
    first,  followed by the message they represent.  Look up the message in 
    the second group for a discussion of its meaning. 
 
    Most of the error messages will  be  meaningless  to  you.    They  are 
    generated by HDOS when a program makes a mistake when issuing a request 
    to HDOS.  Normally, only users debugging  assembly  programs  will  see 
    most  of these error messages.  The ones that the average user will see 
    are self-explanatory. 
 
    ?02 SYS ERROR # 000 
 
        Heath/Zenith HDOS 3.02 
 
    ?02 SYS ERROR # 001 
 
        End of File. 
 
    ?02 SYS ERROR # 002 
 
        No Free Space on Media. 
 
    ?02 SYS ERROR # 003 
 
        Illegal "SYSCALL" Function Code. 
 
    ?02 SYS ERROR # 004 
 
        Channel Is Already in Use. 
 
    ?02 SYS ERROR # 005 
 
        Device is Not Capable of This Operation. 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-36 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?02 Error Messages (Cont) 
    ========================= 
 
    ?02 SYS ERROR # 006 
 
        Illegal Format for Device Name. 
 
    ?02 SYS ERROR # 007 
 
        Illegal Format for File Name. 
 
    ?02 SYS ERROR # 008 
 
        Not Enough Memory for the Device Driver. 
 
    ?02 SYS ERROR # 009 
 
        Channel is Not Open. 
 
    ?02 SYS ERROR # 010 
 
        Illegal Function Request. 
 
    ?02 SYS ERROR # 011 
 
        File Usage Conflicts. 
 
    ?02 SYS ERROR # 012 
 
        No Such File(s). 
 
    ?02 SYS ERROR # 013 
 
        Unknown Device Name. 
 
    ?02 SYS ERROR # 014 
 
        Illegal Channel Number. 
 
    ?02 SYS ERROR # 015 
 
        The Volume Directory is Full. 
 
    ?02 SYS ERROR # 016 
 
        Illegal File Contents. 
 
    ?02 SYS ERROR # 017 
 
        Not Enough RAM for this Program. 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-37 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?02 Error Messages (Cont) 
    ========================= 
 
    ?02 SYS ERROR # 018 
 
        Read Failure on the Device. 
 
    ?02 SYS ERROR # 019 
 
        Write Failure on the Device. 
 
    ?02 SYS ERROR # 020 
 
        Write-protection Violation. 
 
    ?02 SYS ERROR # 021 
 
        Disk is Write Protected. 
 
    ?02 SYS ERROR # 022 
 
        The File is Already Present. 
 
    ?02 SYS ERROR # 023 
 
        Aborted by Device Driver. 
 
    ?02 SYS ERROR # 024 
 
        File Flags are Locked. 
 
    ?02 SYS ERROR # 025 
 
        A File is Already Open. 
 
    ?02 SYS ERROR # 026 
 
        Unknown Switch Specified. 
 
    ?02 SYS ERROR # 027 
 
        Unknown Unit for this Device.   
 
    ?02 SYS ERROR # 028 
 
        Non-null File Name is Required. 
 
    ?02 SYS ERROR # 029 
 
        Device is Incapable of Write Operations. 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-38 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?02 Error Messages (Cont) 
    ========================= 
 
    ?02 SYS ERROR # 030 
 
        Unit not Available. 
 
    ?02 SYS ERROR # 031 
 
        Illegal Value. 
 
    ?02 SYS ERROR # 032 
 
        Illegal Option. 
 
    ?02 SYS ERROR # 033 
 
        Volume Mounted on the Device. 
 
    ?02 SYS ERROR # 034 
 
        No Volume Mounted on the Device. 
 
    ?02 SYS ERROR # 035 
 
        File Open on the Device. 
 
    ?02 SYS ERROR # 036 
 
        No Provisions Made for Remounting More Disks. 
 
    ?02 SYS ERROR # 037 
 
        This Disk Must be Initialized Before it Can Be Mounted. 
 
    ?02 SYS ERROR # 038 
 
        Unable to Read this Disk. 
 
    ?02 SYS ERROR #039 
 
        Disk Structure Is Corrupt. 
 
    ?02  SYS ERROR # 040 
 
         Wrong Version of HDOS. 
 
    ?02 SYS ERROR # 041 
 
        No Operating System Mounted. 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-39 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?02 Error Messages (Cont) 
    ========================= 
 
    ?02 SYS ERROR # 042 
 
        Illegal Overlay Index. 
 
    ?02 SYS ERROR # 043 
 
        Overlay too Large. 
 
    ?02 SYS ERROR # 044 
 
        File Is Locked Against Deletion. 
 
    ?02 SYS ERROR # 045 
 
        Device Media Is Fixed. 
 
    ?02 SYS ERROR # 046 
 
        Illegal Load Address. 
 
    ?02 SYS ERROR # 047 
 
        Device Not Loaded. 
 
    ?02 SYS ERROR # 048 
 
        Device Not Locked in Memory. 
 
    ?02 SYS ERROR # 049 
 
        Device Is Fixed in Memory. 
 
    ?02 SYS ERROR # 050 
 
        Illegal Date Format. 
 
    ?02 SYS ERROR # 051 
 
        Illegal Time Format. 
 
    ?02 SYS ERROR # 052 
 
        System Clock not Resident. 
 
    ?02 SYS ERROR # 053 
 
        System Disk Is Reset. 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-40 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?02 Error Messages (Cont) 
    ========================= 
 
    ?02 SYS ERROR # 054 
 
        Line Buffer Overflow. 
 
    ?02 SYS ERROR # 055 
 
        Can't Unlink from Interrupt Vector. 
 
    ?02 SYS ERROR # 056 
 
        Permission NOT given. 
 
    ?02 SYS ERROR # 192 
 
        Illegal TASK Function Code. 
 
    ?02 SYS ERROR # 193 
 
        TASK Is Already Active. 
 
    ?02 SYS ERROR # 194 
 
        TASK Is Not Active. 
 
    ?02 SYS ERROR # 195 
 
        TASK Unknown to System. 
 
    ?02 SYS ERROR # 196 
 
        TASK Table Is Full. 
 
    ?02 SYS ERROR # 197 
 
        TASK May Not Be Deactivated. 
 
    ?02 SYS ERROR # 198 
 
        Illegal Task Sequence Number. 
 
    ?02 SYS ERROR # 199 
 
        Task Notification Failed 
 
    ?02 SYS ERROR # 200 
 
        Task Is Too Large.  (8k Limit) 
 
 
 



    CHAPTER THREE       SYSTEM OPTIMIZATION                       PAGE 3-41 
    =============       ===================                       ========= 
 
             APPENDIX 3-A: HDOS 3.02 SYSTEM ERROR MESSAGES (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ?02 Error Messages (Cont) 
    ========================= 
 
    ?02 SYS ERROR # 201 
 
        File Is Not Proper TASK format. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                   CHAPTER 4 
 
                                  SYSCMD/PLUS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-i 
    =============       ============                               ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3, while chapters 4, 5, 6, 7, 8, and 14, are the 
    kernel  of  revision  3.02.   Chapters  9  through   12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
 
    Chapter  4,  SYSCMD/Plus,  outlines all of the commands available under 
    SYSCMD in HDOS 3.02 and provides examples of their use.  
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West Branch Mobile  Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
 
 
     
 
 



    CHAPTER FOUR       SYSCMD/PLUS                                 PAGE 4-1 
    ============       ===========                                 ======== 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
            CREDITS ...................................... 4-3 
 
            INTRODUCTION ................................. 4-3 
 
            GENERAL COMMENTS ............................. 4-3 
 
            COMMAND LINE EDITOR .......................... 4-5 
 
            SYSTEM COMMAND PROCESSOR ..................... 4-7 
              Internal Commands .......................... 4-7 
                Filename ................................. 4-7 
                ? ........................................ 4-8 
                @ ........................................ 4-8 
                ALT ...................................... 4-8 
                AS[K] .................................... 4-9 
                BAT[CH] .................................. 4-9 
                BIT ...................................... 4-9 
                BYE ..................................... 4-10 
                C[AT] ................................... 4-10 
                Cn ...................................... 4-10 
                CB[UF] .................................. 4-10 
                CF[LAGS] ................................ 4-11 
                CH[ECK] ................................. 4-11 
                CLS ..................................... 4-11 
                CO[PY] .................................. 4-12 
                COU[NT] ................................. 4-12 
                CRC ..................................... 4-12 
                DA[TE] .................................. 4-13 
                DEF[AULT] ............................... 4-13 
                DEL[ETE] ................................ 4-14 
                DEV[ICES] ............................... 4-14 
                DIR ..................................... 4-15 
                D[ISMOUNT] .............................. 4-15 
                Dn ...................................... 4-15 
                DM[M] ................................... 4-16 
                EC[HO] .................................. 4-16 
                END ..................................... 4-17 
                ERA[SE] ................................. 4-17 
                FLO[AD] ................................. 4-17 
                GO[TO] .................................. 4-18 
                HA[LT] .................................. 4-18 
                H[ELP] .................................. 4-18 
                ID ...................................... 4-18 
                IF ...................................... 4-19 
                JU[MP] .................................. 4-19 
                KEY ..................................... 4-20 
                LI[ST] .................................. 4-20 
                L[OAD] .................................. 4-20 
                LOG ..................................... 4-21 
                MD ...................................... 4-21 
                MM ...................................... 4-21 
 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-2 
    ============        ===========                                ======== 
 
 
                           TABLE OF CONTENTS (Cont) 
                           ++++++++++++++++++++++++ 
 
                M[OUNT] ................................. 4-22 
                Mn ...................................... 4-22 
                MOV[E] .................................. 4-22 
                Pn ...................................... 4-23 
                PA[TH] .................................. 4-23 
                PAU[SE] ................................. 4-24 
                PCn ..................................... 4-24 
                PIP ..................................... 4-24 
                PR[INT] ................................. 4-25 
                PRN ..................................... 4-25 
                PRO[MT] ................................. 4-25 
                PU[SER] ................................. 4-26 
                QD ...................................... 4-27 
                QM ...................................... 4-27 
                Q[UIT] .................................. 4-27 
                REM ..................................... 4-27 
                REN[AME] ................................ 4-28 
                R[ESET] ................................. 4-28 
                Rn ...................................... 4-28 
                RUN ..................................... 4-28 
                RU[SER] ................................. 4-29 
                SF[LAGS] ................................ 4-29 
                SH[IFT] ................................. 4-29 
                SI ...................................... 4-30 
                ST[ART] ................................. 4-31 
                TI[ME] .................................. 4-31 
                TR[AP] .................................. 4-32 
                T[YPE] .................................. 4-32 
                UNL[OAD] ................................ 4-32 
                U[SER] .................................. 4-33 
                Un ...................................... 4-32 
                VERI[FY] ................................ 4-33 
                VER[SION] ............................... 4-33 
                WAIT .................................... 4-34 
                XYZ[ZY] ................................. 4-34 
 
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-3 
    ============        ===========                                ======== 
 
    ##    ##  #####      ######    ######        #####      #####   ###### 
    ##    ##  ##   ##   ##    ##  ##    ##      ##   ##    ##   ##       ## 
    ##    ##  ##    ##  ##    ##  ##                 ##    ##   ##       ## 
    ########  ##    ##  ##    ##    ####           ##      ##   ##  ####### 
    ##    ##  ##    ##  ##    ##        ##           ##    ##   ##  ## 
    ##    ##  ##   ##   ##    ##  ##    ##      ##   ##    ##   ##  ## 
    ##    ##  #####      ######    ######        #####  ##  #####    ###### 
 
    by      W.G. (Bill) Parrott  and  R.L. Musgrave (a.k.a. Mighty/Soft) 
     
    Credits: 
    ======== 
    with unending gratitude to: 
 
 J.G. Letwin, for the ORIGINAL HDOS, a real operating system 
      G.A. Chandler, for a multitude of changes/enhancements/improvements 
 David Carroll, for modifications/improvements 
 Dean Gibson, for a vastly improved assembler, DVD support, etc 
 Bruce Denton, for D.G. Electronics, Super 89, DG's Utilities 
 Tom Jorgenson, for Software Wizardry's support of HDOS 
 Dale Lamm, for MicrOhio Utilities & tasks 
 Andy Dessler, for the Job Translator & tasks 
 Dale Wilson, for input to the original HDOS 3.0 team 
 Dave Kobets, for the best run Heathkit store in the known universe 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    Introduction: 
 
    HDOS, the Heath  Disk  Operating System, is more than just an operating 
    system, it is a philosophy.  The user is the most important part of the 
    system.   The  operating  system  MUST try to protect him at all times. 
    Any applications written for HDOS should try to follow this philosophy. 
     
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    General Comments: 
 
    As  always,  when you are booting a freshly sysgened disk for the first 
    time, you MUST type SPACES so that your system can determine the disk's 
    baud  rate.   If  there  is NO write protect tab on the boot disk, this 
    baud rate will be written onto it's boot track and you will not need to 
    type SPACES for that disk again. 
                      
       Note:  Disk  #1 of the HDOS 3.0 Distribution Disks, the System Disk, 
       is a sysgened disk.  If it does not have a write protect tab on  it, 
       PUT  ONE  THERE!    In  fact,  always put a write protect tab on ANY 
       distribution disk you receive.  And do it before you use it.   Then, 
       when  you  try to boot it, you will need to type SPACES to determine 
       the baud rate.  If you have already booted it and it didn't have the 
       write protect tab in place, DO NOT WORRY!  No harm is done; see next 
       note. 
                 
       If  you  change  your  computer's baud rate via a hardware switch or 
       reprogramming the jumper wires, you might  discover  that  some, (or 
 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-4 
    ============        ===========                                ======== 
 
    General Comments (Cont) 
    ----------------------- 
 
       all) of your bootable disks just give you garbage on the screen when 
       you  try  to boot.  This is usually caused by a  physical  change in 
       the baud rate of the hardware.  To correct this situation: 
        
       FIRST hit the space bar once and notice if any change appears on the 
       screen. 
        
       If you do NOT see any new garbage, then hit the space bar a few more 
       times.  This should update your new hardware baud rate on  the  boot 
       track and you should be booting. 
        
       If  you  DO  see  more garbage, hit the BREAK key ONLY ONCE (this is 
       VERY important).  At this point you are back at  the  software  baud 
       rate determination section of the boot code.  Just hit the SPACE BAR 
       a couple of times.  This should update the baud  rate  on  the  boot 
       track allowing the disk to boot. 
        
       Also,  you  must  remove the write-protect tab while you do this, or 
       else you will have to go through this procedure every time you  boot 
       this particular disk. 
              
    During  the  boot process you are asked for today's date unless a valid 
    date is currently in memory.  You no longer need to  enter  the  entire 
    date  if  certain  conditions are true.  If today's year is the same as 
    the one you see in the date prompt, you need ONLY  enter  the  day  and 
    month  (ie:  17-JUN).   And if today's month is the same as the one you 
    see in the date prompt, you need ONLY enter the day (ie: 17).  And,  of 
    course,  if the date you see in the date prompt IS today, you need ONLY 
    hit the RETURN key. 
     
    Also during the boot process you will see  the  version,  revision  and 
    assembly  date  of  the  current  SYSCMD/Plus  followed by the version, 
    revision, and assembly date and time of the HDOS 3.0 you are booting. 
     
    Multiple  commands  may  be entered at the SYSCMD prompt.  They MUST be 
    separated by a back-slash '\'.  For example, "M1\C1".  The Command Line 
    Editor  (described  below)  will  ONLY  retain  the last command of the 
    group.  If you have a string of commands and one of them is an  illegal 
    command  or  has illegal command syntax, SYSCMD displays that fact like 
    usual, BUT then proceeds with the next command in the list.  This means 
    it  is  possible to foul things up.  If the incorrectly entered command 
    was necessary to prevent the next one from doing harmful things to your 
    files,  that  next  command can and will proceed like you knew what you 
    were doing.  BE CAREFUL!  While multiple commands are being  processed, 
    the  SYSCMD  prompt  is  NOT visible.  It returns when the commands are 
    finished. 
 
    The command line will be parsed to see if you want SYSCMD to add device 
    names to selected arguments.  The primary  device  name  will  be  used 
    unless you  preceed the command with a ';', in which case the secondary 
    device name will be  used.   To  invoke  this  feature,  use  ONLY  the 
    device's  unit  number followed immediately by a ':'.  For example, "CO 
    1:=*.BAT" will copy all files with a .BAT extension from SY0:  to  SY1: 



 
    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-5 
    ============        ===========                                ======== 
 
    General Comments (Cont) 
    ----------------------- 
 
    and   give   them  the  same  names.   A  destination  or  source  file 
    specification given as  "DVN:"  without  an  explicit  "name.ext"  will 
    default to "DVN:*.*". 
     
    Any  command  preceded  with  a  '.'  will cause the  console screen to 
    clear and enter hold screen mode.  This will ONLY work with an H19 type 
    terminal. 
         
    '.'  as a command by itself will act the same as the CLS command. 
 
    HDOS  now has the ability to know if the system disk you booted from is 
    in SY0:.  It needs to  know  this  so  you  can  continue  loading  and 
    unloading  device  drivers  as  long  as  the  original  system disk is 
    present.  There is an idiosyncrasy in HDOS that will occasionally  make 
    this impossible.  If you are copying files to the boot disk in SY0: and 
    you run out of room in the middle of one of the files, HDOS still marks 
    the  memory image of the GRT table as changed.  What this means is, the 
    next time you dismount or reset SY0: and later mount the disk back onto 
    SY0:,  HDOS  sees  it  as  a different disk and will prevent loading or 
    unloading of device drivers.  The SI command will show 'System Disk NOT 
    Mounted'.   This  is not a bug.  The internal workings of HDOS are such 
    that this operation has to take place.  Also, if you  change  disks  in 
    SY0:  and copy or delete files on the original boot disk while it is in 
    another drive, the same thing, as described above, will happen. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    Command Line Editor: 
 
    SYSCMD's Command Line Editor is invoked by CTRL-A at the SYSCMD prompt. 
    You will then be able to EDIT the previously executed  command  string, 
    except  when  your  previous  command  was a multiple command.  In this 
    case, ONLY the last command in the list can be edited. 
     
    This editor acts the same as the line editor found in MicroSoft's  (tm) 
    MBASIC  for  HDOS  except  for the 'C' command.  In MBASIC this command 
    changes only one character unless you use it  with  a  count.   With  a 
    count  of,  say,  3, it would let you change the next 3 characters.  In 
    this implementation, the 'C' command enters overstrike  mode  and  will 
    continue changing characters until you exit the mode. 
 
    Command         Description 
    --------------  ---------------------------------------------------- 
                      
    nSPACE BAR      Advance cursor right by 'n' characters (default =1). 
                    Each character is displayed as cursor moves. 
                     
    nBACK SPACE     Move  cursor  left  by 'n' characters  (default =1). 
                    Each character is blanked as cursor moves but is NOT 
                    removed from buffer. 
                  
 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-6 
    ============        ===========                                ======== 
 
    Command Line Editor (Cont) 
    -------------------------- 
 
    Command         Description 
    --------------  ------------------------------------------------------- 
 
    nDELETE         Same as  BACK SPACE, but  characters  are  ALSO deleted 
                    from  buffer,  and  any  characters  to  the  right are 
                    brought back to fill the space. 
          
    A               ABORT  current editing,  and  restart  the editor  with 
                    original buffer contents. 
 
    C               Enter CHANGE mode  (overstrike).  As the user types new 
                    characters  they  replace  the  buffer  contents at the 
                    cursor position.   Mode is exited with ESC or CR. 
                     
    nD              DELETE  'n'  characters  to the right of cursor (default 
                    =1).   Delimit  deleted text, so the user can see if he 
                    needs to abort and try again. 
 
    H               HACK off rest of buffer and enter INSERT mode. 
          
    I               Enter INSERT  mode.   As the user types new characters, 
                    they push the buffer contents to right, so they fit in. 
                    The bell rings if the buffer is full.  Mode  is  exited 
                    with ESC or CR (below). 
             
    xKc             KILL  (delete)  characters  until  the  'x'th ocurrence 
                    of  the  character  'c'.   Delimits  deleted  text.  If 
                    character not found, then uses rest of line. 
          
    L               LIST  rest  of  line  buffer, and  position  cursor  at 
                    start of line. 
                     
    Q or CTRL-D     QUIT  the editor and return to SYSCMD prompt.  Original 
                    previous command still intact. 
            
    xSc             SEARCH  for  'x'th  occurence  of the character 'c' and 
                    position the cursor there.  All previous characters are 
                    displayed. 
          
    X               Add EXTRA text at end of the line.  Position  cursor at 
                    the end of the line, and enter INSERT mode. 
 
    ESC             ESCAPE from the INSERT or CHANGE mode.  Still in editor 
                    waiting for next command. 
          
    CR              RETURN (or ENTER) KEY.  Exit the INSERT or CHANGE mode, 
                    if  user is in either, and return to SYSCMD with edited 
                    command ready for execution. 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-7 
    ============        ===========                                ======== 
 
      #######   ##      ##   #######    #######   ##        ##  ######  
     ##     ##  ##      ##  ##     ##  ##     ##  ###      ###  ##    ## 
     ##           ##  ##    ##         ##         ####    ####  ##     ## 
      ######        ##       #######   ##         ## ##  ## ##  ##     ## 
           ##       ##             ##  ##         ##  ####  ##  ##     ## 
     ##     ##      ##      ##     ##  ##     ##  ##   ##   ##  ##    ## 
      #######       ##       #######    #######   ##        ##  ###### 
 
    ----------------------------------------------------------------------- 
    SYSTEM COMMAND PROCESSOR (SYSCMD) 
    ----------------------------------------------------------------------- 
    **************************** 
    ** Internal Commands (75) ** 
    **************************** 
                  
    Note:   Some  of  the  following command names have characters inside 
            of square brackets.  It is optional to type these characters. 
 
            Example: CF[LAGS] can be entered in the following ways: 
 
    CF 
    CFL 
    CFLA 
    CFLAG 
    CFLAGS 
 
            ONLY  the  characters left of the "[" are required to initiate 
            the command. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =     
 
    Filename        Internal Command                <<HDOS 2.0 Command>> 
 
    Entering  a  filename  with  the  extension of .ABS or .BAT at the HDOS 
    prompt will cause the file to be executed if it exists.  If the  file's 
    extension  is  .ABS,  then it is a machine language program and it will 
    take control.  If the file's extension is .BAT, then it is a BATCH file 
    and it's contents will be treated like commands entered by the user. 
                              
      Notes: BATCH   files   can  use  replacable  parameters.   These  are 
             designated %0 through %9.  %0 is always the name of your BATCH 
             file.   %1  through %9 are the corresponding arguments entered 
             by you on the command  line.   White  space  is  used  as  the 
             delimiter between arguments; therefore, each argument can ONLY 
             be a single word.  See the SHIFT command for a  discussion  of 
             how to use more than 9 arguments with a command. 
 
             Other useful substitution variables are: 
 
   %n = default device name (xx) 
   %u = default device unit (n) 
   %x = default extension (ext) 
   %: = default device (xxn:) 
   %# = active USER area (0) 
   %p = active line printer unit # (0) 
   %k = ASK keystroke (Y) 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-8 
    ============        ===========                                ======== 
    
    Filename (Cont) Internal Command                <<HDOS 2.0 Command>> 
 
             If  you  want  to  use a string such as "%1" within BATCH mode 
             ECHO text, you will need to define it this way:  "%$@1".   The 
              "$@"  is  the code for sending a NULL.  This will separate the 
             "%" from the "1" and prevent BATCH mode from  interpreting  it 
             as a substitution request. 
 
        Synonyms = RUN, BAT 
 
 Syntax: FILENAME [optional arguments as required] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =     
 
 
    ???  or         Internal Command                <<NEW FOR 3.02>> 
    ?[??]                                             
 
 Display SYSCMD's HELP file on the console. 
 
 Synonym = HELP 
 
 Syntax: ? 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    @               Internal Command                <<NEW FOR 3.02>> 
 
        Execute  the  TDU  task  (Terminal  Debug  Utility)  if it has been 
        started.  If it has not,  you  will  get  an  illegal  SCALL  error 
 
        message.   This  is a very dangerous utility.  With it you can poke 
        anything anywhere in RAM.  Be VERRRRRRY careful with it. 
 
 Syntax: @ 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =     
 
    ALT             Internal Command                <<NEW FOR 3.02>> 
 
        Set  or display the current system alternate device.  The alternate 
        device is used when you include a ';'  at  the  beginning  of  your 
        command. 
         
        If you set the alternate device equal to the primary device and the 
        primary device is the default primary device, SYSCMD will force the 
        alternate  device  to be the default alternate device.  Conversely, 
        if the primary device is the default alternate device, SYSCMD  will 
        force  the  alternate  device to be the default primary device.  If 
        you have used some other device name for the primary  device,  then 
        both  the  primary and alternate device names will remain the same. 
        Not very useful, except for testing something. 
 
        Syntax: ALT ................... (display current alternate device) 
                ALT xx[:] ............. (set alternate device) 
                ALT : ................. (set to default alternate device) 



    CHAPTER FOUR        SYSCMD/PLUS                                PAGE 4-9 
    ============        ===========                                ======== 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    ASK  or         BATCH Command                   <<NEW FOR 3.02>> 
    AS[K]                          
 
        Display optional text on the console, wait for user to touch a key, 
        save ASCII value of user's keystroke for  later  testing/use.   See 
        the  PROMPT  command for a list of the special characters which you 
        can use within the optional text.  Testing  is  done  with  the  IF 
        command.  ASK will ONLY function within BATCH mode. 
 
 Synonym = (KEY <alpha>) 
 
 
        Syntax: AS  ................... (just get keystroke) 
                AS [optional text] .... (display text & get keystroke) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    BATCH  or       Internal Command                <<NEW FOR 3.02>> 
    BAT[CH]                                                          
 
        HDOS  normally  tries to execute an .ABS file when you enter just a 
        filename  and then tries to find a .BAT file if there  is  no  .ABS 
 
        file.   This  command  skips the .ABS portion and tries immediately 
        for a .BAT file.  This is useful if you have a long path since  the 
        search  could take a while, and it would go through it twice: first 
        looking for the .ABS file, then looking for the .BAT file. 
 
        Synonym = RUN<filename> 
 
 Syntax: BAT filename [optional arguments as required] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    BIT             BATCH Command                   <<NEW FOR 3.02>> 
 
        Manipulate  the 8 bits in the user control byte.  Bits are numbered 
        zero (0) through seven (7).  This feature could be used to  control 
        the  flow  of  a  BATCH file.  For example, you may want to run the 
        same BATCH file more than once to achieve a different effect.  Just 
        set  a  bit  on  the  first  run  and  test for it the second time. 
        Testing is done with the IF command. 
 
        Syntax: BIT ........................ (show BIT values) 
                BIT S ...................... (set all 8 bits) 
                BIT S digit ................ (set one bit, digit = 0..7) 
                BIT C ...................... (clear all eight bits) 
                BIT C dight ................ (clear one bit, digit = 0..7) 
                BIT T ...................... (toggle all eight bits) 
                BIT T digit ................ (toggle one bit, digit = 0..7) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-10 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    BYE             Internal Command                <<HDOS 2.0 Command>> 
 
        The old, familiar way to exit from HDOS.  After using this command, 
        you will have to do a hard reset in order to re-boot. 
 
        Synonyms = QUIT, <HALT> 
 
 Syntax: BYE 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    CAT  or         Internal Command        <<PIP>> 
    C[AT]                                             
 
        Display  a diskette's directory on the console or send it to a file 
        or device.  This command normally uses the primary device.  If  you 
        preceed  it  with  a  ';'  it will use the alternate device.  If no 
        argument is given it uses the default unit of the default device. 
 
        Synonyms = Cn, DIR 
 
        Syntax: C ..................................... (all files) 
                C filename(s) ......................... (selected files) 
                C DVn: ................................ (all files) 
                C Dvn:filename(s) ..................... (selected files) 
                C DVn:filename.ext=  .................. (all files) 
                C DVn:filename.ext=filename(s) ........ (selected files) 
                C DVn:filename.ext=dev: ............... (all files) 
                C DVn:filename.ext=dev:filename(s) .... (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    Cn              Internal Command        <<PIP>> 
 
        Display  a  diskette's directory on the console.  This command uses 
        the given unit of the primary device.  If you preceed it with a ';' 
        it will use the given unit of the alternate device. 
 
        Synonyms = CAT, DIR 
 
 Syntax: Cn     (all files) 
  Cn filename(s)    (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    CBUF  or        BATCH Command                   <<NEW FOR #.02>> 
    CB[UF]                                                            
 
        Clear  the  console  buffer.   CBUF will ONLY function within BATCH 
        mode. 
         
 Syntax: CB 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-11 
    ============        ===========                               ========= 
 
    CFLAGS  or      Internal Command        <<PIP>> <<NEW FOR 3.02>> 
    CF[LAGS]                                                          
 
 Clear selected flags from the selected files. 
 
        Flags:  S - System ................ (normally hidden from view) 
                L - Lock .................. (can't alter flags unless SYSOP) 
                W - Write protect ......... (can't write to file w/o FORCE) 
                C - Contiguous ............ (CANNOT be cleared by user) 
                A - Archive ............... (presently unsupported) 
                B - Bad ................... (file has a bad sector in it) 
                D - Delete protect ........ (file can't be deleted w/o FORCE) 
                U - User .................. (any meaning the user wishes) 
  * - all possible flags 
  & - SLWD combination 
  @ - clear access date & access count also 
 
        Syntax: CF DVn: ................... (all files, all flags) 
                CF filename(s) ............ (selected files, all flags) 
                CF DVn:=flags ............. (all files, selected flags) 
                CF filename(s)=flags ...... (selected flags, selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
      
    CHECK  or       Internal Command        <<PIP>> 
    CH[ECK]                                         
 
 
        Calculate  the  CRC  checksum of the selected files.  Display these 
        results in decimal, octal, and hex on the console or send them to a 
        file or device. 
 
 Synonym = CRC 
 
        Syntax: CH DVv: ............................... (all files) 
                CH filename(s) ........................ (selected files) 
                CH DVn:filename.ext=dev: .............. (all files) 
                CH DVn:filename.ext=dev:filename(s) ... (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    CLS             Internal Command 
 
        Clear  the console screen.  Clear graphics and reverse video modes. 
        Clear the 25th line and turn on the  cursor.   A  new  prompt  will 
        appear  at the top of the screen if ECHO is on.  If any argument is 
        used with the CLS command, then  ONLY  the  graphics,  and  reverse 
        video  modes  and the 25th line will be cleared and the cursor will 
        be turned on. 
         
        Synonym = "." NO command or arguments required. 
 
        Syntax: CLS ................... (clear screen & modes) 
                CLS <any arg> ......... (clear modes ONLY) 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-12 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    COPY  or        Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
    CO[PY]                                                               
 
        Copy  selected  source  files to selected destination files or to a 
        selected device.  If DESTINATION (i.e., DEST) device is a directory 
        device,  then  *.*  is  assumed.   If  '.'   is  used  as DEST then 
        'xxn:*.*' is assumed with 'xxn' being the default device and  unit. 
        If  DEST  is LP: and you want each file to start on new pages, then 
        use 'LP:*.*', PRINT command does this for you.  If DEST is a single 
        file  name  and  more  than  one source file is specified, then the 
        source files will be concatenated into DESTINATION. 
         
        A new feature of HDOS 3.02 is the ability to  swap  the  DEST  disk 
        when  it  is  full  and  continue copying files.  When there is not 
        enough free space on your DEST disk to copy the next  file  in  the 
        list,  you  are  given a choice.  You may abort the copy operation, 
        skip the current file and proceed, or  reset  the  DEST  drive  and 
        retry  the  same file.  Whatever you choose, any files copied prior 
        to this point are still intact. 
         
        Synonyms = MOVE, TYPE, LIST, PRINT 
 
 Syntax: CO destination=source 
                CO destination=dev: ... (source = all files) 
                CO .=source ........... (dest = default_dev:*.*) 
                CO DVn:=source ........ (dest = dev:*.*) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    COUNT  or       BATCH Command                  <<NEW FOR 3.02>> 
    COU[NT]                        
 
        Manipulate  user  counter  byte.   This command gives you iteration 
        ability within BATCH files.  Testing is done with the IF command. 
 
        Syntax: COU  .................. (display counter value) 
                COU value  ............ (set counter to value 0..255) 
                COU = value  .......... (set counter to value 0..255) 
                COU +  ................ (increment counter) 
                COU -  ................ (decrement counter) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =     
 
    CRC             Internal Command        <<PIP>> 
      
        Calculate  the  CRC  checksum of the selected files.  Display these 
        results in decimal, octal, and hex on the console or send them to a 
        file or device.     Synonym = CHECK 
 
        Syntax: CRC DVn: .............................. (all files) 
                CRC filename(s) ....................... (selected files) 
                CRC DVn:filename.ext=dev: ............. (all files) 
                CRC DVn:filename.ext=dev:filename(s) .. (selected files) 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-13 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    DATE  or        Internal Command                <<HDOS 2.0 Command>> 
    DA[TE]                                                                
 
        Set or display the current system date.  You are no longer required 
        to enter the complete date string.  If your desired date is in  the 
        current  system  date's  year,  the  year  may be omitted.  If your 
        desired date is in the current system date's month and  year,  both 
        the month and year may be omitted. 
 
 Syntax: DA   (display current system date) 
  DA dd   (set system date's day ONLY) 
  DA dd-mmm  (set system date's day & month ONLY) 
  DA dd-mmm-yy  (set system date) 
  DA no-date  (clear system date to <NO-DATE>) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    DEFAULT  or     Internal Command                <<NEW FOR 3.02>> 
    DEF[AULT]                         
 
        Set or display the current system default device.  You may also set 
        the default extension if you wish.  PIP commands use  this  default 
        to build source file lists unless you specify a device. 
         
        If you set the primary device equal to the alternate device and the 
        alternate device is the default alternate device, SYSCMD will force 
        the  primary  device to be the default primary device.  Conversely, 
        if the alternate device is the default primary device, SYSCMD  will 
        force  the  primary  device to be the default alternate device.  If 
        you have used some other device name for the alternate device, then 
        both the primary and alternate device names will remain equal.  Not 
        very useful, except for testing something. 
         
        If the alternate device is equal to  the  default  primary  device, 
        using ";" with the appropriate commands will now affect the default 
        primary device. 
         
        Syntax: DEF ................ (display current system default block) 
                DEF :  ............. (set default default) 
                DEF xx  ............ (set default device, same unit number) 
                DEF xx:  ........... (set default device, unit = 0) 
                DEF xxn[:] ......... (set default device and unit number) 
                DEF xxnext ......... (set whole default block) 
                DEF 0  ............. (set default extension to nulls) 
                DEF ~  ............. (set whole default block to nulls) 
 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-14 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    DELETE  or      Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
    DEL[ETE]                                                             
 
        Delete  selected  files.   If you select, *.* you will be asked for 
        confirmation.  If you are NOT in user area 0, you will be asked for 
        confirmation.  It is possible for you to be asked both times if you 
        select *.* AND are outside of user area 0. 
 
 Synonym = ERASE 
 
        Syntax: DEL DVn:                                (all files) 
  DEL filename(s)    (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    DEVICES  or     Internal Command                <<NEW FOR 3.02>> 
    DEV[ICES]                         
 
        Display current status of all known device drivers in system.  Also 
        indicate mounted units and their free space.  The following symbols 
        are used to indicate the driver's status: 
 
  ## = in memory, locked, fixed 
  ** = in memory, locked 
  ++ = in memory (temporary) 
  -- = in memory BUT unload is pending 
     = NOT in memory (blank symbol) 
      
        If  a  given unit is not mounted, then display its capability.  The 
        following symbols are used to do this: 
 
  D  = directory device 
  R  = capable of read 
  W  = capable of write 
  U  = capable of update (random) 
  C  = capable of character mode 
  F  = media is fixed (hard disk) 
  ?  = media is pre-3.0 
  N  = driver requires unload notification 
 
        The  last  three symbols above are ONLY present with device drivers 
        supplied with the HDOS 3.0 distribution disks.  Third party drivers 
        would  have  to  be  recompiled  to comply with this standard.  The 
        trailing colon in the device name is optional. 
 
 Syntax: DEV   (display all known devices) 
  DEV xx[:]  (display specific device ONLY) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-15 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    DIR             Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
 
        Display a diskette directory on the console or send it to a file or 
        device.  This command normally uses the  primary  device.   If  you 
        preceed  it  with  a  ';', it will use the alternate device.  if no 
        argument is given, it uses the default unit of the default device. 
 
        Synonyms = CAT, Cn 
 
        Syntax: DIR ................................... (all files) 
                DIR filename(s) ....................... (selected files) 
                DIR DVn: .............................. (all files) 
                DIR DVn:filename(s) ................... (selected files) 
                DIR DVn:filename.ext=  ................ (all files) 
                DIR DVn:filename.ext=filename(s) ...... (selected files) 
                DIR DVn:filename.ext=dev: ............. (all files) 
                DIR DVn:filename.ext=dev:filename(s) .. (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    DISMOUNT  or    Internal Command                <<HDOS 2.0 Command>> 
    D[ISMOUNT]                                                            
 
        Dismount  the specified unit of the specified device.  This command 
        normally uses the primary device.  If you preceed it with a ';', it 
        will  use  the alternate  device.  If no argument is given, it will 
        dismount the default unit of the default device. 
 
 Synonym = Dn 
 
        Syntax: D ............. (dismount default unit of default drive) 
                D xx:  ........ (dismount unit 0 of specified drive) 
                D xxn: ........ (dismount specified unit of specified drive) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 
    Dn              Internal Command                <<NEW FOR 3.02>>  
 
        Dismount  the specified unit of the primary device.  If you preceed 
        it with a ';', it will use the alternate device. 
 
 Synonym = DISMOUNT 
 
 Syntax: Dn     (n = 0..7) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-16 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    DMM  or         Internal Command                <<NEW FOR 3.02>> 
    DM[M]                             
      
        Display  Main  Memory:    This command tabulates briefly the memory 
        allocation  currently  in  use.   The  following   information   is 
        presented: 
 
  Total Memory: nnnnn Bytes (nn.00 k) 
  HDOS Locked: nnnnn Bytes (nn.nn k) 
  HDOS Reserved: nnnnn Bytes (nn.nn k) 
  User Memory: nnnnn Bytes (nn.nn k) 
  HDOS System: nnnnn Bytes (nn.nn k) 
 
        Total  Memory is just that -- the total amount of RAM that is found 
        in your computer. 
         
        HDOS Locked is the amount of RAM used by HDOS  drivers  and  tables 
        and system scratch area. It occupies the top of memory. 
         
        HDOS  Reserved is the amount of RAM used by HDOS drivers NOT locked 
        in memory.  It is just below HDOS Locked RAM.  This  will  normally 
        be 0. 
         
        User  Memory  is  the  RAM  you  may use for your applications.  It 
        starts at USERFWA (2280H or 042.200A) and goes up to HDOS  Reserved 
        RAM. 
         
        HDOS  System  is  the  RAM  starting  at the bottom of memory which 
        contains the Base Page, HDOS 3.0 itself, H17 ROM routines, HDOS 3.0 
        buffers,  the  RAM work areas used by HDOS, and finally, the system 
        STACK.  It runs up to USERFWA. 
         
        Syntax: DM 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    ECHO  or        BATCH Command                   <<NEW FOR 3.02>> 
    EC[HO]                        
 
        Set  or display the status of ECHO.  This determines whether or not 
        you will see commands on the console as they are  entered,  usually 
        by  the BATCH facility.  This command also sends text to the screen 
        even while ECHO is off.  See the PROMPT command for a list  of  the 
        special  characters  which  you  can use within the ECHO text.  The 
        second 'F' in OFF is optional.  If you want to start the ECHO  text 
        with the word  'ON' or 'OF ,' you MUST use '$ON' or '$OF' to bypass 
        command parsing.  While ECHO is OFF, the DOS prompt  is  NOT  shown 
        between commands. 
 
        Syntax: EC .................... (display status of ECHO state) 
                EC ON  ................ (turn ECHO on) 
                EC OF[F]  ............. (turn ECHO off) 
                EC text to display .... (display text on console) 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-17 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    END             BATCH Command                   <<NEW FOR 3.02>>  
 
        Use  this  command to prematurely exit from BATCH mode.  This saves 
        the time and trouble of jumping to a label at the end of the  BATCH 
        file.   Using  a "C" argument will cause the CLS command to also be 
        executed.  Using any other argument will  cause  the  optional  CLS 
        command  to be executed; that is, it will clear modes.  See the CLS 
        command for an explanation of what this means. 
 
        Syntax: END ................... (exit BATCH mode) 
                END C ................. (exit & clear screen through CLS) 
                END <any arg> ......... (exit & clear modes through CLS x) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 
    ERASE  or       Internal Command        <<PIP>> 
    ERA[SE]                                          
 
        Erase selected  files.   If  you  select *.*, you will be asked for 
        confirmation.  If you are NOT in user area 0, you will be asked for 
        confirmation.  It is possible for you to be asked both times if you 
        select *.* AND are outside of user area 0. 
 
 Synonym = DELETE 
 
        Syntax: ERA DVn:                                (all files) 
  ERA filename(s)    (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    FLOAD  or       Internal Command                <<NEW FOR 3.02>> 
    FLO[AD]                           
 
        Load  a device driver into RAM, lock AND fix it there.  This places 
        the  driver  within  HDOS  Locked  RAM   (see   DMM).    Under   NO 
        circumstances  can  you  UNLOAD this driver or any drivers or tasks 
        above it in memory.  The  trailing  colon  is  optional  with  this 
        command.   The  system  TT:  and SY: drivers are fixed in memory by 
        HDOS at boot time.  This is indicated by the  '##'  symbol  in  the 
        DEVICES command. 
 
 Synonym = LOAD 
 
        Syntax: FLO xx[:]       (load, lock, and fix the xx: device driver) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-18 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    GOTO  or        BATCH Command                   <<NEW FOR 3.02>> 
    GO[TO]                         
 
        Branch  to  the  selected label within a BATCH file.  The format of 
        the label is ":label" (without the quotes).  The first character is 
        a colon.  The search for this label starts at the first line of the 
        BATCH file.  If you know your label is  after  the  GOTO  then  you 
        should use JUMP instead, since it start it's  search at the current 
        line of the BATCH file.  GOTO will ONLY function within BATCH mode. 
         
 Synonym = JUMP 
 
 Syntax: GO label 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    HALT  or        Internal Command                <<NEW FOR 3.02>> 
    HA[LT]                                                                
 
        The  special  way  to exit from HDOS.  After using this command you 
        will have to do a hard reset in order to  re-boot.   This  exit  is 
        special  in  that  HDOS  will try to execute SHUTDOWN.ABS if it can 
        find it on SY0:.  If it can't find this file, then it tries to  run 
        SHUTDOWN.BAT  from  SY0:.   This  would be useful if you always run 
        backups or you need to park a hard disk. 
 
        Synonyms = BYE, QUIT 
 
 
 Syntax: HA 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    HELP  or        Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
    H[ELP]                                                                
 
 Display SYSCMD's HELP file on the console. 
 
 Synonym = ??? 
 
 Syntax: H 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    ID              Internal Command                <<NEW FOR 3.02>> 
 
        Display  current  version  information,  date compiled and assembly 
        options.  Also show FWA, LWA and buffer address. 
         
 Synonym = VERSION 
 
 Syntax: ID 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-19 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    IF              BATCH Command                   <<NEW FOR 3.02>> 
 
        Conditional  branching and program control within BATCH files.  The 
        command following the condition is executed if the condition yields 
        a TRUE  result.   If  NOT is used before the condition test, then a 
        FALSE result will execute the command following the condition. 
 
 Available <<conditions>> are: 
 
                BIT digit ......... (is specified bit on, digit = 0..7) 
                EXI[ST] filename .. (does file exist) 
                COU[NT] = value ... (does counter = 8 bit unsigned value) 
                ERR[OR] = value ... (does error code = 8 bit unsigned value) 
                CRC = value ....... (does .CRCSUM = 16 bit unsigned value) 
                KEY = value ....... (does keystroke = 8 bit value) 
                string = string ... (does string 1 = string 2) 
                   
        The  value  for  CRC  is  taken  from  the RAM cell used by the CRC 
        command.  This value is preserved  until  the  next  COPY  or  MOVE 
        command. 
         
        The  value  for KEY can also be an ASCII character inside of single 
        quotes, for example, 'A'. 
         
        The (string = string) function uses white space  and/or  the  equal 
        sign as delimiters.  Therefore, ONLY single words can be used here. 
         
        Syntax: IF <<condition>> <<command>> .................. (if TRUE) 
                IF NOT <<condition>> <<command>> .............. (if FALSE) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    JUMP  or        BATCH Command                   <<NEW FOR 3.02>> 
    JU[MP]                         
 
        Branch  to  the  selected label within a BATCH file.  The format of 
        the label is ":label" (without the quotes).  The first character is 
        a  colon.   The search for this label starts at the current line of 
        the BATCH file.  If you know your label is before the JUMP then you 
        MUST  use GOTO instead since it start it's search at the first line 
        of the BATCH file.  JUMP will ONLY function within BATCH mode. 
 
 Synonym = GOTO 
 
 Syntax: JU label 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-20 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    KEY             BATCH command                   <<NEW FOR 3.02>> 
 
        Preset  the  ASK  keystroke  value.   ONLY alpha characters and the 
        special cases shown below are valid here.  Some control  characters 
        will work here also, as they do with ASK. 
 
 Synonym = (ASK) 
 
        Syntax: KEY ................... (display the current value in decimal) 
                KEY ?<return> ......... (set it to NULL) 
                KEY ?<space> .......... (set it to SPACE) 
                KEY ?<tab> ............ (set it to TAB) 
                KEY ?? ................ (set it to '?') 
                KEY alpha ............. (set it to <<alpha>> character) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    LIST  or        Internal Command        <<PIP>> 
    LI[ST]                                            
 
        Display files on the system console.  If the file is NOT ASCII, you 
        will be informed of that fact, and the command will  cycle  to  the 
        next  filename  in  your  list.  If you use the /FORCE switch, even 
        non-ASCII files will be  displayed.   Be  advised  that  this  will 
        probably put garbage on the screen. 
         
        Synonyms = TYPE, PRINT 
 
        Syntax: LI DVn: ............................... (all files) 
                LI filename(s) ........................ (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    LOAD  or        Internal Command                <<HDOS 2.0 Command>> 
    L[OAD]                                                                
 
        Load  a  device driver into RAM and lock it there.  This places the 
        driver  within  HDOS  Locked  RAM   (see   DMM).    Under   certain 
        circumstances, you  can  UNLOAD the driver later if you find you no 
        longer need it or you need the extra space.  The trailing colon  is 
        optional with this command. 
         
 Synonym = FLOAD 
 
 Syntax: L xx[:]   (load & lock the xx: device driver) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-21 
    ============        ===========                               =========  
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    LOG             Internal Command                <<NEW FOR 3.02>> 
 
        Toggle  the  state  of  the ECHO task.  This is NOT the same as the 
        ECHO command. 
 
        Syntax: LOG  .................. (turn logging on) 
                LOG ON ................ (turn logging on) 
                LOG OF[F] ............. (turn logging off) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    MD              Internal Command                <<NEW FOR 3.02>> 
                     
        Multiple  dismount  all  mounted  units  of specified device except 
        SY0:.  This command normally  uses  the  primary  device.   If  you 
        precede  the command  with a ';', it will use the secondary device. 
        If an argument is given, then dismount the  device.   The  trailing 
        colon in the device name is optional. 
 
        Synonym = QD 
 
        Syntax: MD ...................... (Multi-dismount default device) 
                MD DVn: DVn: ............ (Multi-dismount specified device) 
 
    =   =   =  =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    MM              Internal Command                <<NEW FOR 3.02>> 
 
        Multiple  mount  all  available  units  of specified device, if the 
        device is ready -- that is, has a diskette in it and  the  door  is 
        closed.   This  command  normally  uses the primary device.  If you 
        precede the command with a ';', it will use the  secondary  device. 
        If  an  argument  is  given,  then mount that device.  The trailing 
        colon in the device name is optional. 
 
        Synonym = QM 
 
        Syntax: MM ......................... (multi-mount default device) 
                MM DVn: DVn: ............... (multi-mount specified device) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-22 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    MOUNT  or       Internal Command                <<HDOS 2.0 Command>> 
    M[OUNT]                                                               
 
        Mount  the  specified  unit  of the specified device.  This command 
        normally uses the primary device.  If you precede the command  with 
        a  ';', it will use the alternate device.  If no argument is given, 
        it will mount the default unit of the default device. 
         
 Synonym = Mn 
 
        Syntax: M ............. (mount default unit of default drive) 
                M Dv: ......... (mount unit 0 of specified drive) 
                M DVn: ........ (mount specified unit of specified drive) 
 
 
 
      =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    Mn              Internal Command                <<NEW FOR 3.02>> 
 
        Mount the specified unit of the primary device.  If you preceed the 
        command with a ';' it will use the alternate device. 
         
 Synonym = MOUNT 
 
 Syntax: Mn     (n = 0..7) 
 
 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    MOVE  or        Internal Command        <<PIP>> <<NEW FOR 3.02>> 
    MOV[E]                                                             
 
        Copy  selected  source  files to selected destination files or to a 
        selected directory device, and then delete the source file  if  the 
        copy  is  good (tested by VERIFY).  If the DESTINATION (i.e., DEST) 
        device is NOT a directory device, then  this  command  is  same  as 
        COPY,  and  source files are NOT deleted.  If '.'  is used as DEST, 
        then 'xxn:*.*' is assumed, with 'xxn' being the default device  and 
        unit.   VERIFY  is automatically enabled by the MOVE command.  This 
        command CANNOT be used to concatenate files. 
 
 Synonym = COPY/DSF  (/DSF = delete source file) 
 
 Syntax: MOV destination=source 
                MOV .=source            (dest = default_DVn:*.*) 
                MOV DVn:=source         (dest = DVn:*.*) 
 
 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-23 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    Pn              Internal Command                <<NEW FOR 3.02>> 
 
        Set  active list device unit number.  This is used with LP: drivers 
        like UD: which have more than one possible unit.  The valid choices 
        for the unit number are 0 through 7.  A check is made to insure the 
        unit number is known to the  system.   If  not,  the  current  unit 
        number  is  NOT  changed.   This command affects PRINT and PCn.  It 
        WILL NOT make all programs default to the  specified  printer  unit 
        number  (unless  the individual programs fetch the unit number from 
        low memory and use it themselves). 
 
        Synonym = PRN 
 
 Syntax: Pn   (set unit to "n") 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    PATH  or        Internal Command                <<NEW FOR 3.02>> 
    PA[TH]                               
 
        Set,  display  or clear the system path string.  No syntax checking 
        is performed by this command.  Any errors will not  show  up  until 
        the  path  is  accessed by SYSCMD.  It will issue the phrase 'Check 
        Path', show you the offending characters, and give the  appropriate 
        error message. 
         
        You  may  define  your PATH string in several ways.  The delimiters 
        are the SPACE, the TAB, the COMMA, the  COLON,  the  SEMICOLON,  or 
        nothing.  The following examples are all equivalent: 
 
  SY0 SY1 SY2 
  SY0 SY1 SY2 (tab or multiple spaces) 
  SY0,SY1,SY2 
  SY0:SY1:SY2 
  SY0;SY1;SY2 
  SY0SY1SY2 
 
        You  may  also  use  'xx:'  where 'xx' is a valid directory device. 
        This will yield 'xx0'. 
  
        Syntax: PA .................... (display current path string) 
                PA text ............... (set new path string) 
                PA ~ .................. (clear path string) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
 
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-24 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    PAUSE  or       BATCH Command                   <<NEW FOR 3.02>> 
    PAU[SE]                          
 
        Display optional text, print "Touch a key when ready," and wait for 
        a keystroke.  The keystroke is NOT saved  for  future  testing/use. 
        See  PROMPT command for a list of special characters you can use in 
        the optional text.  PAUSE will ONLY function within BATCH mode. 
         
        Synonym = (WAIT, with NO argument) 
 
 Syntax: PAU [optional text] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    PCn             Internal Command        <<PIP>> <<NEW FOR 3.02>> 
 
        Display  a  diskette's directory on the system list device, usually 
        the line printer.  This command uses  the  specified  unit  of  the 
        primary device.  If you precede the command with a ';', it will use 
        the specified unit of the alternate  device.   See  Pn  command  to 
        change  printer  unit  number.   See  PRN command to change printer 
        device name. 
 
        Syntax: PCn ................................... (all files) 
                PCn filename(s) ....................... (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
 
    PIP             Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
 
        Execute  PIP  in  prompted  mode  or  execute  PIP  with a command. 
        Prompted mode stays in  PIP  until  you  touch  Control-D  at  it's 
        prompt.   If you include the command for PIP to execute, it will do 
        the command, if possible, and then return to where  you  called  it 
        from.   Normally  this  will  be  SYSCMD, but could also be MegaPIP 
        (i.e., MP.ABS) ((c) Mighty/Soft) or a shell  program  of  your  own 
        choosing.    A   third  party  shell  should  NOT  be  used  unless 
        specifically advertised for use with HDOS 3.0, or your system could 
        hang and you could lose data.  
 
        Syntax: PIP ........................... (enter PIP and prompt user) 
                PIP command ................... (enter PIP, do command, exit) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-25 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    PRINT  or       Internal Command        <<PIP>> <<NEW FOR 3.02>> 
    PR[IBNT]                                           
 
        Display files on the system list device, normally the line printer. 
        If the file is NOT ASCII, you will get garbage on  the  printer  so 
        you are responsible for knowing what you are printing.  The command 
        sent to PIP will be  something  like  'LP0:*.*=filename(s)'.   This 
        will  allow  each  file  to start on a new page.  See Pn command to 
        change printer unit number.  See  PRN  command  to  change  printer 
        device name. 
 
 Synonym = LIST, TYPE 
 
        Syntax: PR DVn: ............................... (all files) 
                PR filename(s) ........................ (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    PRN             Internal Command                <<NEW FOR 3.02>> 
 
        Set  or  display  active list device name.  Setting the list device 
        name  also resets its unit number to zero.  This command  lets  you 
        play around with the name of your printer.  If the only argument is 
        a colon (:), the list device name is reset to  its  default  value, 
        usually LP:.  This command affects PRINT and PCn.  It WILL NOT make 
        all programs default to the  specified  printer  name  (unless  the 
        individual  programs  fetch the device name from low memory and use 
        it themselves). 
         
 Synonym = (Pn) 
 
        Syntax: PRN ................... (display current name & unit) 
                PRN xx[:] ............. (set name to "xx") 
                PRN : ................. (set name to default) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    PROMPT  or      Internal Command                <<NEW FOR 3.02>> 
    PRO[MPT]                           
 
        Set,  display,  or  clear  the  system  prompt  string.   No syntax 
        checking is performed by this command.  What you see  is  what  you 
        get when SYSCMD issues the new prompt. 
                  
        Note:   You  have  several  special characters available to you for 
                the PROMPT, ECHO, ASK, and  PAUSE  strings.   They  are  as 
                follows: 
                 
  $d = system date (dd-mmm-yy) 
  $t = system time (hh:mm:ss) 
  $v = version number (3.02) 
  $n = default device name (xx) 
    (Continued on Next Page.) 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-26 
    ============        ===========                               ========= 
 
    PROMPT  or      Internal Command  (Cont) 
    PRO[MPT] 
 
  $u = default device unit (n) 
  $x = default extension (ext) 
  $: = default device (xxn:) 
  $# = active USER area (0) 
  $p = active line printer unit # (0) 
  $k = the ASK keystroke 
  $h = back space + space + backspace (back up & erase) 
  $> = default system prompt 
  $@ = the null character 
  $b = the bell character 
  $< = the back space character (alone) 
  $, = the tab character 
  $_ = the new line character 
  $^ = the form feed character 
  $= = the carriage return character 
  $' = the click character (^R, ONLY if you have an Ultra ROM) 
  $e = the escape character 
                $s = the space character 
                $$ = the dollar sign character 
                $~ = the tilde character (for use as first char. in text) 
 
                You  MUST  put  $_ at the end of each physical line of your 
                text  if you don't  want the cursor to remain at the end of 
                the text, wherever it may be on the screen. 
                 
        Syntax: PRO ................... (display current prompt string) 
                PRO text .............. (set new prompt string) 
                PRO ~  ................ (clear prompt string) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    PUSER  or       Internal Command        <<PIP>> <<NEW FOR 3.02>> 
    PU[SER]                                                            
 
 Put selected files into the selected user areas. 
          
 Users: 0 - User area 0      (CANNOT be set by you) 
  1 through 7 - User area 1 through User area 7 
  * - all possible user areas 
                ! - put ONLY into selected areas, remove from others 
                      (except 0) 
         
        Syntax: PU dev:=users ............. (all files, selected users) 
                PU filename(s)=users ...... (selected files, 
                                             selected users) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-27 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    QD              Internal Command                <<NEW FOR 3.02>> 
 
        Quiet  multiple  dismount  all  mounted  units  of specified device 
        without issuing the dismount message.  This command  normally  uses 
        the  primary  device.  If you preceed it with a ';' it will use the 
        secondary device.  If an argument  is  given,  then  dismount  that 
        device. The trailing colon in the device name is optional. 
         
 Synonym = MD 
 
        Syntax: QD .................... (quiet-dismount default device) 
                QD xx[:] .............. (quiet-dismount specified device) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    QM              Internal Command                <<NEW FOR 3.02>> 
 
        Quiet multiple mount all available units of specified device if the 
        device is ready, that is, has a diskette in  it  and  the  door  is 
        closed,  without  issuing the mount message.  This command normally 
        uses the primary device.  If you preceed it with a ';' it will  use 
        the secondary  device.   If  an  argument is given, then mount that 
        device.  The trailing colon in the device name is optional. 
         
 Synonym = MM 
 
        Syntax: QM .................... (quick-mount default device) 
                QM xx[:] .............. (quick-mount specified device) 
 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    QUIT  or        Internal Command 
    Q[UIT]                             
 
        The  normal  way  to  exit from HDOS.  After using this command you 
        will have to do a hard reset in order to re-boot. 
 
 Synonym = BYE, (HALT) 
 
 Syntax: Q 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    REM             BATCH Command                   <<NEW FOR 3.02>> 
 
        Insert  a  comment into your BATCH file.  You may also use a single 
        tick mark ('). 
 
 Syntax: REM [optional text] 
  ' [optional text] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-28 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
     RENAME  or      Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
     REN[AME]                                                               
 
        Rename files.  The device is only required on the destination name. 
        If the source name has a lock flag, you will have to use the /FORCE 
        switch  to  rename  it.  If you want the newly named file to retain 
        it's original flags, you will also need to use the /KEEP switch. 
          
        Syntax: REN destination=source ............ (use default device) 
                REN DVn:destination=source ........ (use specified device) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    RESET  or       Internal Command                <<HDOS 2.0 Command>> 
    R[ESET]                                                               
 
        Reset  the  specified  unit  of the specified device.  This command 
        normally uses the primary device.  If you preceed it with a ';', it 
        will use  the  alternate  device.  If no argument is given, it will 
        reset the default unit of the default device. 
 
 Synonym = Rn 
 
        Syntax: R ............. (reset default unit of default drive) 
                R xx: ......... (reset unit 0 of specified drive) 
                R xxn: ........ (reset specified unit of specified drive) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    Rn              Internal Command                <<NEW FOR 3.02>> 
 
        Reset  the specified unit of the primary device.  If you precede it 
        with a ';' it will use the alternate device. 
 
 Synonym = RESET 
 
 Syntax: Rn     (n = 0..7) 
 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    RUN             Internal Command                <<HDOS 2.0 Command>> 
 
        Execute the selected file if it exists.  If the file's extension is 
        .ABS, then it is a  machine  language  program  and  it  will  take 
        control.   If the file's extension is .BAT, then it is a BATCH file 
        and it's contents will be treated like commands entered by the user 
        at the keyboard. 
         
        Synonyms = BAT, <filename> 
 
 Syntax: RUN filename [optional arguments as required] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-29 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    RUSER  or       Internal Command        <<PIP>> <<NEW FOR 3.02>> 
    RU[SER]                                                           
 
 Remove selected files from the selected user areas. 
 
 Users: 0 - User area 0      (CANNOT be removed by you) 
  1 through 7 - User area 1 through User area 7 
  * - all possible user areas 
 
        Syntax: RU DVn: ................... (all files, current user) 
                RU filename(s) ............ (selected files, current user) 
                RU DVn:=users ............. (all files, selected users) 
                RU filename(s)=users ...... (selected files, selected users) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    SFLAGS  or      Internal Command        <<PIP>> <<NEW FOR 3.02>> 
    SF[LAGS] 
 
 Set selected flags on the selected files. 
 
        Flags:  S - System ............... (normally hidden from view) 
                L - Lock ................. (can't alter flags unless SYSOP) 
                W - Write protect ........ (can't write to file w/o FORCE) 
                C - Contiguous ........... (CANNOT be set by user) 
                A - Archive .............. (presently unsupported) 
                B - Bad .................. (file has a bad sector in it) 
                D - Delete protect ....... (file can't be deleted w/o FORCE) 
                U - User ................. (any meaning the user wishes) 
                * - all possible flags 
  ! - set ONLY selected flags, clear all others (except C) 
  & - set S L W and D flags 
 
        Syntax: SF DVn:=flags               (all files, selected flags) 
  SF filename(s)=flags     (selected files, selected flags) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    SHIFT  or       BATCH Command                   <<NEW FOR 3.02>> 
    SH[IFT]                        
 
        Shift  command  line  arguments left one position.  In this way you 
        can have more than  9  replaceable  substitution  parameters.   The 
        substitution variables are %0 through %9.  %0 is always the name of 
        your BATCH file.  This is useful if you want  your  BATCH  file  to 
        re-run  itself.   %1  through  %9  are  replaced  by the first nine 
        command line arguments.  Each time you use the  SHIFT  command  you 
        discard  the first argument and add the next one to the list.  That 
        is %1 now contains what used to be %2, etc.  %9  becomes  the  next 
        available argument if it is present on your command line. 
               
    (Continued on Next Page.) 
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-30 
    ============        ===========                               ========= 
 
    SHIFT  or       BATCH COMMAND (Cont) 
    SH[IFT] 
 
        Note:   See  the implicit run command for other useful substitution 
                variables. 
 
 Syntax: SH 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    SI              Internal Command                <<NEW FOR 3.02>> 
 
 Display System Information, which includes the following: 
 
  PIP Resident / PIP NOT Resident 
 
   Tells you if PIP is currently in memory or not. 
 
  System Disk Mounted / System Disk NOT Mounted 
 
                        Tells  you whether the disk you booted from is still 
                        in SY0: or not.  If it is, then you can  still  load 
                        and unload devices. 
 
  System Clock Resident / System Clock NOT Resident 
 
                        Tells  you  whether  your  clock task is running or 
                        not.  If it is, then you  can  use  WAIT  & TIME  / 
                        commands. 
 
  User Clock Vector Disabled / User Clock Vector Enabled 
 
                        Tells  you if the hardware control byte is allowing 
                        user clock interrupts.   The  H17  and  H37  device 
                        drivers  make use of clock interrupts so you should 
                        expect to find this feature enabled whenever either 
                        of these drivers are in memory. 
                         
                        Following  the  User  Clock  Vector  status  is the 
                        contents of the byte at ".MFLAG".   The  bits  have 
                        the following meanings: 
                         
    00000001 - Enable user clock vector 
    00000010 - Disable display update (H8) 
    00111100 - Not used at the present time 
    01000000 - NO refresh of front panel (H8) 
    10000000 - Disable HALT processing 
 
                        H8  users  take  note:  Since HDOS 3.0 occupies low 
                        memory, your   front   panel   monitor   is   gone. 
                        Therefore,  the  two  references  to (H8) above are 
                        meaningless.  Any TASK or  DVD  or  other  software 
                        that  played around with the L.E.D.'s on your front 
 
    (Continued on Next Page.) 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-31 
    ============        ===========                               ========= 
 
    SI              Internal Command (Cont) 
 
                        panel  will  probably  NOT  function  unless   they 
                        provide  their  own  refresh routines tied into the 
                        system tic counter. 
 
  System Flags = 00000000  00000000 
 
                        The first 8 bits are from S.FLAG and have the 
                        following meanings: 
 
    00000001 - SYSCMD.SYS is in memory 
    00000010 - VERIFY mode is ON 
    00000100 - ECHO mode is OFF 
    00001000 - BATCH mode is ON 
    00010000 - Display exit code on re-entry 
    00100000 - Break off current operation 
    01000000 - Type-ahaead buffer stuffed by user 
    10000000 - SYSCMD Initialization has been done 
 
   The second 8 bits are from S.XFLAG and have the 
   following meanings: 
 
    00000001 - HALT command in progress 
    00000010 - Show syntax of PIP command 
    00111100 - Not used at the present time 
    01000000 - Permission to use /DSF in PIP 
        Syntax: SI              10000000 - Ultra ROM is present 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
    START  or       Internal Command                <<NEW FOR 3.02>> 
    ST[ART]                          
 
        Start  a background task.  Each task has it's own particular quirks 
        and questions so just follow their own directions. 
                         
 Syntax: ST taskname 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    TIME  or  TI[ME]      Internal Command          <<NEW FOR 3.02>> 
 
        Set  or  display the current system time.  The hour and minutes are 
        required, but the seconds are optional.   If you  use  '/'  as  the 
        argument  AND  the  system  clock  task is resident, you will get a 
        continuous time display at the cursor.  This  will  continue  until 
        you touch a key.  At that time you are returned to SYSCMD. 
             
        Note:   If  you  have  Bill Parrott's Ultra ROM installed, you will 
                hear the clock ticking during continuous display. 
                 
        Syntax: TI[ME] ................ (display current system time) 
                TI[ME] hh:mm[:ss] ..... (set system time) 
                TI[ME] / .............. (display time continuously) 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-32 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    TRAP or         BATCH Command                   <<NEW FOR 3.02>> 
    TR[AP]                                                               
 
        Grab a keystroke on the fly within a BATCH file.  If a keystroke is 
        waiting, it is poked into the ASK keystroke storage  location.   It 
        can be tested for with  "IF NOT KEY=0" command.  You should use the 
        "KEY $" command earlier in the BATCH file to reset the KEY value if 
        you  intend  to use this test.  If you know what keys to expect you 
        can use "IF KEY='X'" command without resetting the KEY value first. 
        TRAP will ONLY function within BATCH mode. 
 
 Synonym = (ASK) 
 
 Syntax: TR 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 
    TYPE  or        Internal Command        <<PIP>> <<HDOS 2.0 Command>> 
    T[YPE]                                                                
 
        Display files on the system console.  If the file is NOT ASCII, you 
        will be informed of that fact, and the command will  cycle  to  the 
        next  file  name  in your list.  If you use the /FORCE switch, even 
        non-ASCII files will be  displayed.   Be  advised  that  this  will 
        probably put garbage on the screen. 
         
        Synonyms = LIST, PRINT 
 
        Syntax: T DVn:                                  (all files) 
  T filename(s)    (selected files) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
 
    UNLOAD  or      Internal Command                <<NEW FOR 3.02>> 
    UNL[OAD]                          
 
        Unload  the  selected  device  driver.  If the driver has a mounted 
        unit, then just flag it for unload and wait  until  the  unit  gets 
        dismounted.  At that time the unload will occur.  Unload pending is 
        indicated by the symbol '--' in the DEVICES command.  The  trailing 
        colon  in  the  device  name  is  optional.   If the argument is an 
        asterisk '*', then all possible drivers will be unloaded or flagged 
        for unload pending. 
         
 Syntax: UNL xx[:]   (unload specified driver) 
  UNL *    (unload all possible drivers) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-33 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    USER  or        Internal Command                <<NEW FOR 3.02>> 
    U[SER]                                                             
 
 Set or display the current active USER area. 
 
 Synonym = Un 
 
        Syntax: U ..................... (display active USER area) 
                U n ................... (set active USER area, n = 0..7) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    Un              Internal Command                <<NEW FOR 3.02>> 
 
 Set the current active USER area. 
 
 Synonym = USER 
 
 Syntax: Un   (set active USER area, n = 0..7 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    VERIFY  or      Internal Command                <<NEW FOR 3.02>> 
    VERI[FY]                         
 
        Set  or  display  the  default  state of the VERIFY flag for use in 
        copying files.  When VERIFY is ON, the source file is  CRC'ed,  and 
 
        the  destination file is CRC'ed.  If they match, then it is assumed 
        that you have a good copy which is also readable by HDOS.   If  you 
        are  concatenating files, a running total of the source files CRC's 
        is kept, and upon completion of the copy  command  the  destination 
        file  is  CRC'ed with the same end result.  The second 'F' in 'OFF' 
        is optional. 
         
        Syntax: VERI    (display default state) 
  VERI ON    (turn VERIFY on) 
  VERI OF[F]   (turn VERIFY off) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    VERSION  or     Internal Command                <<HDOS 2.0 Command>> 
    VER[SION]                                                              
 
        Display  current  version information,  date compiled, and assembly 
        options. 
         
 Synonym = ID 
 
 Syntax: VER 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 



    CHAPTER FOUR        SYSCMD/PLUS                               PAGE 4-34 
    ============        ===========                               ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    WAIT            BATCH Command                   <<NEW FOR 3.02>> 
 
        Wait  a predetermined number of seconds if the system clock task is 
        resident, otherwise  do  nothing  but  return  to  SYSCMD.   If  no 
        argument  is given, WAIT will pause until you touch a key.  The key 
        value is NOT saved, so any keystroke from ASK or TRAP is NOT  lost. 
        In this way it is similar to PAUSE but with NO messages. 
         
 Synonym = (PAUSE) 
 
        Syntax: WAIT .......................... (wait until keystroke) 
                WAIT n  ....................... (wait n seconds) 
                WAIT 0  ....................... (don't wait) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    XYZZY or        Internal Command                <<NEW FOR 3.02>> 
 
    XYZ[ZY]                             
 
        Toggle display of system exit code upon re-entry into SYSCMD.  This 
        command also toggles PIP's announcement of when it is  loaded  into 
        memory. 
         
        Using  any  argument  with  this command will toggle display of the 
        command syntax being sent to PIP. 
         
        Syntax: XYZ ................... (system exit code toggle) 
                XYZ <any arg> ......... (PIP command syntax toggle) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
        



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                   CHAPTER 5 
 
                                   PIP/PLUS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FIVE        PIP/PLUS                                    PAGE 5-i 
    ============        ========                                    ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1, 2, and 3, while chapters 4, 4, 5, 6, 7, 8, and 14, are the 
    kernel  of  revision  3.02.   Chapters  9  through   12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual. Indeed, HDOS is still alive and well! 
     
    Chapter 5, PIP/Plus, lists all of the commands available under PIP, and 
    provides examples of their use. 
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  #6 West Branch Mobile Home Village, West Branch, IA 
    52358. 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-1 
    ============        ========                                   ======== 
 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
            INTRODUCTION ....................................... 5-1 
 
            PERIPHERAL INTERCHANGE PROGRAM PLUS ................ 5-3 
 
            PIP-PLUS VERB SWITCHES ............................. 5-3 
 
              Verb Switches: 
 
                /B[RIEF] ....................................... 5-3 
                /CLR[FLG] ...................................... 5-3 
                /CRC ........................................... 5-4 
                /DEL[ETE] ...................................... 5-4 
                /DIS[MOUNT] .................................... 5-5 
                /FUBAR ......................................... 5-5 
                /F[ULL] ........................................ 5-5 
                /G[ROUPS] ...................................... 5-5 
                /ID ............................................ 5-6 
                /L[IST] ........................................ 5-6 
                /M[INIMUM] ..................................... 5-7 
                /NOP ........................................... 5-7 
                /PUT[USER] ..................................... 5-7 
                /REM[USER] ..................................... 5-8 
                /R[ENAME] ...................................... 5-8 
                /RES[ET] ....................................... 5-8 
                /SET[FLAG] ..................................... 5-8 
                /SNAFU ......................................... 5-9 
                /TAB[LE] ....................................... 5-9 
                /USR .......................................... 5-10 
                /VERS[ION] .................................... 5-10 
                /W[IDE] ....................................... 5-10 
                /?[??] ........................................ 5-10 
 
              Modifier Switches: 
 
                /AC[CESS] ..................................... 5-11 
                /AFT[ER] ...................................... 5-11 
                /AGE .......................................... 5-11 
                /ALL[OCATE] ................................... 5-11 
                /ATT[RIB] ..................................... 5-12 
                /BEF[ORE] ..................................... 5-12 
                /CLS .......................................... 5-12 
                /COL .......................................... 5-12 
                /C[ONTIG] ..................................... 5-13 
                /COU[NT] ...................................... 5-13 
                /CUR[RENT] .................................... 5-13 
                /DATE ......................................... 5-13 
                /DSF .......................................... 5-13 
                /FL[AG] ....................................... 5-14 
 
 
 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-2 
    ============        ========                                   ======== 
 
 
                           TABLE OF CONTENTS (Cont) 
                           ++++++++++++++++++++++++ 
 
              Modifier Switches: (Cont) 
 
                /FOR[CE] ...................................... 5-14 
                /H[OLD] ....................................... 5-14 
                /K[EEP] ....................................... 5-15 
                /NOC[OUNT] .................................... 5-15 
                /NOF[LAG] ..................................... 5-15 
                /NOU[SER] ..................................... 5-15 
                /P[AGE] ....................................... 5-16 
                /Q[UERY] ...................................... 5-16 
                /RE[VERSE] .................................... 5-16 
                /SA[FE] ....................................... 5-16 
                /SO[RT] ....................................... 5-17 
                /SU[PPRESS] ................................... 5-17 
                /S[YSTEM] ..................................... 5-17 
                /T[ODAY] ...................................... 5-18 
                /UA[REAS] ..................................... 5-18 
                /US[ER] ....................................... 5-18 
                /V[ERIFY] ..................................... 5-18 
                /XXX .......................................... 5-19 
                /YYY .......................................... 5-19 
                /ZZZ .......................................... 5-19 
                /.  ........................................... 5-19 
                /-  ........................................... 5-19 
 
 
 
 
 
 
 
 
 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-3 
    ============        ========                                   ======== 
 
    #########   ######  ######### 
    ##      ##    ##    ##      ## 
    ##      ##    ##    ##      ## 
    #########     ##    ######### 
    ##            ##    ## 
    ##            ##    ## 
    ##          ######  ## 
 
    ----------------------------------------------------------------------- 
    PERIPHERAL INTERCHANGE PROGRAM 
    ----------------------------------------------------------------------- 
 
    ********************************* 
    *                               * 
    ** PIP/Plus Verb Switches (24) ** 
    *                               * 
    ********************************* 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
    /BRIEF  or  /B[RIEF]                    <<HDOS 2.0 Switch>> 
 
    List  the  contents  of  the directory entry of the specified files.  A 
    null name or extension in the SOURCE is  taken  as  the  '*'  wildcard. 
    Omitting  the  DEST  will  cause  the  destination  to  default to TT:. 
    Wildcards are NOT permitted in the destination file  name.   This  form 
    only  lists  the file name and extension in column format.  The default 
    number of columns is 5. 
 
    Syntax: [DEST=]SOURCE[,...]/B 
 
    The form of the output is: 
 
    FILENAME.EXT  FILENAME.EXT  FILENAME.EXT  FILENAME.EXT  FILENAME.EXT 
    FILENAME.EXT  FILENAME.EXT  FILENAME.EXT  FILENAME.EXT  FILENAME.EXT 
    FILENAME.EXT  FILENAME.EXT  FILENAME.EXT  FILENAME.EXT  FILENAME.EXT 
 
    NNN Files (YYYYY Free) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /CLRFLAG  or  /CLR[FLAG]  
 
    Clear  flags  on  specified  files.   At  least one source file MUST be 
    specified.  Wildcards can be used in the source file name or extension. 
    The  'C'  flag  is  invalid  here.  It can ONLY be set by HDOS directly 
    during its .CLOSE operation. 
 
    Valid flags are: 
            S - system ............ normally hidden from view 
            L - lock .............. can't alter flags unless SYSOP 
            W - write protect ..... can't write to file w/o FORCE 
            C - contiguous ........ CANNOT be cleared by you 
            A - archive ........... presently unsupported 
            B - bad ............... file has a bad sector in it 
            D - delete protect .... file can't be deleted w/o FORCE 
            U - user .............. any meaning you want 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-4 
    ============        ========                                   ======== 
 
    /CLR[FLAG]  or 
    /CLR[FLAG] (Cont) 
 
    If no flag list is given, all flags except 'C' will be cleared. 
    If '*' is included in flag list, all flags except 'C' will be cleared. 
    If '&' is included in flag list, 'SLWD' flags will be cleared. 
    If '@' is included in flag list, the access date & count are cleared. 
 
    Syntax: SOURCE[,...]/CLR[:flags] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /CRC 
 
    Perform  a  CRC checksum on the specified files.  Wildcards can be used 
    in the source file name or extension.  Omitting the DEST will cause the 
    destination  to  default  to  TT:.   Wildcards are NOT permitted in the 
    destination file name. 
 
    Syntax: [DEST=]SOURCE[,...]/CRC 
 
    The form of the output is: 
 
    Name    .Ext    CRC Dec  CRC Oct   CRC Hex   User: u    Date: DD-MMM-YY 
 
    FILENAME.EXT    NNNNN    OOO.OOO   HHHH 
    FILENAME.EXT    NNNNN    OOO.OOO   HHHH 
    FILENAME.EXT    NNNNN    OOO.OOO   HHHH 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /DELETE  or                             <<HDOS 2.0 Switch>> 
    /DEL[ETE]                                 
 
    Delete  specified  files.  At least one source file MUST be specified. 
    Wildcards can be used in the source file name or extension. 
 
    If *.* is specified, DELETE asks: 
 
            !?! Delete ALL files on DEV:? Y/<N>/Q 
 
    NO is the default response here.  A 'Q' response will set QUERY mode. 
 
    If NOT in user area 0, DELETE asks: 
 
            You're in USER n, Ok? Y/<N> 
 
    NO  is the default response here.  This feature serves as ONLY a double 
    check on your decision.  It is here to remind you  that  you  are  only 
    seeing  a  portion  of  your directory unless you use the override (/.) 
    switch.  If you answer 'Y' then the delete command will proceed. 
 
    Syntax: SOURCE[,...]/DEL 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
    



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-5 
    ============        ========                                   ======== 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /DISMOUNT  or                           <<HDOS 2.0 Switch>> 
    /DIS[MOUNT]                                                 
 
    Dismount  the  current  disk  from  the specified unit of the specified 
    device.  If the device name is ONLY xx:, then the unit defaults to 0. 
 
    Syntax: DEV:/DIS 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
    /FUBAR 
 
    Fouled  Up  Beyond  All Recognition.  This is a verb switch which isn't 
    implemented.  It is available for you to use  to  control  some  future 
    patch  you  may dream up.  It currently takes you through the PIP CRASH 
    routine.    
      
    Syntax: [whatever]/FUBAR 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /FULL  or 
    /F[ULL] 
 
    List  the  contents  of  the directory entry of the specified files.  A 
    null name or extension in the SOURCE is  taken  as  the  '*'  wildcard. 
    Omitting  the  DEST  will  cause  the  destination  to  default to TT:. 
    Wildcards are NOT permitted in the destination file name.   This  is  a 
    more complete interpretation of the HDOS directory entry. 
 
    Additional information given: 
 
            Alloc ......... allocated size of the file 
            Users--- ...... user areas in which the file occurs 
            Accessed ...... the date when the file was last accessed 
            A/C ........... number of times the file has been accessed 
 
    Syntax: [DEST=]SOURCE[,...]/F 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /GROUPS  or 
    /G[ROUPS] 
 
    List  the  contents  of  the directory entry of the specified files.  A 
    null name or extension in the SOURCE is  taken  as  the  '*'  wildcard. 
    Omitting  the  DEST  will  cause  the  destination  to  default to TT:. 
    Wildcards are NOT permitted in the destination file name.   This  is  a 
 
    special interpretation of the HDOS directory entry. 
 
    Additional information given: 
 
    (Continued on Next Page.) 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-6 
    ============        ========                                   ======== 
 
    /GROUPS  or 
    /G[ROUPS] (Cont) 
 
            Alloc ......... allocated size of the file 
            FGN  .......... first group number 
            LGN  .......... last group number 
            LSI  .......... last sector index 
 
    Syntax: [DEST=]SOURCE[,...]/G 
 
 The form of the output is: 
 
    Name    .Ext  Alloc    Decimal       Octal     Hexidecimal  DD-MMM-YY 
                         FGN LGN LSI  FGN LGN LSI  FGN LGN LSI   User: u 
 
    FILENAME.EXT  NNNNN  DDD DDD DDD  OOO OOO OOO   HH  HH  HH 
    FILENAME.EXT  NNNNN  DDD DDD DDD  OOO OOO OOO   HH  HH  HH 
    FILENAME.EXT  NNNNN  DDD DDD DDD  OOO OOO OOO   HH  HH  HH 
 
    NNN Files, Using MMMMM Sectors (YYYYY Free) 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /ID 
 
    Display   version   information   about  PIP/Plus,  including  version, 
    revision, date assembled, H19 flag, SYSOP flag, Z80 flag,  and  whether 
    or  not  user  areas are supported.  In addition, show FWA, LWA, buffer 
    address, and buffer size in sectors.  Source or destination file  names 
    are illegal here. 
     
    Syntax: /ID 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /LIST  or                               <<HDOS 2.0 Switch>> 
    /L[IST]                                                       
 
    List  the  contents  of  the directory entry of the specified files.  A 
    null name or extension in the SOURCE is  taken  as  the  '*'  wildcard. 
    Omitting  the  DEST  will  cause  the  destination  to  default to TT:. 
    Wildcards are NOT permitted in the destination file name.  This is  the 
    traditional  HDOS directory format with the addition of a time stamp if 
    the diskette was initialized with HDOS 3.0 or later. 
     
    Syntax: [DEST=]SOURCE[,...]/L 
 
    The form of the output is: 
 
    Name    .Ext   Size   Created    Time   Flags--  User: u Date: DD-MMM-YY 
    FILENAME.EXT  NNNNN  DD-MMM-YY  HH:MMz  SLWCABDU 
    FILENAME.EXT  NNNNN  DD-MMM-YY  HH:MMz  SLWCABDU 
    FILENAME.EXT  NNNNN  DD-MMM-YY  HH:MMz  SLWCABDU 
 
    NNN Files, Using MMMMM Sectors (YYYYY Free) 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-7 
    ============        ========                                   ======== 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /MINIMUM  or 
    /M[INIMUM] 
 
    List  the  contents  of  the directory entry of the specified files.  A 
    null name or extension in the SOURCE is  taken  as  the  '*'  wildcard. 
    Omitting  the  DEST  will  cause  the  destination  to  default to TT:. 
    Wildcards are NOT permitted in the destination file  name.   This  form 
    only lists the file name and extension in a single column.  There is NO 
    white space included to pad the name.  This allows the /MINIMUM  switch 
    to create raw data for use in building BATCH files which can manipulate 
    lists of files. 
 
    Syntax: [DEST=]SOURCE[,...]/M 
 
    The form of the output is: 
 
      FILENAME.EXT 
      FNAME.EXT 
      FILNAM.EXT 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /NOP 
 
    Do  absolutely NOTHING.  This command was added so that a SHELL program 
    such as MegaPIP (i.e., MP.ABS) could load PIP  without  PIP  trying  to 
    perform any operation. 
     
    Syntax: /NOP 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /PUTUSER  or 
    /PUT[USER] 
 
    Put  specified files in specified user areas.  At least one source file 
    MUST be specified.  Wildcards can be used in the source  file  name  or 
    extension.   User  area  0 is invalid here.  All files always reside in 
    user area 0.  One or more user areas MUST be specified. 
 
    Valid user areas are 1 through 7. 
 
    If '!' is  included in user list, ONLY  specified user areas and 0 will  
            be set; all others will be cleared. 
    If '*' is included in user list, all user areas will be set. 
 
    Syntax: SOURCE[,...]/PUT:users 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 
 
 
 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-8 
    ============        ========                                   ======== 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /REMUSER  or 
    /REM[USER] 
 
    Remove  specified files from specified user areas.  At least one source 
    file MUST be specified.  Wildcards can be used in the source file  name 
    or extension.  User area 0 is invalid here.  All files always reside in 
    user area 0. 
 
    Valid user areas are 1 through 7. 
 
    If no user list is given, all user areas except 0 will be cleared. 
    If  '*'  is  included  in  user  list,  all user areas except 0 will be 
              cleared. 
 
    Syntax: SOURCE[,...]/REM[:users] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /RENAME  or                             <<HDOS 2.0 Switch>> 
    /R[ENAME]                                                     
 
    Rename  specified  files.   At least one source file MUST be specified. 
 
    Wildcards can be used in the destination file name or extension as well 
    as in the source file name or extension.  The wildcard patterns MUST be 
    compatible. 
 
    Syntax: DEST=SOURCE[,...]/R 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /RESET  or                              <<HDOS 2.0 Switch>> 
    /RES[ET]                                                     
 
    Reset  the  specified  unit  of  the  specified  device.   This command 
    dismounts the unit first, if there is currently a disk  mounted,  tells 
    you  to  replace the disk in drive DVn:, and then mounts that unit.  If 
    the device name is ONLY DV: then the unit defaults to 0. 
 
    Syntax: DVn:/RES 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /SETFLAG  or 
    /SET[FLAG] 
 
    Set  flags  on  specified  files.   At  least  one  source file MUST be 
    specified.  Wildcards can be used in the source file name or extension. 
    The  'C'  flag  is  invalid  here.  It can ONLY be set by HDOS directly 
    during it's .CLOSE operation.  One or more flags MUST be specified. 
 
    (Continued on Next Page.) 
 
 



    CHAPTER FIVE        PIP/PLUS                                   PAGE 5-9 
    ============        ========                                   ======== 
 
    /SETFLAG  or  (Cont) 
    /SET[FLAG]        
 
    Valid flags are: 
 
                S - system ............ normally hidden from view 
                L - lock .............. can't alter flags unless SYSOP 
                W - write protect ..... can't write to file w/o FORCE 
                C - contiguous ........ CANNOT be set by you 
                A - archive ........... presently unsupported 
                B - bad ............... file has a bad sector in it 
                D - delete protect .... file can't be deleted w/o FORCE 
                U - user .............. any meaning you want 
 
    If '!' is included in flag list, ONLY specified flags will be set, 
            all others will be cleared except 'C'. 
    If '*' is included in flag list, all flags except 'C' will be set. 
    If '&' is included in flag list, 'SLWD' flags will be set. 
 
    Syntax: SOURCE[,...]/SET:flags 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /SNAFU 
 
    Situation  Normal:  All  Fouled  Up.  This is a verb switch which isn't 
    implemented.  It is available for you to use  to  control  some  future 
    patch  you  may dream up.  It currently takes you through the PIP CRASH 
    routine.  
     
    Syntax: [whatever]/SNAFU 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /TABLE  or 
    /TAB[LE] 
 
    Build  a  source  list  in the managed name table.  At least one source 
    file MUST be specified.  Wildcards can be used in the source file  name 
    or extension.  This command is mainly for use by SHELLS such as MegaPIP 
    so they can build source file lists using the code found in PIP/Plus. 
 
    The following hooks are within PIP/Plus for your use: 
 
            PIP warm start +3  bytes = signature word 
                    first byte is version number 
                    second byte is revision number 
            PIP warm start +5  bytes = a jump to PIP sort routine 
            PIP warm start +8  bytes = a jump to PIP *CAD* routine 
            PIP warm start +11 bytes = a jump to PIP *REN* routine 
            PIP warm start +14 bytes = an unused jump 
            PIP warm start +17 bytes = a pointer to NAMTAB 
            PIP warm start +19 bytes = name table length (NAMTLEN) 
 
    (Continued on Next Page.) 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-10 
    ============        ========                                  ========= 
 
    /TABLE  or  (Cont) 
    /TAB[LE] 
 
            PIP warm start +21 bytes = max. size of name table (NAMTMAX) 
            PIP warm start +23 bytes = a pointer to PIO.DEV 
            PIP warm start +25 bytes = PIP's most recent ERROR code 
 
    Syntax: SOURCE[,...]/TAB 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 
    /USR 
 
    Set active user area. 
 
    Valid  user  areas  are 0 through 7.  User area 0 is the default if no 
    argument is given. 
 
    Syntax: /USR[:user] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    /VERSION  or                            <<HDOS 2.0 Switch>> 
    /VERS[ION]                                                   
 
    Display version information about PIP/Plus including version, revision, 
    date assembled, H19 flag, SYSOP flag, Z80 flag, and whether or not user 
    areas  are  supported.   Source  or  destination file names are illegal 
    here. 
     
    Syntax: /VERS 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
    /WIDE  or 
    /W[IDE] 
 
    Synonym = /BRIEF 
 
    Syntax: [DEST=]SOURCE[,...]/W 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    /???  or 
    /?[??] 
 
    Display PIP/Plus HELP file on the console. 
 
    Syntax: /? 
 
    *********************************************************************** 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-11 
    ============        ========                                  ========= 
 
    ************************************** 
    *                                    * 
    **  PIP/Plus Modifier Switches (36) ** 
    *                                    * 
 
    ************************************** 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /ACCESS  or 
    /AC[CESS] 
 
    During date processing such as /BEFORE, /CURRENT, /TODAY, or /AFTER the 
    file's creation date is used.  By specifying the  /ACCESS  switch,  you 
    will be using the file's access date instead. 
         
    Syntax: [whatever]/AC 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /AFTER   or 
    /AFT[ER] 
 
 
    While  building the source file list, include files whose date is after 
    the specified date.  A date MUST be specified. 
 
    Syntax: [whatever]/AFT:dd[-mmm[-yy]] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /AGE 
 
    While  building  the  source  file list, include files that are greater 
    than or equal to the specified number of days  old.   An  age  MUST  be 
    specified. 
 
    Syntax: [whatever]/AGE:nnn 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /ALLOCATE  or                           <<HDOS 2.0 Switch>> 
    /ALL[OCATE]                                                   
 
    During  directory  listing  operations,  use  the file's allocated size 
 
    rather then  its  actual  size.   Since  disk  space  is  allocated  in 
    clusters,  this will give you a better idea about how much disk space a 
    file really takes up.  See the standard disk format chart in Chapter 8, 
    for  information  about  cluster  sizes  for  the various HDOS 3.0 disk 
    drivers. 
     
    Syntax: [whatever]/ALL 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-12 
    ============        ========                                  ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /ATTRIB  or 
    /ATT[RIB] 
 
    Set  the  specified  flags  on  the destination file(s) during the COPY 
    command.  If no flags are given, then use the  flags  from  the  source 
    file, assuming the file is from a directory device. 
     
    Valid flags are: 
 
            S - system              B - bad 
            L - lock                D - delete protect 
            W - write protect       U - user 
            C CANNOT be set by you  * - all but 'C' 
            A - archive             & - 'S','L','W' & 'D' 
 
    Syntax: [whatever]/ATT[:flags] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    /BEFORE  or 
    /BEF[ORE] 
 
    While building the source file list, include files whose date is before 
    the specified date.  If no date is  given,  then  it  defaults  to  the 
    current system date. 
      
    Syntax: [whatever]/BEF[:dd[-mmm[-yy]]] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    /CLS 
 
    Clear the console screen if you have an H19. 
 
    Syntax: [whatever]/CLS 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
    /COL 
 
    During  BRIEF directory listings, the files are presented in 5 columns. 
    With this switch, you can specify a different number  of  columns.   If 
    you  specify more columns than the target can handle, you will get wrap 
    around if it is enabled.  A number MUST be specified. 
 
    Syntax: [whatever]/COL:n 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 
    



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-13 
    ============        ========                                  ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /CONTIG  or 
    /C[ONTIG] 
 
    Make  the destination file(s), during a COPY command, contiguous.  That 
    is, the file's sectors are sequential on the disk. 
 
    Syntax: [whatever]/C 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
    /COUNT  or 
    /COU[NT] 
 
    While  building  the  source  file  list, include files which have been 
    accessed the specified number of times or more.  If no count  is  given 
    then  it  defaults  to  1.  In this case you are asking for files which 
    HAVE been accessed, even if only once. 
 
    Syntax: [whatever]/COU[:nnn] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /CURRENT  or 
    /CUR[RENT] 
 
    While  building the source file list, include files whose date is equal 
    to the specified date.  If no date is given, then it  defaults  to  the 
    current system date. 
 
    Syntax: [whatever]/CUR[:dd[-mmm[-yy]]] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /DATE 
 
    Use the current system date on the destination file(s) during the COPY 
    command.  The default condition is to use the source file's date, if it  
    is a file on a directory device. 
 
    Syntax: [whatever]/D 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
    /DSF 
 
    After successfully copying a file, delete the source file.  The /VERIFY 
    option is automatically set when you use the /DSF switch.  This is  how 
    we find out if we have a successful copy. 
     
    To  use this switch, the application program must have permission.  The 
    auxilliary system flag byte has a bit which shows whether or not PIP has 
    permission to use /DSF.  SYSCMD has permission; MegaPIP does NOT. 
         
    Syntax: [whatever]/DSF 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-14 
    ============        ========                                  ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /FLAG  or 
    /FL[AG] 
 
    While  building  the source file list, include files with the specified 
    flags set.  One or more flags MUST be specified. 
 
    Valid flags are: 
 
            S - system              B - bad 
            L - lock                D - delete protect 
            W - write protect       U - user 
            C - contiguous          * - all but 'C' 
            A - archive             & - 'S','L','W' & 'D' 
 
    Syntax: [whatever]/FL:flags 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 
    /FORCE  or 
    /FOR[CE] 
 
    During  COPY, if the destination already exists and is flagged with the 
    'W' flag, copy it anyway.  If you are NOT in SYSOP  mode  and  the  'L' 
    flag  is  set,  the  copy attempt will fail.  If you ARE in SYSOP mode, 
    copy the file. 
     
    During RENAME, if the destination is flagged with the 'W' flag,  rename 
    it  anyway.   If you are NOT in SYSOP mode and the 'L' flag is set, the 
    rename attempt will fail.  If you ARE in SYSOP mode, rename the file. 
     
    During DELETE, if the target file is flagged with the 'W' or 'D' flags, 
    delete  it  anyway.   If  you are NOT in SYSOP mode and the 'L' flag is 
    set, the delete attempt will fail.  If you ARE in  SYSOP  mode,  delete 
    the file. 
     
    Syntax: [whatever]/FOR 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 
    /HOLD  or 
    /H[OLD] 
 
    Set hold screen mode if you have an H89 or H19. 
 
    Syntax: [whatever]/H 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-15 
    ============        ========                                  ========= 
 
    /KEEP 
    /K[EEP] 
 
    Retain  the original flags on the destination file when you need to use 
    /FORCE to complete the command.  This applies to both COPY and RENAME. 
         
    Syntax: [whatever]/FOR/K 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /NOCOUNT  or 
    /NOC[OUNT] 
 
    While  building  the  source  file  list, include files which have been 
    accessed less than the specified number  of  times.   If  no  count  is 
    given,  then  it  defaults to 1.  In this case you are asking for files 
    which have NEVER been accessed. 
     
    Syntax: [whatever]/NOC[:nnn] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /NOFLAG  or 
    /NOF[LAG] 
 
    While  building  the source file list, include files with the specified 
    flags cleared.  If no flags are  specified,  then  include  ONLY  files 
    which have NO flags set. 
 
    Valid flags are: 
 
            S - system              B - bad 
            L - lock                D - delete protect 
            W - write protect       U - user 
            C - contiguous          * - all but 'C' 
            A - archive             & - 'S','L','W' & 'D' 
 
    Syntax: [whatever]/NOF[:flags] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /NOUSER  or 
    /NOU[SER] 
 
    While  building  the source file list, include files with the specified 
    user areas cleared.  If no user areas are specified, then include  ONLY 
    files which are just in user area 0. 
     
    Valid  user  areas  are 1 through 7 and *.  0 is omitted here since all 
    files are in user area 0. 
     
    Syntax: [whatever]/NOU[:users] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-16 
    ============        ========                                  ========= 
 
    /PAGE  or 
    /P[AGE] 
 
    Paginate  directory listings to the line printer.  The specified number 
    will be the number of files listed per page.  If no number is given  it 
    defaults to 55. 
     
    If  the directory listing is going to the console, it will be formatted 
    into screen pages.  A header line will appear on each screen page.   No 
    number  should  be  given for this usage.  This switch also affects the 
    /CRC switch in a similar fashion. 
 
    Syntax: [whatever]/P[:nn] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /QUERY  or 
    /Q[UERY] 
 
    While  building  the  source file list, you will be given each eligible 
    file name one at a time.  You are asked for permission to include  that 
    file in the source file list. 
 
    Valid responses to the '?': 
 
            Y - Yes, do include this file. 
            N - No, skip over this file. 
           *Y - Yes, include  this  file and ALL the rest.  Then exit query 
                     mode. 
           *N - No, skip this file. Then exit query mode. 
 
    Syntax: [whatever]/Q 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /REVERSE  or 
    /REV[ERSE] 
 
    Reverse the order of the source file name sort. 
 
    Syntax: [whatever]/SO[:sub-switches]/REV 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /SAFE  or 
    /SA[FE] 
 
    If  the  destination  file  exists  during  a COPY command, you will be 
    informed of this and asked what to do.  You may either skip  the  file, 
    replace it, or stop the copy operation. 
 
    Syntax: [whatever]/SA 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-17 
    ============        ========                                  ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /SORT  or 
    /SO[RT] 
 
    Sort  the  source  file  name  list  before acting upon it.  If no sub- 
    switches are given, then the sort defaults to NAME or  EXTENSION.  Once 
    you  use a given sub-switch, you cannot use it again within the current 
    sub-switch list. 
         
    Valid sub-switches are: 
 
            N - filename ascending          NR - filename descending 
            E - file extension ascending    ER - file extension descending 
            D - creation date ascending     DR - creation date descending 
            T - creation time ascending     TR - creation time descending 
            A - access date ascending       AR - access date descending 
            C - access count ascending      CR - access count descending 
 
    Syntax: [whatever]/SO[:sub-switches] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /SUPPRESS  or                           <<HDOS 2.0 Switch>> 
    /SU[PPRESS]                                                  
 
    Supress  various  messages  and  audit  trails  within PIP/Plus.  If no 
    sub-switches are given, then it defaults to T & C. 
         
    Valid sub-switches are: 
 
            A - audit trails                (...Something) 
            H - header lines                (Name    .Ext ... ) 
            T - trailing messages           (original use of switch) 
            S - status line                 (the 25th line) 
            C - files selected message      (count) 
            2 - unsupported 
            1 - unsupported 
            0 - unsupported 
            * - all possible sub-switches   (AHTSC210) 
 
    Syntax: [whatever]/SU[:sub-switches] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /SYSTEM  or                             <<HDOS 2.0 Switch>> 
    /S[YSTEM]                                                     
 
    While building the source file list, include files with the SYSTEM flag 
    set. 
 
    Syntax: [whatever]/S 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-18 
    ============        ========                                  ========= 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /TODAY  or 
    /T[ODAY] 
 
    While  building the source file list, include files whose date is equal 
    to the current system date. 
 
    Syntax: [whatever]/T 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 
    /UAREAS  or 
    /UA[REAS] 
 
    Set the specified user areas on the destination file(s) during the COPY 
    command.  If no user areas are given, then use the user areas from  the 
    source file, assuming the file is from a directory device. 
     
    Valid  user areas are 1 through 7 and *.  All files reside in user area 
    0. 
 
    Syntax: [whatever]/UA[:users] 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
 
    /USER  or 
    /US[ER] 
 
    While building the source file list, include files within the specified 
    user areas.  One or more user areas MUST be specified. 
     
    Valid user areas are 0 through 7 and *, although 0 is always true. 
 
    Syntax: [whatever]/US:users 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 
    /VERIFY  or 
    /V[ERIFY] 
 
    Verify  the  destination  file  during a COPY command.  This is done by 
    keeping track of the source file's CRC  and  then,  after  closing  the 
    destination  file,  determining  the  destination  file's CRC.  The two 
    values are compared and, if NOT equal, it is assumed that  you  have  a 
    bad  copy, and  the copy operation aborts.  If they ARE equal, the copy 
    operation continues. 
     
    Syntax: [whatever]/V 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
 



    CHAPTER FIVE        PIP/PLUS                                  PAGE 5-19 
    ============        ========                                  ========= 
 
    /XXX 
 
    This is a modifier switch which isn't implemented.  It is available for 
    you to use to control some future patch you may dream up.  It currently 
    sets a flag byte at *XUSR* equal to 1 when it is invoked. 
 
    Syntax: [whatever]/XXX 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /YYY 
 
    This is a modifier switch which isn't implemented.  It is available for 
    you to use to control some future patch you may dream up.  It currently 
    sets a flag byte at *YUSR* equal to 1 when it is invoked. 
 
    Syntax: [whatever]/YYY 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    /ZZZ 
 
    This is a modifier switch which isn't implemented.  It is available for 
    you to use to control some future patch you may dream up.  It currently 
    sets a flag byte at *ZUSR* equal to 1 when it is invoked. 
 
    Syntax: [whatever]/ZZZ 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    /. 
 
    Override  the  automatic setting of the /USER:user switch to the active 
    user area.  This lets you perform  operations  in  user  area  0,  even 
    though you may be in another user area: user 1 through 7.  User area 0, 
    of course, means all files are included.  When using this  switch,  the 
    user indicator on directory and CRC lists includes an asterisk. 
     
    Syntax:[whatever]/. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    /- 
 
    Reverse  the  effect of a wildcard specification in a source file name. 
    You MUST be careful not to specify  more  than  one  source  file  name 
    (usually  with  a  wildcard)  or  you will double up on the lines to be 
    acted upon. 
 
    Syntax: SOURCE/<VERB switch>/- 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                           HDOS DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                   CHAPTER 6 
 
                              HDOS 3.02 COOKBOOK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                         PAGE 6-i 
    ===========         ==================                         ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3, while chapters 4, 5, 6, 7, 8, and 14, are the 
    kernel  of  revision  3.02.   Chapters  9  through   12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
 
    Chapter  6,  HDOS  3.02  Cookbook,  alphabetizes  and  groups first all 
    similiar SYSCMD commands and  then  all  of  the  PIP  commands.   This 
    provides  a  panoramic  view  of  the  commands that are available, and 
    provides you with the ability to choose the best command to  accomplish 
    your objectives. 
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P. O. Box 548,  #6 West  Branch Mobile Home Village, 
    West Branch, IA 52358. 
 
 
     
     
     
     
     
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                         PAGE 6-1 
    ===========         ==================                         ======== 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
          GENERAL INTRODUCTION TO THE CHAPTER................ 6-3 
          INTRODUCTION TO THE "COMMAND MODE" COOKBOOK ....... 6-3 
           
          SYSCMD/Plus ....................................... 6-4 
            Commands Listed in Alpha/Functional Groups ...... 6-4 
               Bye (Quit, Halt) ............................. 6-5 
               Cat (F L S ) ................................. 6-5 
               CLS .......................................... 6-8 
               Copy (Move, Verify) .......................... 6-8 
               CRC (Check) ................................. 6-11 
               Date ........................................ 6-11 
               Delete (Erase) .............................. 6-12 
               Device ...................................... 6-12 
               Dismount .................................... 6-13 
               Editor, Command Line ........................ 6-13 
               Flags ....................................... 6-14 
               Load Device Driver (Fload) .................. 6-15 
               Log ......................................... 6-15 
               Mount ....................................... 6-15 
               Path ........................................ 6-17 
               PRn (PCn, Print) ............................ 6-17 
               Prompt ...................................... 6-18 
               Rename ...................................... 6-18 
               Reset ....................................... 6-18 
               Run ......................................... 6-19 
               Time ........................................ 6-21 
               Type (List) ................................. 6-21 
               Unload ...................................... 6-21 
               User (Puser, Ruser) ......................... 6-22 
               Version (ID) ................................ 6-22 
 
          PIP/Plus 
            Introduction to the PIP/Plus Cookbook .......... 6-23 
            Commands Listed in Alpha/Functional Groups ..... 6-24 
               /Access ..................................... 6-25 
               /After ...................................... 6-25 
               /Before ..................................... 6-25 
               /Current .................................... 6-25 
               /Age:n ...................................... 6-25 
               /Count:nn ................................... 6-25 
               /Nocount :nn ................................ 6-25 
               /Allocate ................................... 6-25 
               /Full (Brief, Wide) ......................... 6-25 
               /Col:nn ..................................... 6-25 
               /Flag (Noflag) .............................. 6-26 
               /L .......................................... 6-26 
               /L/S ........................................ 6-26 
               /M .......................................... 6-26 
 
 
 
           



    CHAPTER SIX         HDOS 3.02 COOKBOOK                         PAGE 6-2 
    ===========         ==================                         ======== 
 
 
                           TABLE OF CONTENTS (Cont) 
                           ++++++++++++++++++++++++ 
 
               /P:nn ....................................... 6-27 
               /Query ...................................... 6-27 
               /Group ...................................... 6-27 
 
               Using LP: With PIP/Plus ..................... 6-27 
 
               /Att:f ...................................... 6-28 
               /Contig ..................................... 6-28 
               /Date ....................................... 6-28 
               /CLR ........................................ 6-28 
               /Set ........................................ 6-28 
               /Force (Keep) ............................... 6-29 
               /CRC ........................................ 6-29 
               /Del ........................................ 6-29 
               /ID (Version) ............................... 6-30 
               /Dismount (Mount) ........................... 6-30 
               /Rename ..................................... 6-31 
               /Res ........................................ 6-32 
               /Safe ....................................... 6-32 
               /Sort ....................................... 6-32 
               /SU (Suppress) .............................. 6-32 
               /USR ........................................ 6-33 
               /PUTUSER .................................... 6-33 
               /REMUSER .................................... 6-33 
 
            PIP/Plus SUMMARY ............................... 6-34 
 
            APPENDIX 6A: 
               Most Used HDOS 3.02 System Commands ......... 6-35 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                         PAGE 6-3 
    ===========         ==================                         ======== 
 
                          INTRODUCTION TO THE CHAPTER 
                          +++++++++++++++++++++++++++ 
    There  are  many  new commands in HDOS 3.02 that will delight the user. 
    This operating system is so far advanced over the original HDOS version 
    2.0. that once you start using it, you may never return to HDOS 2.0. 
 
    This chapter will display the commands of both Syscmd/Plus and Pip/Plus 
    in an alphabetical/functional way, so that all  of  the  commands  that 
    perform  a  certain  function will be clustered together.  For example, 
    all the CAT commands.  This will not only  help  you  to  decide  which 
    command  is  the  best to use to help solve a certain problem, but also 
    will help you to learn the HDOS 3.02 Operating System faster. 
    *********************************************************************** 
 
                  INTRODUCTION TO THE "COMMAND MODE" COOKBOOK 
 
                  +++++++++++++++++++++++++++++++++++++++++++ 
    The  terms  "Command  Mode"  indicate  that the commands associated are 
    located  in  the  file  "SYSCMD.SYS."   The  heart  of  the  HDOS  3.02 
    modification  is to be found in two main disk files: (1) SYSCMD.SYS and 
    (2) PIP.ABS.  In the documentation, these correspond  to  "SYSCMD/Plus" 
    and "PIP/Plus." 
     
    SYSCMD/Plus  and  PIP/Plus  remain  co-resident  in   memory   whenever 
    possible.   This  eliminates  the  need  for  slowdowns due to repeated 
    loading and unloading of PIP/Plus, as was the case in HDOS version 2.0. 
     
    The  following  paragraphs  comprise  a list of HDOS 3.02 commands with 
    brief explanations and examples that will  introduce  you  to  the  new 
    power and versatility of the HDOS 3.0 Operating System, Version 3.02. 
 
    The following conventions apply: 
 
         (1)  To  address  a  secondary  device  precede the command with a 
    semicolon.  Example: ;PC0<RTN>. 
     
         (2)  Any command may be preceded by a period [.], which will clear 
    the  screen  and  set  hold-screen  mode.   To  advance  one  line   in 
    hold-screen mode, hit the SCROLL key.  To advance one screen, hit SHIFT 
    SCROLL. 
     
         (3) The command line will be parsed to see if user wants SYSCMD to 
    add device names as arguments.  The current default will be used.   For 
    example: 1:X.X becomes SY1:X.X. 
     
         (4)  Multiple  commands  may  be entered on a single command line. 
    Separate them with a backslash.  For example: M1\.C1\D1. 
     
         (5)   The   [^]  symbol means to type a space.  This is a critical 
    matter. 
     
         (6)   The  commands  used  in  SYSCMD/Plus  and  PIP/Plus  may  be 
    abbreviated.  For example: T[ype].  The characters inside the  brackets 
    [  ] do not need to be typed. 
    *********************************************************************** 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                         PAGE 6-4 
    ===========         ==================                         ======== 
 
 
                                  SYSCMD/Plus 
                                  +++++++++++ 
 
    The following is a list of SYSCMD/Plus commands for HDOS 3.02: 
 
    BYE        Two primary methods of exiting HDOS. 
    CAT        Provide a disk directory on the screen. 
    CHECK      Calculate the CRC checksum for selected files. 
    CLS        Clear the screen. 
    COPY       Copy files from one directory device to another. 
    CRC        Same as CHECK. 
    DATE       Display or set the system date. 
    DEFAULT    Display or set the current system default drive. 
    DELETE     Delete files from a disk. 
    DEVICES    Display current status of all known device drivers. 
    DIR        Same as CAT, including file sizes and other data. 
    DISMOUNT   Dismount a disk from a disk drive. 
    ERASE      Same as DELETE. 
    FLAGS      Set or clear flags from disk files. 
    FLOAD      Load a device driver into RAM, lock, and fix it in memory. 
    ID         Display the current version information. 
    LIST       Display an ASCII file on the screen. 
    LOAD       Load a device driver into RAM and lock it there. 
    LOG        A TASKing file to keep track of time expended. 
    MOUNT      Mount a disk on a disk drive. 
    MOVE       Copy selected files to a destination device, and then 
                  erase the source file. 
    Pn         Set the active list device driver unit number. 
    PATH       A route for the system to follow to find sub-directories 
                  and commands within other user areas. 
    PIP        Brief method of performing commands. 
    PRINT      Send a file to the printer. 
    PRN        Set or display active list device name. 
    PROMPT     Set, clear, or display your system prompt. 
    PUSER      Put a file into a user area. 
    QUIT       Another method for exiting HDOS. 
    RENAME     Rename a file. 
    RESET      Dismount old disk; remount new disk. 
    RUN        Execute a selected file. 
    RUSER      Remove a file from a user area. 
    SFLAGS     Set specific flags.   
    START      Start a TASK file. 
    TIME       Set or display the current system time. 
    TYPE       Display an ASCII file on the screen. 
    UNLOAD     Unload a selected device driver that is loaded. 
    USER       Set or display the current active user areas. 
    VERIFY     Used during the COPY process to verify files. 
    VERSION    Display current SYSCMD/Plus information. 
 
    Refer  to  disk file SYSHELP.DOC for additional commands not covered by 
    this listing. 
    *********************************************************************** 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)           PAGE 6-5 
    ===========         ================================           ======== 
  
 
    See Also:                         BYE 
    HA[lt] or                        ----- 
    Q[uit]                   (Terminating the Session) 
 
    The  command  HA[lt]  requires only the letters HA to run.  The letters 
    inside the brackets are optional.  Do not type the brackets. 
     
    The command Q[uit] requires only the letter  Q  to  run.   The  letters 
    inside the brackets are optional.  do not type the brackets. 
 
    The  BYE  command is similar to DISMOUNT, except that BYE automatically 
    dismounts ALL mounted  devices  and  prepares  the  system  for  a  new 
    Bootstrap.  For example: 
 
 
               'BYE<RTN>' 
               "Volume 202, Dismounted from SY2: 
                Label: TAX SCHEDULES 1986" 
               "Volume 100, Dismounted from SY1: 
                Label: WORKING DISK" 
               "Volume 001, Dismounted from SY0: 
                Label: SYSTEM VOLUME" 
                 
               "System Down..." 
 
    You may also use the commands: 
 
           HALT<RTN> (HA[lt]<RTN>)  or   QUIT<RTN> (Q[uit]<RTN>) 
 
    to  dismount  all  mounted  devices  and  prepare  the system for a new 
    bootstrap.   There  is  a  caveat  on  using  HALT;   it   first   runs 
    SHUTDOWN.ABS, or SHUTDOWN.BAT, if present.  A hard reset is required to 
    reboot. 
    ....................................................................... 
 
 
    See Also:                    CAT or C[at] 
    .C                           ------------ 
    .C1                  (Cataloging Non-System Files) 
    .C2              
    DIR 
 
 
    This command requires only the letter C to run.  The letters inside the 
    brackets are optional.  Do not type the brackets. 
 
    The C[AT] command  produces  a directory listing of information about a 
    file or group of files.  You may use it  with  or  without  the  device 
    specifications  1,  2,  ;0,  ;1,  or  ;2.   But  only one device may be 
    specified at one time.  If you do not specify a  device,  HDOS  assumes 
    that  you  mean  SY0:.   As  before, the period [.]  causes the list of 
    files to stop after 24 lines have been printed on the screen. 
     
    If  you  have  a  disk  with only BASIC.ABS on it, type C<RTN>, and the 
    following list will be printed on the console: 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)           PAGE 6-6 
    ===========         ================================           ======== 
 
 
                                 CAT or C[at] 
                                 ------------ 
                      (Cataloging Non-System Files)(Cont) 
 
 
    Name    .Ext   Size   Created   Time   Flags--- User 0  Date: 17-Nov-88 
 
    BASIC   .ABS     42  17-Nov-80  12:00a    C 
       1 File, Using 42 Sectors (946 Free) 
   
    This listing provides information about nonessential files on the  disk 
    mounted in SY0:. 
 
    To obtain a listing from a disk in another drive, type: 
 
               'C1<RTN>' or  '.C1 for drive SY1:' 
               'C2<RTN>' or  '.C2 for drive SY2:' 
 
    You  can  also  list information about individual .DOC files on SY1: by 
    using the C[at] command.  The general format of this command is: 
 
               'C1*.DOC<RTN>'  or  '.C1*.DOC<RTN>' 
 
    You  may use the C[at] command to print a catalog listing of files on a 
    configured line printer (see the "Peripherals" section of this  chapter 
    to configure your line printer).  The formats for this use of the C[at] 
    command are: 
 
               'C[at] LP:=DVn:<RTN>' 
               'C[at] LP:=DVn:FNAME.EXT<RTN>' 
 
    Note  that  the command DIR is a synonym for C[at] and works in exactly 
    the same way in all instances. 
    ....................................................................... 
 
    See Also:                  CAT/S or C[at]/S 
    C[at]/S or                 ---------------- 
    .C[at]/S        (Cataloging System and Non-System Files) 
 
    The  C[at]/S  command  produces a listing of all the files, both system 
    and non-system, on the disk.  This list will not be alphabetized.   The 
    /S modifier informs HDOS that you wish to display files, the listing of 
    which would normally be suppressed because the "S" flag is SET on them. 
    Type: 'C[at]/S<RTN>' and a  list  similar to the following list will be 
    printed: 
     
 
 
 
 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)           PAGE 6-7 
    ===========         ================================           ======== 
 
                            
                               CAT/S or C[at]/S 
                               ---------------- 
                (Cataloging System and Non-System Files)(Cont) 
 
 
    Name    .Ext   Size   Created   Time   Flags--- User 0  Date: 27-Jun-89 
 
    HDOS30  .SYS     40  20-May-89  12:20a   SLW C 
    TT      .DVD     13  20-May-89  12:20a   SLW C 
    SYSCMD  .SYS     40  20-May-89  12:20a   SLW C 
    PIP     .ABS     49  20-May-89  12:20a   SLW C 
    SY      .DVD     20  20-May-89  12:20a   SLW C 
    AUTOEXEC.BAT      1  28-Apr-89   7:44a    
    CLOCK   .TAS      3  28-Apr-89   7:44a 
    ERRORMSG.SYS      8  28-Apr-89   7:44a     
    SET     .ABS     12  28-Apr-89   7:44a     
    SYSHELP .19      43  20-May-89  12:20a     
    HELP    ,19      23  20-May-89  12:20a     
    LP      .DVD     15  17-Nov-80  12:16a     
    RGT     .SYS     1   20-May-89  12:16a   SLW C D 
    GRT     .SYS     1   20-May-89  12:16a   SLW C D 
    DIRECT  .SYS     24  20-May-89  12:16a   SLW C D 
 
       15 Files, Using 421 Sectors (525 Free) 
    ....................................................................... 
 
    See Also:                  CAT/F or C[at]/F 
    .C[at]F or                 ----------------     
    C[at]/S/F or    (Determining File Sector Allocation) 
    .C[at]/S/F 
 
    HDOS assigns sectors in groups, or clusters, in order to facilitate the 
    process of extending a file.  For details, see "Theory of Operation" in 
    Chapter  6.   Thus, the number of sectors HDOS assigns to a file may or 
    may not correspond to the number of sectors that it takes to store  the 
    data  in  the file.  The C[at] and C[at]/S commands produce listings in 
    which the size of the file is the number of sectors that  it  takes  to 
    store  the  data  in  the file.  When appended to the C[at] and C[at]/S 
    commands, the/F switch will produce a listing in which the size of  the 
    file  reflects the actual number of sectors that have been allocated to 
    the file.  The general format for using the /F switch is: 
     
               'C[at] DVn:/F<RTN>'  
 
    or, more commonly: 
 
               'C[at] DVn:/S/F<RTN>' 
 
    or  '.C/S/F<RTN>' 
 
    for SY0:. 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)           PAGE 6-8 
    ===========         ================================           ======== 
 
 
                               CAT/F or C[at]/F 
                               ---------------- 
                  (Determining File Sector Allocation)(Cont) 
 
 
    The following list appears on the screen: 
 
    Type: Boot     INIT      20-May-89 by HDOS 3.0   User 0  Date:28-Jun-89 
 
 
    Name    .Ext  Size Alloc  Created   Time  Flags   User 0  Accessed  A/C 
 
    HDOS30  .SYS   40   42   20-May-89 12:20a SLWC         0  28-Jun-89   2 
    TT      .DVD   13   18   20-May-89 12:20a SL C D       0  28-Jun-89   2 
    SYSCMD  .SYS   40   42   20-May-89 12:20a SLWC         0  28-Jun-89  95 
    PIP     .ABS   49   72   20-May-89 12:20a SL C D       0  28-Jun-89  72 
    SY      .DVD   20   24   20-May-89 12:20a SL C D       0  28-Jun-89  10 
    AUTOEXEC.BAT    1    6   28-Apr-89  7:44a C            0  28-Jun-89  20 
    CLOCK   .TAS    3    6   28-Apr-89  7:44a              0  28-Jun-89  95 
    DK      .DVD   18   20   20-May-89  7:44a              0   3-Jun-89  13 
    ERRORMSG.SYS    8   12   28-Apr-89  7:44a              0   3-Jun-89   1 
    INIT    .ABS   29   32   20-May-89  7:44a              0  28-Jun-89  32 
    SET     .ABS    8   12   20-Apr-89  7:44a S WC         0  28-Jun-89   4 
    SYSGEN  .ABS   20   24   28-Apr-89  7:44a              0  28-Jun-89   6 
    UD      .DVD   15   18   20-May-89 12:20a              0  28-Jun-89  84 
    RGT     .SYS    1    1   20-May-89 12:20a       01234567  28-Jun-89  25 
    GRT     .SYS    1    1   20-May-89 12:20a       01234567  28-Jun-89  25 
    DIRECT  .SYS   24   28   20-May-89 12:20a       01234567  28-Jun-89  25 
      
      16 Files, Using 309 Sectors (637 Free) 
    ....................................................................... 
 
 
    See Also:                         CLS 
    . (Keyboard Dot)                 ----- 
                            (Clear Console Screen) 
  
    The  CLS command clears the console screen.  For example, if you obtain 
    a disk directory, and want to continue with the next step in your plan, 
    but  the  screen  is  cluttered,  you  can remove the clutter by simply 
    typing CLS<RTN>.  The screen clears, and the cursor moves to the "HOME" 
    position.  The alternate command is to just type a dot .<RTN>. 
    ....................................................................... 
 
 
    See Also:                   COPY or CO[py] 
    VERI[fy] or                 -------------- 
    MOV[e]                    (Duplicating Files) 
                  
    You  may  wish  to  have  an  extra  copy of a file for the purposes of 
    modification or safekeeping.  Use the COPY command for  such  purposes. 
    In  general,  many  commands  are a form of the COPY command.  When you 
    list the contents of a file, you are actually "copying" the file to the 
    system console.  When you run a program, you are actually "copying" the 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)           PAGE 6-9 
    ===========         ================================           ======== 
 
 
                                COPY or CO[py] 
                                -------------- 
                           (Duplicating Files)(Cont) 
 
    contents of a file into the memory of the computer and then telling the 
    computer  to  "jump"  to  the  memory  location.   This concept will be 
    discussed in more detail in the "Peripheral Interchange" section. 
 
    The general format for the COPY command is: 
 
               'CO[py] DVn:DESTINATION.EXT=DVn:SOURCE.EXT<RTN>' 
 
    The  destination  and source may be either a filename or a device (such 
    as LP: or TT:) or a combination of the two.   You  can  omit  the  DVn: 
    portion  of  both filenames if the source file is on SY0:, and you want 
    the destination file stored there as well.  If either of the  files  is 
    not  stored  on  SY0:,  it is good practice to include the DVn: portion 
    with both filenames. 
     
    HDOS 3.0 has a unique method of copying  files.  The general command to  
    copy one file from one drive to another is as follows: 
 
               'CO[py] SY1:LP.DVD=SY0:LP.DVD<RTN>' 
 
 
    However, if you want to copy all of the files from one drive to another 
    drive, the simplest command is: 
 
         'CO[py] SY1:=SY0:<RTN>'  or  'CO[py] SY1:*.*=SY0:*.*<RTN>' 
 
    For now, you may copy one of the HDOS files such as BASIC.ABS by typing 
    'CO[py] TEMP.ABS=BASIC.ABS<RTN>'.   The output  generated  will  be  as 
    follows: 
                                          
               'CO[py] TEMP.ABS=BASIC.ABS<RTN>' 
 
               "1 FILE COPIED" 
 
    You  have  created  an exact duplicate on the system volume of the file 
    containing the program BASIC.ABS.  The file is executable by  means  of 
    any of the following commands: 
 
               'TEMP<RTN>' 
               'RUN TEMP<RTN>' 
               'TEMP.ABS<RTN>' 
               'RUN TEMP.ABS<RTN>' 
               'RUN SY0:TEMP.ABS<RTN>' 
    
    A  copy  of  a  system  file, such as HDOS30.SYS, is not at all useful. 
    System files may be copied in a useable  form  only  by  means  of  the 
    program, SYSGEN, as explained in "SYSGEN" in chapters 2 and 3.  
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-10 
    ===========         ================================          ========= 
 
 
                                COPY or CO[py] 
                                -------------- 
                              (Duplicating Files)(Cont) 
 
    To copy a file to a peripheral, simply specify  the  peripheral  device 
    name  in  the destination portion of the COPY command.  HDOS will treat 
    the device name as it it were a file.  For example, to copy a  file  to 
    the terminal, type: 
 
               'CO[py] TT:=SYSHELP.DOC<RTN>' 
 
    Or to copy this file to a printer, type: 
 
               'CO[py] LPn:=DVn:SYSHELP.DOC<RTN>' 
 
    It is also possible to copy a file from TT: to disk, as is demonstrated 
    in the following example: 
 
               'CO[py] TESTFILE.DOC=TT:<RTN>' 
               'THIS IS A TEST.<RTN>' 
               'TYPE CTRL-D' 
               "1 FILE COPIED" 
 
    If  you  type  C[at]<RTN>  after performing this example, the file SY0: 
    TESTFILE.DOC will be included in the catalog listing. 
     
    It  is also  possible to copy from one non-disk device to another.  For 
    example: 
 
               'CO[py] LP:=TT:<RTN>' 
               'This is another test.<RTN>' 
               'TYPE CTRL-L and CTRL-D' 
               "1 FILE COPIED" 
 
    When  you finish entering data for the keyboard, (which was signaled by 
    the CTRL-D command), HDOS will transmit what you typed  to  the  system 
    printer (LPn:).  
 
 
    VERIFY 
    ------ 
    Within HDOS 3.02, you can have the system verify your file(s) by using 
    the command:  
 
                'CO SY1:LP.DVD=SY0:LP.DVD^/V[ERIFY]' 
 
    Or you can turn the VERI[fy] feature on before you copy by using the 
    command: 
 
                'V[ERIfy] ON<RTN>'  or  'V[ERIfy] OFF<RTN>' 
 
    Finally, VERIFY may be included in the AUTOEXEC.BAT file. 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-11 
    ===========         ================================          ========= 
 
 
                                COPY or CO[py] 
                                -------------- 
                           (Duplicating Files)(Cont) 
 
    MOVE 
    ---- 
    Also, when you are planning to delete the source file after it has been 
    copied, use the command: 
 
                'MOV[e] SY1:LP.DVD=SY0:LP.DVD<RTN>' 
 
    ....................................................................... 
 
 
    See Also:                         CRC 
    CH[eck]                          ----- 
                           (Provides File Checksum) 
 
    The   command   'CRC^DVn:FILENAME.EXT<RTN>'   provides  a  CRC  (cyclic 
    redundancancy check) for any file.  The CRC is a multiple-digit number. 
    On  the  same  file,  the  CRC  should  always  be  the same.  If it is 
    different, something bad has  happened  to  the  copy.   Usually,  this 
    indicates that somewhere along the line it has picked up a bad sector. 
     
    A  similar command  is 'CH[eck]^DVn:FILENAME.EXT<RTN>'.   This  command 
    requires only the letters CH to run.  The letters inside  the  brackets 
    are optional.  Do not type the brackets. 
    ....................................................................... 
 
 
                                DATE or DA[te] 
                                -------------- 
                           (Manipulates System Date) 
 
    This command can do three tasks: 
 
         (1)  Type  'DA[te]<RTN>',  and  the  system  shows you the current 
    system date: 
     
         (2)  Type 'DA[te]^NO-DATE<RTN>',  and the system clears the system 
    date to <NO-DATE>. 
 
         (3) Type 'DA[te]^dd-mmm-yy', and the system date is set to the new 
    date that you have typed in. 
 
    *********************************************************************** 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-12 
    ===========         ================================          ========= 
 
 
 
    See Also:                 DELETE or DEL[ETE] 
    ERA[se]                   ------------------ 
                               (Deleting Files) 
 
    This  command requires only the letters DEL to run.  The letters inside 
    the brackets are optional.  Do not type the brackets. 
 
    From  time  to time you may decide that you have too many files on your 
    disk.  You can get rid  of  extraneous  files  by  using  the  DEL[ete] 
    command.   Be forewarned, however, that there is no easy way to recover 
    a file that has been deleted, except to copy it from a "back up"  disk, 
    such  as  the  distribution  disk.  It is for this reason that the HDOS 
    distribution  disk  and  system  files  are   write-protected.    Write 
    protection   insures   that   essential   system   files  will  not  be 
    inadvertently destroyed.  As a "safe" example of this command, you  may 
    delete the files that you copied in the previous sections by typing: 
     
               'DEL[ete] TEST1.DOC,TEMP.ABS<RTN>' 
 
    As a  more "daring" example,  you may want to delete all the files that 
    go by the name "FARM," and reside on SY1:.  A word of caution  at  this 
    time.  For purposes of safety, it is a good practice to always obtain a 
    disk directory of the disk files you propose  to  delete  in  order  to 
    prevent deleting the wrong files.  For example, type: 
 
               'C[at]^SY1:FARM.*<RTN>' 
 
    to see exactly what would be deleted.  If all is well, then type: 
 
               'DEL[ete]SY1:FARM.*<RTN>' 
 
    ....................................................................... 
 
 
                             DEVICES or DEV[ices] 
                             -------------------- 
                         (Provides System Device Data) 
 
    This command can do two tasks: 
 
         (1)  Type 'DEV[ices]', and the system shows device information for 
    all known devices.  This is a simple, one-column display. 
 
         (2)  Type 'DEV[ices] DVn:' and the system shows device information 
    for DVn:. 
    ....................................................................... 
 
 
 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-13 
    ===========         ================================          ========= 
 
 
                                   DISMOUNT 
                                   -------- 
                              (Dismounting Disks) 
 
    When you are finished using the disk mounted in SY1:, SY2:, DK0:, DK1:, 
    or DK2:, etc.  you must use the DISMOUNT command to  instruct  HDOS  to 
    restore  the  directory  information  from memory to the disk.  In HDOS 
    3.02 there are several methods to dismount a disk: 
    
 
    TABLE 2: Options for Dismounting Disks in HDOS 3.02 
 
         DISMOUNTING OPTION        PRIMARY DRIVES       SECONDARY DRIVES 
    +---------------------------+--------------------+--------------------+ 
    | Old Style of Dismounting  | DISMOUNT SYn:<RTN> | DISMOUNT DKn:<RTN> | 
    +---------------------------+--------------------+--------------------+ 
    | HDOS 3.02 New Style:      | ****************** | ****************** | 
    +---------------------------+--------------------+--------------------+ 
    |   Single-Dismount:        |       Dn<RTN>      |      ;Dn<RTN>      | 
    +---------------------------+--------------------+--------------------+ 
    |   Multiple-Dismount:      |       MD<RTN>      |      ;MD<RTN>      | 
    +---------------------------+--------------------+--------------------+ 
    |   Quiet-DMount Many Disks:|       QD<RTN>      |      ;QD<RTN>      | 
    +---------------------------+--------------------+--------------------+ 
 
 
    Having dismounted DVn:,  you  can  replace  the  dismounted  disk  with 
    another.    DO  NOT  remove  the disk before it has been dismounted, or 
    files may be lost. 
 
    The  mounting  of  SY0: is automatically accomplished during Bootstrap. 
    You cannot normally use the MOUNT command with SY0:, but  you  can  use 
    the DISMOUNT command.   
    ....................................................................... 
 
 
                              COMMAND LINE EDITOR 
                              ------------------- 
 
    CTRL-A invokes the command-line editor at the system prompt. 
 
    The commands are as follows: 
 
        A    Abort and Restart          CTRL-D   Quit Editor 
        C    Change Mode                nSc      Search for Character 
        nD   Delete character(s)        X        Extra (Insert Mode) 
        H    Hack and Insert            ESC      Exit Insert or Change Mode 
        I    Insert Mode                nSPACE   Move Cursor Right 
        nKc  Kill character(s)          nBKSP    Move Cursor Left 
        L    List rest of line          nDEL     Move Left & Delete Chars 
        Q    quit editor                RET      Accept Command Line 
    ....................................................................... 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-14 
    ===========         ================================          ========= 
 
                                     FLAGS 
            CFLAGS or CF[lags] to Clear: SFLAGS or SF[lags] to Set 
            ------------------------------------------------------ 
                              (Write Protection) 
 
    You may decide to write-protect your files to prevent them  from  being 
    inadvertently  deleted  or  modified.   You can do this by means of the 
    FLAGS program.  In HDOS 3.0, the flags available are as follows: 
      
                A ARCHIVE .......... Not yet supported. 
                B BAD .............. File has a bad sector in it. 
                C CONTIGUOUS ....... File recorded continuously on disk. 
                D DELETE PROTECT ... Cannot delete unless use PIP/FORCE. 
                L LOCK ............. Unalterable.   
                S SYSTEM ........... Identifies system files. 
                W WRITE PROTECT .... Prevents writing to file. 
 
    TO SET A FLAG: 
    -------------- 
    COMMAND: 'SF^DVn:FILENAME.EXT=n'  sets flag n. 
    COMMAND: 'SF^Filename.Ext=&' sets S, L, W, and D flags at one fell 
              swoop. 
    COMMAND: 'SF^Filename.Ext=*' sets all possible flags.  
    COMMAND: 'SF^Filename.Ext=!' sets only selected flags: clears all 
              others, except C. 
 
    TO DELETE A FLAG: 
    ----------------- 
    COMMAND: 'CF^DVn:' clears all flags on all files, except C, L, and S. 
    COMMAND: 'CF^DVn:FILENAME.EXT'  clears all flags on one file. 
    COMMAND: 'CF^DVn=n'  clears n flags on all files. 
    COMMAND: 'CF^DVn:FILENAME(S)=n'  clears selected flags. 
 
    USE OF FLAGS: 
    ------------- 
    Flags are used to control access to files or to identify files. 
 
    TO CONTROL ACCESS: 
    ------------------ 
    (1) Set the D flag to keep a file from being inadvertently deleted. 
    (2) Set the W flag to keep a file from being written to. 
    (3) Set the L flag to keep a file from being altered in any way. 
    NOTE:  The L flag is the most powerful flag of all, since it cannot 
    be deleted except by using the /FORCE command under PIP/Plus. 
 
    TO IDENTIFY:  
    ------------ 
         (1)  The  B  flag  may  be set by the user.  It indicates that bad 
    sector(s) have been found in that file. 
         (2)  The  C  flag is automatically set by HDOS.  It indicates that 
 
    this  file  has been copied contiguously to the disk.  The system files 
    all carry this flag.  It occurs automatically during  INIT  or  SYSGEN. 
    Also the C flag may be administered to selected files. 
         (3)  The S flag is automatically set by HDOS.  This indicates that 
    the file is a system file. 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-15 
    ===========         ================================          ========= 
 
                                     FLAGS 
            CFLAGS or CF[lags] to SET: SFLAGS or SF[lags] to Clear 
            ------------------------------------------------------ 
                           (Write Protection)(Cont) 
 
    EXAMPLES: 
    --------- 
    Setting a flag: 
                        'SF^SY1:OPUS.DOC=D<RTN>' 
 
    Clearing a flag: 
                        'CF^SY1:OPUS.DOC=D<RTN>' 
    ....................................................................... 
 
 
    See Also:                    LOAD or L[oad] 
    FL[oad] nn                   -------------- 
                       (Loads a Specific Device Driver) 
 
    The  L[oad]  command  will  load,  and lock in memory a specific device 
    driver.  It will not fix it in memory like FLOAD  will.   For  example: 
    LOAD LP:<RTN>. 
 
    The  FL[oad]  command  will  load,  lock,  and fix in memory a specific 
    device driver.  It  will  not  fix  it  in  memory.   Example:  FL[oad] 
    LP:<RTN>. 
    ....................................................................... 
 
      
    See Also:                         LOG 
    LOG ON                           ----- 
    LOG OFF                  (Enables Logging Tasks) 
 
    The command 'LOG ON' enables a logging task (i.e., turns it on.) 
 
    The command 'LOG OFF' disables a logging task (i.e., turns it off.) 
 
    ....................................................................... 
 
 
                                     MOUNT 
                                     -----     
                               (Mounting Disks) 
 
    The  disk  drive units are known as directory devices.  This means that 
    HDOS maintains a directory for  the  disks  that  are  mounted  on  the 
    drives.   The  operating  system  also  uses  a  table which "maps" the 
    location of every file on the disk.  For the sake of efficiency,  parts 
    of the directory and map tables (GRT.SYS) are kept in memory while HDOS 
    is running.  When a disk is removed from  the  system,  or  dismounted, 
    these  directory  and  table  segments must be written from memory back 
    onto the disk.  If you add or delete files, you must dismount in  order 
    to reflect the most recent changes in the status of various files.  But 
    even if you change  nothing  on  the  disk,  the  directory  and  table 
    segments must be written back to the disk (GRT.SYS) from memory. 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-16 
    ===========         ================================          ========= 
 
 
                                     MOUNT 
                                     ----- 
                            (Mounting Disks)(Cont) 
 
                                    CAUTION 
              If  you  remove  a  disk from a drive without first 
              dismounting it, and attempt to install a  different 
              disk  in  that  drive,  the second disk will NOT BE 
              DESTROYED by HDOS 3.02, as it would  be  with  HDOS 
              2.0.   Instead,  an  error  message will be issued: 
              "? 02 A volume is presently MOUNted on the device." 
              The operating system will refuse to mount your  new 
              disk.   You  may  be inconvenienced, but you cannot 
              help but respect the built-in  protection  provided 
              by 3.02. 
               
    In  order  to  repair  a disk that has been damaged in this fashion, it 
    requires not only a suitable program, but experience in the details  of 
    the  HDOS  disk structure.  Therefore, to save a lot of grief, you MUST 
    use the MOUNT and DISMOUNT commands when  you  insert  and  remove  the 
    disks. 
 
    Use  the MOUNT command when you install a disk.  Only initialized disks 
    may be mounted.  The basic requirements are that there be a disk in the 
    drive,  and  that  the  drive  door is closed.  In HDOS 3.02, there are 
    several methods to mount a disk: 
 
    TABLE 1: Options for Mounting Disks Under HDOS 3.02 
    --------------------------------------------------- 
 
          MOUNTING OPTION          PRIMARY DRIVES       SECONDARY DRIVES 
    +---------------------------+--------------------+--------------------+ 
    | HDOS 2.0 Style of Mounting|   MOUNT SY1:<RTN>  |  MOUNT DK0:<RTN>   | 
    +---------------------------+--------------------+--------------------+ 
    | HDOS 3.02 New Style       |   ***************  | ****************** | 
    +---------------------------+--------------------+--------------------+ 
    |   Single-Mount:           |       M1<RTN>      |      ;M0<RTN>      | 
    +---------------------------+--------------------+--------------------+ 
    |   Multiple-Mount:         |       MM<RTN>      |      ;MM<RTN>      | 
    +---------------------------+--------------------+--------------------+ 
    |   Quiet-Mount Many Disks: |       QM<RTN>      |      ;QM<RTN>      | 
    +---------------------------+--------------------+--------------------+ 
 
    These  commands  inform  HDOS  that there is a disk installed in one or 
    more drives.  HDOS reads the table  and  directory  segments  (GRT.SYS) 
    from  the disk(s) into memory in preparation for your file manipulation 
    commands.  HDOS will  not  recognize  any  commands  dealing  with  the 
    drive(s) until the disk(s) are properly mounted. 
    ....................................................................... 
      
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-17 
    ===========         ================================          ========= 
  
 
    See Also:                   PATH or PA[th] 
    PA[th] text                 -------------- 
    PA[th]~                                            
 
    The  PATH  command  is designed for computer systems with a hard drive. 
    It will also work with computer systems that have  high  capacity  disk 
    drives such as the H37 and H47. 
 
    The  PATH  command  is  used  to Set, display, or clear the system path 
    string.  No syntax checking is performed by this command.   Any  errors 
    will  not  show up until the path is accessed by SYSCMD.  It will issue 
    the phrase, "Check Path," show you the offending characters,  and  give 
    the appropriate error message. 
     
    You may define your PATH string in several ways.   The  delimiters  are 
    the SPACE, the TAB, the COMMA, the COLON, or the SEMICOLON.  Therefore, 
    the following examples are all equivalent: 
     
        SY0: SY1: SY2:   SY0, SY1, SY2   SY0SY1SY2 
        SY0; SY1; SY2;   SY0 SY1 SY2 
 
    The command  'PA[th]...TEXT<RTN>' sets the system path.  NOTE: The PATH 
    command is executed just like any other command. 
 
    To clear the system path, type: 'PA[th]~<RTN>'.  (NOTE: The punctuation 
    mark between "PA[th]" and "<RTN>" is a tilde.) 
    ....................................................................... 
 
 
    See Also:                         PRN 
    PRN LP:                          ----- 
    PRN LPn:                 (Manipulates Printer) 
    PR[int]^Filename.Ext 
    PCn 
 
    The command 'PRN<RTN>' shows the current printer driver name and unit. 
                                            
    The  command  'PRN  LPn:' sets the current loaded printer driver to the 
    default unit number.  For example: LP0:. 
 
    The  command  'PRN  LPn:' sets the current loaded printer driver to the 
    desired unit number. 
 
    The command 'PR[int]^filename.ext' sends the specified file to the line 
    printer, using the current loaded printer driver. 
 
    The  command 'PCn' prints the disk catalog of primary device n.  If the 
    command is preceded by a semicolon (;), it prints  a  disk  catalog  of 
    secondary device n. 
    ...................................................................... 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-18 
    ===========         ================================          ========= 
 
 
    See Also:                 PROMPT or PRO[mpt] 
    PRO[mpt] text             ------------------ 
    PRO[mpt]~ 
 
    The command 'PRO[mpt]<RTN>' shows the system prompt. 
 
    The  command 'PRO[mpt]TEXT<RTN>'  sets the system prompt.  For example: 
    when used within the AUTOEXEC.BAT file, type: PRO JOEY+> 
 
    The command 'PRO[mpt]~<RTN>' clears the system prompt. 
    NOTE: The punctuation mark after PRO[mpt]~ is a tilde. 
    ....................................................................... 
 
 
                                 RENAME or REN 
                                 ------------- 
                               (Renaming Files) 
 
    This  command requires only the letters REN to run.  The letters inside 
    the brackets are optional.  Do not type the brackets. 
 
    The 'REN[ame]' command  is  used  to change the name of any file except 
    essential system files and other protected files.  System files  cannot 
    be renamed because they have the W and L flags set.  For an explanation 
    of flags, see the "FLAGS" section of this chapter.  The general  format 
    for the REN[ame] command is: 
 
                'REN[ame] DVn:NEWNAME.EXT=DVn:OLDNAME.EXT<RTN>' 
 
    The  DVn:  portion  of  both  filenames  must  be  the  same, as in the 
    following example: 
 
                  'REN[ame] SY1:TAX.DAT=SY1:INCOM79.DAT<RTN>' 
      
    You may omit the DVn: portion of both file names if the file  you  want 
    to rename is stored on the disk in SY0:. 
 
    As an example, you can rename the file that you created in the previous 
    section, TESTFILE.DOC, by typing: 
 
                    'REN[ame] TEST1.DOC=TESTFILE.DOC<RTN>' 
    ....................................................................... 
 
 
                                RESET or R^DVn: 
                                --------------- 
 
    This command  requires only the letter R to run, (i.e., R^[eset]).  The 
    letters inside the brackets are optional.  Do not type the brackets. 
     
    The R[eset] command (i.e., R^[eset]DVn:)  first dismounts the disk that 
    is in the drive, instructs you to remove the disk from the  drive,  and 
    then  instructs  you to insert the new disk.  There is one caution with 
    respect to this command: before you remove the disk,  insure  that  the 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-19 
    ===========         ================================          ========= 
 
 
                            RESET or R DVn: (Cont) 
                            ---------------------- 
 
    RESET command has been given.  It is easy if you are in a hurry to skip 
    the command and pull the disk.  HDOS 3.02 will not allow you to  insert 
    a new disk.  Instead, it will give you the following error message: 
 
    ?02 A volume is presently mounted on the device.      
 
    Example of using the RESET command: 'R1^<RTN>' 
 
    This command may be used to reset SY1: or SY2: 
 
    and ';R^<RTN>' 
 
    resets the secondary drives, DK0: or DK1: or DK2:. 
    ....................................................................... 
 
 
    See Also:   Arguments             RUN 
    FNAME[.ABS]                      ----- 
                              (Running Programs) 
 
    The format of the RUN command is: 
                                             
               'RUN DVn:FNAME.EXT<RTN>' 
 
    When  you  initialized  your  disks  in  Chapter  One,  "System  Set-Up 
    Procedures," you were instructed to type "INIT."  Had you desired,  you 
    could have typed: 
 
               'RUN SY0:INIT.ABS<RTN>' 
 
    HDOS recognizes  the contents of any file with the .ABS extension as an 
    executable machine-code program.  If you type only the FNAME portion of 
    the filename while in the command mode, HDOS assumes that you mean "RUN 
    SY0:FNAME.EXT."  Thus, to run BASIC, simply type: 
 
               'BASIC<RTN>'     for Benton Harbor BASIC 
               'MBASIC<RTN>'    for Microsoft BASIC 
 
    If  you  tried  either preceding example, first type BYE<RTN>.  To exit 
    B.H.  BASIC, type:'Y<RTN>' when B.H.  BASIC prints "Are you sure?"   To 
    exit from MBASIC, type 'SYSTEM<RTN>'.  This will exit you from BASIC to 
    the HDOS command mode. 
 
    NOTE: In calling up a program, you do not need to use the command, RUN. 
    In HDOS the RUN is understood for any .ABS program. 
 
    Refer to the appropriate section  of  your  software  manual  for  more 
    information about system resources such as BASIC. 
 
    If you wish to run a program  with  the  .ABS  extension  from  a  disk 
    mounted on a drive other than SY0:, you would type: 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-20 
    ===========         ================================          ========= 
 
 
                                  RUN (Cont) 
                                  ---------- 
 
               'RUN DVn:FNAME<RTN>' 
 
    or 
 
               'DVn:FNAME<RTN>' 
 
    Thus, if you wanted to run BASIC from the disk in drive SY2:, you would 
    enter: 
 
               'SY2:BASIC<RTN>' 
 
    All  of  the following formats are valid for running a program that has 
    the .ABS extension: 
 
               'FNAME<RTN>' 
               'FNAME.ABS<RTN>' 
               'RUN DVn:FNAME<RTN>' 
               'RUN DVn:FNAME.ABS<RTN>' 
 
 
               'BASIC<RTN>'             \ 
               'BASIC.ABS<RTN>'          \  All of these commands 
               'RUN BASIC<RTN>'           |  are equivalent. 
               'RUN SY0:BASIC<RTN>'      /    
               'RUN SY0:BASIC.ABS<RTN>' / 
 
    Some  programs  are  not "interactive," (i.e., they are not designed to 
    ask you questions and wait for your responses to act).   This  type  of 
    program  wants  all the information it needs to be supplied at the time 
    you run it.  This is done by adding "arguments" after the program name. 
    The  program  "SET.ABS"  is  an example of such a program.  If you just 
    give the command "SET<RTN>," or "RUN  SET.ABS<RTN>,"  the  SET  program 
    will complain that you didn't provide the data it needs.  The following 
    examples are equivalent: 
 
               'SET^SY:^STEP 20<RTN>'            
               'SET.ABS^SY:^STEP 20<RTN>'        
               'RUN^SET^SY:^STEP 20<RTN>'        
               'RUN^SY0:SET^SY:^STEP 20<RTN>'    
               'RUN^SY0:SET.ABS^SY:^STEP 20<RTN>' 
 
    Refer to the SET section of chapters 2 and 3 for more information about 
    the SET command and SET options. 
    ....................................................................... 
 
 
 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-21 
    ===========         ================================          ========= 
 
 
 
    See Also:                   TIME or TI[me] 
    TI[me]^/                    -------------- 
    TI[me] hh:mmm:ss       (Manipulates System Time) 
 
    The command 'TI[me]' shows system time. 
    The command 'TI[me]^/' shows system time continuously. 
    The command 'TI[me]' hh:mmm:ss allows the user to set the system time. 
    ....................................................................... 
 
 
    See Also:                   TYPE or T[ype] 
    .TYPE or .T[ype]            -------------- 
    LIST or L[ist]     (Listing the Contents of a File) 
 
    The  command requires only the letter T to run.  The letters inside the 
    brackets are optional.  Do not type the brackets. 
 
    This most  basic system command allows you to examine the contents of a 
    file on the console terminal.  Some files contain text in ASCII,  which 
    is  meaningful  when  listed.   Such  files usually have a .BAS or .DOC 
    extension.  Other files are written in binary code, and have no meaning 
    when listed on the console.  These files have .ABS or .DVD extensions. 
 
    Another  feature  is provided when using "TYPE."  If you first type a . 
    (keyboard period) followed by the T[ype] command, the screen  fills  24 
    lines  with  the file and then stops to allow you to read the contents. 
    To advance the file one line, just hit the SCROLL key.  To advance  the 
    file one screen, hit SHIFT-SCROLL. 
     
    Example: '.T^SY1:QUERY.DOC<RTN>'. 
 
    In  HDOS  3.02 there are two files that contain meaningful information. 
    These files are:  SYSHELP.DOC,  which  provides  help  for  the  SYSCMD 
    commands,  and  HELP.,  which  provides  help for the PIP commands.  To 
    obtain information on any command, just TYPE either of these files, and 
    then control them by the use of the SCROLL key. 
    ....................................................................... 
 
 
    See Also:                UNLOAD or UNL[oad] 
    UNL[oad]^*               ------------------ 
                      (Unloads a specific device driver) 
 
    The  UNL[oad]  command  will  unload  a  specific  device  driver.  For 
    example: 'UNL[oad] LP:<RTN>'. 
     
    The  'UNL[oad]^*'  command  will  unload  all  device  drivers on disk. 
    Alternately, you may unload the device driver(s) of  your  choice.   If 
    the  system has too many device drivers, this command will free up disk 
    space to allow you to run application programs.  HDOS 3.02 provides for 
    having  nearly  unlimited numbers of device drivers on disk, while HDOS 
    2.0 is limited to only 5 at  one  time.   
    ....................................................................... 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-22 
    ===========         ================================          ========= 
 
 
    See Also:                   USER or U[ser] 
    U[ser]n                     -------------- 
    PU[ser]FN.EXT=n         (Refers to User Areas) 
    RU[ser]FN.EXT 
    RU[ser]FN.EXT=n 
 
         (1) The command 'U[ser]' displays the active user areas. 
 
         (2)  The command 'U[ser]n' sets the active user to be user area n. 
    The term "n" can stand for any number between 0 and 7. 
 
         (3)  The  command 'PU[user]FN.EXT=n' puts selected files into user 
    areas. 
     
         (4)  The  command  'RU[ser]Filename.Extension'  removes all of the 
    files from user areas and places them into user area zero. 
 
         (5)  The  command  'RU[ser]Filename.Extension=n'  removes  certain 
    files from specified user areas. 
    ....................................................................... 
 
 
    See Also:                VERSION or VER[sion] 
    ID                       -------------------- 
                             (Shows Version Data) 
 
    The  VER[sion]  command  shows  brief  SYSCMD  version  data.  Example: 
    'VER[sion]<RTN>'. 
 
    The ID command shows extended version data.  Example: 'ID<RTN>'. 
    ....................................................................... 
     



    CHAPTER SIX         HDOS 3.02 COOKBOOK                        PAGE 6-23 
    ===========         ==================                        ========= 
 
                     INTRODUCTION TO THE PIP/PLUS COOKBOOK 
                     +++++++++++++++++++++++++++++++++++++ 
 
    HDOS  3.02  uses a set of  system programs called  PIP/Plus.  PIP is an 
    acronym for Peripheral Interchange Program.  Since the  file  in  which 
    PIP/Plus  resides  has the .ABS extension, you may assume by convention 
    that it contains an executable machine-code program.  You can therefore 
    enter PIP/Plus by  simply typing 'PIP<RTN>' from the command mode.  The 
    result will be a prompt as follows: 
 
               'PIP<RTN>' 
               "P:" 
 
    The P: prompt will be  displayed at  the  left  margin  of  the  system 
    console  whenever the PIP/Plus program is awaiting input.   
 
    To exit PIP/Plus, type: 'CTRL-D'. 
 
    The legal PIP/Plus commands are somewhat different from "normal" system 
    commands.  The general form is the COPY command, where a  "destination" 
    is  followed  by  an  equal sign, which is then followed by one or more 
    "source" specifications: 
 
               "P:"'DVn:DESTINATION.EXT=DVn:SOURCE.EXT<RTN>' 
 
    As an example: 
 
               "P:"'SY1:TEMP2.ABS=SY2:BASIC.ABS<RTN>' 
               "1 FILE COPIED" 
 
    This example has the same effect as the COPY command.   In  this  case, 
    the destination is SY1:TEMP2.ABS, and the source is SY2:BASIC.ABS.   
 
    If you do not specify a destination file, PIP/Plus will assume that you 
    refer to TT: and will copy the contents of the file onto the  terminal. 
    Each of the following commands has exactly the same result: 
 
               "P:"'BASIC.ABS" 
               "P:"'TT:=BASIC.ABS' 
               "P:"'TT:=SY0:BASIC.ABS' 
               'TYPE BASIC.ABS' 
               'COPY TT:=SY0:BASIC.ABS' 
 
    If  you  attempt any of these examples, the result will be a listing of 
    binary  "garbage."   Hit 'CTRL-C' to  cease  output  to  the  terminal. 
    SY0:BASIC.ABS contains a machine-code program, rather than text written 
    in ASCII. 
 
    It  is  possible  to catalog, rename, and delete files within PIP/Plus. 
    These functions are accomplished by  means  of  a  "switch,"  which  is 
    either  typed after a filename or names, typed after a disk drive name, 
    or typed by itself in response to the P: prompt.   
         
    Within the PIP/Plus section of HDOS 3.02 Cookbook, related commands are 
    grouped together in as near alphabetical order as possible.  This  will 
    help the user to select the most command. 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                        PAGE 6-24 
    ===========         ==================                        ========= 
 
                                   PIP/PLUS 
                        Peripheral Interchange Program 
 
    [1] The following PIP/Plus switches provide a variety of disk directory 
    listings: [NOTE: letters inside the brackets may be optionally typed.] 
 
      /ALL[ocate] Gives a catalog listing of disk allocation; not filesize. 
      /B[rief]    Gives a "brief" catalog listing of non-system files. 
                    This listing has multiple columns.  Also see "W[ide]. 
      /F[ull]     Gives a catalog listing of non-system files.  Also 
                    provides the number of sectors allocated to files and 
                    other details. 
      /FL[ag]:f   Gives a catalog listing with specified flags. 
      /NOF[lag]:f Gives a catalog listing without specified flags. 
      /G[roup]    Gives a catalog listing of specified files. 
      /L[ist]     Gives a catalog listing of non-system files. 
      /M[inimum]  Gives a minimum directory listing: one-column list. 
      /P:nn       Paginates directory listing (default=55 files per page). 
      /REV[erse]  Sorts in descending order (default=ascending order). 
      /S[ystem]   Gives a catalog listing including system files. 
      /W[ide]     Same as brief. 
 
    [2]  The following PIP/Plus switches may be used for copying, deleting, 
    renaming or to cataloging files: [Note: Letters within the brackets may 
    be optionally typed.] 
 
      /AC[cess]   Use access date instead of creation date. 
      /AFT[er]    Includes files created after dd-mmm-yy.                   
      /AGE:n      Includes files n days old or older. 
      /ATT:f      Set DESTINATION flags on Copy (default=source flags). 
      /BEF[ore]   Includes files created before dd-mm-yy (default today). 
      /C[ontig]   Copy files in the Contiguous mode. 
      /CLR        Clears flags on specified files. 
      /COU:n      Includes files with access count <=n (default=1). 
      /NOC:n      Includes files with access count <=n (default=1). 
      /CRC        Performs a checksum on the specified files. 
      /CUR[rent]  Includes files created on dd-mmm-yy (default today). 
      /D[ate]     Uses today's date on copy. 
      /DEL[ete]   Deletes files. 
      /DIS[mount] Dismounts disks. 
      /FOR[ce]    Overrides W and D flags. 
      /ID         Displays data about PIP/Plus.   
      /K[eep]     Keeps DEST file flags on copy (use with FOR[ce]). 
      /PUT        Puts specified files into user areas. 
      /Q[uery]    Include ONLY user-selected files. 
      /R[ename]   Renames specified filenames. 
      /REM[ove]   Removes specified files from user areas. 
      /RES[et]    Resets a specified disk drive.        
      /SA[fe]     Ask before overwriting an existing file. 
      /SET        Sets flags on specified files. 
      /SO[rt]     Sort files for destination usage (default=NE). 
      /SU[press]  Suppresses trailing messages, headers, and status line. 
      /USR        Opens an active user area.  
      /V[erify]   Compares CRC of SOURCE FILES and DESTINATION files. 
      /VERS[ion]  Displays information about PIP/Plus. 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (PIP/Plus)             PAGE 6-25 
    ===========         =============================             ========= 
      
                       [Disk Directories with Date Data] 
                                         
    /ACCESS ......................... or .................... /AC[cess] 
    /AFTER dd-mmm-yy ................ or .................... /AFT[er] 
    /BEFORE dd-mmm-yy ............... or .................... /BEF[ore] 
    /CURRENT dd-mmm-yy .............. or .................... /CUR[rent] 
    /AGE:n              
    /COUNT nn: ...................... or .................... /COU[nt] 
    /NOCOUNT:nn ..................... or .................... /NOCOUNT 
 
         (1) The  switch  /ACCESS  may be used to  obtain a disk  directory 
    which includes access dates, instead of creation dates. 
         (2) The  switch  /AFTER  dd-mmm-yy  may be  used to  obtain a  disk 
    directory which includes files created after dd-mm-yy. 
         (3) The switch  /BEFORE  dd-mmm-yy  includes  files created  before 
    dd-mmm-yy.  The default is today. 
         (4) The switch /AGE:n may be used to obtain a disk directory which 
    includes files n days old or older. 
         (5) The switch /COUNT nn: includes files that  have been  accessed  
    the number of times  specified or more.  In this case,  you are  asking     
    for files that have been accessed at least once. 
         (6) The switch /NOCOUNT nn: includes files that have been accessed 
    less than the number of times  specified.  In this case, you are asking 
    for files that have never been accessed. 
 
    NOTE: These switches may also be used with COPY, DELETE, AND RENAME. 
    ....................................................................... 
 
                          [Detailed Disk Directories] 
 
    /ALLOCATE ....................... or ................... /ALL[ocate] 
    /FULL ........................... or ................... /F[ull] 
 
         (1) The /ALLOCATE  switch provides a disk directory  listing which 
    displays the disk filespace allocation, not the actual file size. 
         (2)  The  /FULL switch provides disk  filespace allocation as well  
    as the last  date  accessed,  and  the  number  of  times  accessed.  
    ....................................................................... 
 
                           [Brief Disk Directories] 
 
    /BRIEF .......................... or .................... /B[rief] 
                                      or .................... /B/S 
    /WIDE ........................... or .................... /W[ide] 
    /COL:nn                                      
 
         (1) The /BRIEF and /WIDE switches provides a wide directory. These 
    commands produce a 5-column directory of all non-system files. 
 
         (2) The /COL:nn switch is used with /B to specify how many columns 
    are shown on a page.   
    ....................................................................... 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (PIP/Plus)             PAGE 6-26 
    ===========         =============================             ========= 
     
                          [Controls Directory Flags] 
 
    /FLAG:f ......................... or .................... /FL[ag]:f 
    /NOFLAG:f ....................... or .................... /NOFL[ag]:f 
 
    You  can  obtain  a disk directory either with or without the specified 
    flags.  The command   P:SY1:/FL:W<RTN>  yields a  directory of all of  
    the files on disk drive SY1: which bear the W flag.  
    ....................................................................... 
 
                          [Catalogs Non-System Files] 
 
    /L 
 
    The /L switch produces a directory listing of non-system files.  The /L 
    switch is the same as the  CAT command in  SYSCMD/Plus.   The  examples 
    that follow are valid uses of the /L switch: 
 
                "P:"'SY1:/L<RTN> 
                "P:"'SY1:EDIT.ABS/L<RTN>' 
 
    NOTE:  If you want a catalog of non-system files from a disk mounted in 
    a drive other than SY0:, you must specify a device name before you type 
    /LIST. 
    ....................................................................... 
 
                    [Catalogs System and Non-System Files] 
 
    /L/S 
 
    The  L/S switch enables you to list all the files in the system exactly 
    like the CAT/S command in  SYSCMD/Plus.   The  /S  in  both  the  CAT/S 
    command and the /L/S switch is a modifier which causes files which have 
    the 'S' flag set to be included in the listing, along with those  files 
    which  you have copied or created.  /S is used in PIP/Plus with /L just 
    as it is used in the command mode with CAT. 
     
    For example: 
 
                "P:"'AT:=HDOS30.SYS/L/S<RTN> 
 
    Note  that  a destination, AT:, was specified, so that this listing was 
    printed on the alternate terminal, instead of the console terminal. 
    ....................................................................... 
 
                            [Lists Minimum Catalog] 
 
    /M 
 
    The /M switch provides a 'quick and dirty' catalog listing with all the 
    non-system files listed in one-column.  The advantage of this is  quick 
    access to file information. 
    ........................................................................ 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (PIP/Plus)             PAGE 6-27 
    ===========         =============================             ========= 
 
                       [Paginates the Directory Listing] 
 
    /P:nn 
 
    The  /P:nn  switch  paginates the directory listing.  The nn stands for 
    the number of files you want to see on one page.  This  is  useful  for 
    those  with  either  hard-drives or 80-track drives.  The default is 55 
    files per page. 
    ....................................................................... 
 
 
 
                      [Controls the Files One At A Time] 
 
    /QUERY .......................... or .................... /Q[uery] 
   
    The /Q[uery] switch can be used when you perform the following tasks on 
    a number of files: CAT, COPY, DELETE, RENAME, or SYSGEN *.*/Q.  It will 
    only  allow the computer to print one file, and when that file comes up 
    on the screen, you are expected to take  the  necessary  action.   Your 
    response  to the computer is to type a Y for yes and a N for no.  After 
    you type your response, the computer goes to the next file. 
    ....................................................................... 
 
 
 
                        [Determines FGN, LGN, and LSI] 
 
    /GROUP .......................... or .................... /G[roup] 
 
    This  switch  permits  an  advanced HDOS user to determine the physical 
    location on the surface of the disk where one  or  more  files  reside. 
    This  data  includes:  FGN  --  first  group  number, LGN -- last group 
    number, and and LSI -- last sector index.   This  may  be  particularly 
    helpful  when  modifying  a file using a direct track and sector access 
    method (e.g., Crash, Superzap, UDump, etc). 
    ....................................................................... 
 
 
 
                           [Using LP: with PIP/Plus] 
 
    You  can  print  out catalog listings produced by /ALL /B, /BS, /F, /L, 
    /L/S, and /W on a line printer by means of PIP.  For example, to obtain 
    a /L/S listing for drive SY0:, type: 
 
               "P:"'LP:=/L/S<RTN>' 
 
    Or, to obtain the same listing for a disk drive other than SY0:, type: 
 
               "P:"'LP:=DVn:/L/S<RTN>" 
    ....................................................................... 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (PIP/Plus)             PAGE 6-28 
    ===========         =============================             ========= 
 
 
                        [Copying Files Using PIP/Plus] 
 
    There  is no special command for copying files in PIP/Plus; however the 
    procedure is as follows: 
 
                "P:"DVn:Destination.Ext=DVn:Source.Ext<RTN>' 
 
                                  or 
 
                "P:"'1:Filter.ABS=2:Filter.ABS<RTN>' 
 
    Many  people  shy  away from using PIP to copy files to a given device. 
    However, as has been demonstrated, the procedure is relatively simple. 
    ....................................................................... 
      
                    [Sets the Destination Flags on a Copy] 
    /ATT:f 
 
    This  switch  sets the DESTINATION flags on a copy.  The default is Set 
    Source Flags.  The lower case f indicates which flags you wish to set. 
    ....................................................................... 
 
                     [Copies Files in the Contiguous Mode] 
 
    /CONTIG ......................... or .................... /C[ontig] 
 
    This  switch copies files in the contiguous mode.  All of the HDOS 3.02 
    system files are contiguous files.  Contiguous means to copy files with 
    one  sector  lined  up one after another, instead of copying at random. 
    You could use this flag to obtain faster disk access for your programs. 
    .......................................................................   
 
                    [Uses Today's Date When Copying Files] 
 
    /DATE ........................... or ................... /D[ate] 
 
    Uses today's date when copying files. 
    ....................................................................... 
 
                              [Manipulates Flags] 
    /CLR   
    /SET   
 
         (1)  The  switch /SET sets flags on specified files.  At least one 
    source file must be specified.  Wildcards may be  used  in  the  source 
    filename  or  extension.  One or more flags must be set.  The C flag is 
    set automatically by HDOS during  the  SYSGEN  operation.   Example  to 
    set a flag: 
 
               "P:"'SY1:QUERY.DOC/SET:W<RTN>" 
 
    This sets the W flag to write-protect the file, QUERY.DOC. 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (PIP/Plus)             PAGE 6-29 
    ===========         =============================             ========= 
 
                           [Manipulates Flags](Cont) 
 
    /CLR 
    /SET 
 
         (2) The switch /CLR clears flags on specified files.  At least one 
    source file must be specified.  Wildcards may be  used  in  the  source 
    filename   or   extension.    Exception:  the  C  flag,  which  is  set 
    automatically by HDOS during the SYSGEN operation.  Example to clear  a 
    flag: 
 
               "P:"'SY1:QUERY.DOC/CLR:W<RTN>' 
    ....................................................................... 
 
                       [Overrides the D, L, and W Flags] 
 
    /FORCE .......................... or ................... /FOR[ce] 
    /KEEP ........................... or ................... /K[eep] 
 
         (1)  The  /FORCE  switch  overrides  the  D,  L,  and W flags when 
    performing  COPY,  DELETE,  and  RENAME.   This  is  the  only  way  to 
    overwrite, delete, or rename the files to which these flags are set. 
         (2) The /KEEP switch keeps DESTINATION flags on the copy.   
 
    NOTE: Use /KEEP only with /FORCE. 
    ....................................................................... 
 
                           [Cyclic Redundancy Check] 
 
    /CRC                               
 
    The  switch /CRC performs a CRC checksum on specified files.  Wildcards 
    may be  used  in  the  source  filename  or  extension.   Omitting  the 
    destination  will  cause  the destination to default to TT:.  Wildcards 
    are not authorized in the destination filename. 
    ....................................................................... 
 
                                [Deletes Files] 
    /DEL  (Deleting Files) 
 
    The /DEL switch, like the DELETE command can be dangerous if you misuse 
    it.  It is difficult to recover  a  file  that  is  deleted  with  this 
    command,  since you have to utilize a disk editor to look at the binary 
    code of the disk itself.  The format is as follows: 
 
               "P:"'NEWFILE.ABS/DEL<RTN>' 
 
    You  may  want  to delete some files which have the S flag set, such as 
    unnecessary device drivers.  To do this, you will have to  add  the  /S 
    switch  after  the  filename.  This switch makes the files "visible" to 
    PIP/Plus, which usually ignores any file that has the S flag set.   For 
    example: 
 
               "P:"'ATH85.DVD/S/DEL<RTN>' 
    ....................................................................... 
    



    CHAPTER SIX         HDOS 3.02 COOKBOOK (PIP/Plus)             PAGE 6-30 
    ===========         =============================             ========= 
 
 
                    [Displays Version Data about PIP/Plus] 
 
    /ID 
    /VERSION ........................ or ................... /VERS[ion] 
 
    Displays   version   information   about  PIP/Plus  including  version, 
    revision, date assembled, H19 flag, SYSOP flag, Z80 flag,  and  whether 
    or  not  user  areas  are  supported.   In addition, it shows FWA, LWA, 
    buffer address, and buffer size in sectors. 
    ....................................................................... 
 
 
                        [Mounting and Dismounting Disks] 
 
    /MOUNT .......................... or ................... /MOU 
    /DISMOUNT ....................... or ................... /DIS     
 
    The  /MOU  and  /DIS  switches are used in the same manner as MOUNT and 
    DISMOUNT commands in SYSCMD.  They allow you to change the disks in the 
    drives.   You MUST specify which device you want mounted or dismounted, 
    even if you want to mount or dismount SY0:.  For example: 
 
               "P:"'SY1:/DIS<RTN>' 
 
    results in: 
 
               "Volume 090, Dismounted from SY1: 
                Label: BASIC Data Files" 
 
    Remounting SY1: 
 
               "P:"'SY1:/MOU<RTN>' 
               "Volume 082, Mounted on SY1: 
                Label: Assembly Programs" 
 
 
    If  you  plan  to DISMOUNT the system volume using /DIS, you will have to 
    LOAD any devices you wish to use before executing PIP/Plus. 
     
    A sample of the LOAD command used in this context is as follows: 
      
               'L[oad] LP:<RTN>' 
 
               'L[oad] DK:<RTN>' 
 
               'PIP:<RTN>' 
 
               "P:"'SY1:/MOU<RTN>' 
               "Volume 090, Mounted on SY1: 
                Label: BASIC Data Files" 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-31 
    ===========         ================================          ========= 
 
 
                    [Mounting and Dismounting Disks](Cont) 
 
 
               "P:"'SY0:/DIS<RTN>' 
               "Volume 200: Dismounted from SY0: 
                Label: Games Disk" 
 
               "P:"'LP:=SY1:/L/S<RTN>' 
 
               "P:"'TT:=DK1:/L/S<RTN>' 
 
    You  do not have to LOAD devices SY: or TT:.  Within HDOS 3.0, TT: they 
    are already loaded, since they now are  system  files.   Also,  if  the 
    alternate  device, DKn: has a disk mounted in any of its units, then it 
    won't be necessary to load DK: because HDOS has already put the  DK.DVD 
    device  driver  into  memory  so  that  it  would  know how to go about 
    mounting DK0:, DK1:, or DK2:. 
    ....................................................................... 
 
                                [Renames Files] 
 
    /RENAME ......................... or ................... /REN[ame] 
 
    The /RENAME switch is used in the same manner as the RENAME  command in 
    the command mode.  For example: 
 
                "P:"'NEWFILE.ABS=TEMP2.ABS/REN<RTN>' 
 
    The  /R[ename]  switch cannot be used to rename essential system files, 
    or any file that has the "W" flag set, such as HDOS30.SYS.  It will not 
    work  if  the source file does not exist, or if the destination file is 
    already present.  However, if you do try to rename an essential  system 
    file,  or  try  to  specify a nonexistent source file or a pre-existing 
    destination file, nothing will be damaged.  HDOS will simply  print  an 
    error message and await further input. 
 
    In  case  you  want to RENAME a text or binary file that has the W flag 
    set, you should use the switch /FOR[ce].  For  details,  refer  to  the 
    description provided. 
    ....................................................................... 
 
 
                               [Switching Disks] 
 
    /RES ............................. or ................... /RESET  
 
    The /RES switch will both mount and dismount a disk.  For example, if 
    You want to change the disk in drive DK1: 
 
               "P:"'DK1:/RES<RTN>' 
               "VOLUME 010, DISMOUNTED FROM DK1: 
                LABEL: WORKING DISK" 
 
               "Please Replace the Diskette in Drive DK1:" 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-32 
    ===========         ================================          ========= 
 
 
                            [Switching Disks](Cont) 
 
    When the message  "Please  Replace  the  Diskette  in  Drive  DK1:"  is 
    displayed,  remove  the disk that is currently in the drive and replace 
    it with the disk you want mounted.  The /RES switch will  automatically 
    continue the mounting operation when you close the drive door. 
 
    You can also use the /RES switch to reset SY0:.    This  has  the  same 
    effect as using /DIS to dismount SY0: and then /MOU to mount a new disk 
    in SY0:.  As with SY0:/DK0:, you are using PIP as a stand-alone program 
    and  you  are therefore making HDOS inactive.  Again, you must load any 
    devices you want to use before resetting SY0:.  When you exit PIP after 
    using  SY0:/RES,  you  will  normally  enter the boot routine.   If you 
    issue the /RES command for a drive that has no disk MOUNTed in it, HDOS 
    will  "know"  that  there  is no need to "DISMOUNT" any disk first.  In 
    such a case, /RES will have exactly the same effect as  /MOU,  normally 
    to mount a disk in that drive.         
    ....................................................................... 
 
              [Queries the Operator Prior to Overwriting A File] 
 
    /SAFE ............................ or ................. /SA[fe]   
 
    The  /SA[fe]  switch  queries  the  computer user before overwriting an 
    existing file. 
    ....................................................................... 
 
                      [Sorts Files in Alphabetical Order] 
 
    /SORT ............................ or ................../SO[rt] 
 
    The  /SO[rt]  switch  sorts  files for DESTINATION use.  The default is 
    NAME or EXTENSION. 
    ....................................................................... 
 
                                  [Supresses] 
 
    /SU                
 
    The /SU switch supresses trailing messages, headers, and status line. 
    ....................................................................... 
 
 
                       [Manipulates Files in User Areas] 
 
    /USR 
    /PUTUSER ......................... or .................. /PUT[user] 
    /REMUSER ......................... or .................. /REM[user] 
 
    HDOS  3.02 has the attribute of being able to utilize eight user areas, 
    (i.e., 0 through 7).  Each user area resembles a discrete disk  to  the 
    operating  system.   Thus, user areas enable related files to be listed 
    together, so as to make storing and file-handling  easier.   User  area 
    zero is the default if no argument is given. 
                        



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-33 
    ===========         ================================          ========= 
 
 
                    [Manipulates Files in User Areas](Cont) 
 
 
         (1) The /USR switch sets the active user area.  User area zero is 
    the default if no argument is given.  For example: 
    
               "P:"'SY1:USR:1<RTN>" 
 
    Opens user area 1 on SY1: to receive files.  No files are sent.  
 
         (2)  The /PUT switch enables one to send specified files into user 
    areas from one disk to another.  It is also possible  to  send  a  file 
    into a different user area on the source disk. 
 
    At  least  one source file must be specified.  Wildcards may be used in 
    the source filename or extension.  User area zero is  invalid,  as  all 
    files  reside  in  user  area  zero.   One  or  more user areas must be 
    specified.  For example: 
      
               "P:"'SY1:QUERY.DOC/PUT:1<RTN>' 
 
    Puts the file, QUERY.DOC into SY1:, user area 1. 
     
         (3)  The  /REM[ove]  switch  enables one to remove specified files 
    from specified user areas.  At least one source file must be specified. 
    Wildcards  may  be used in the source filename or extension.  User area 
    zero is invalid since all files normally  reside  in  user  area  zero. 
    Example to remove a file from a user area: 
 
               "P:"'SY1:QUERY.DOC/REM:1<RTN>' 
 
    This  removes the file, QUERY.DOC from SY1:, user area 1. 
 
    CAUTION:  When  working  with  user  areas, be careful not to duplicate 
    file names on the same disk, as the older version will  be  deleted  if 
    this situation occurs. 
 
    Queries User Before Over-writing An Existing File 
 
    *********************************************************************** 
 
 
                          PIP/Plus - SUMMARY 
                          ++++++++++++++++++ 
 
    After  you  have  become accustomed to PIP/Plus, you will probably find 
    its "shorthand" notation more convenient than  the  command  mode.   To 
    further  expedite your operations with PIP/Plus shorthand, you can type 
    PIP in the command mode, followed by a PIP/Plus  switch  or  series  of 
    switches.  Thus: 
 
               'PIP^/L/S<RTN>' 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK (SYSCMD/Plus)          PAGE 6-34 
    ===========         ================================          ========= 
 
 
                           PIP/Plus - SUMMARY (Cont) 
                           +++++++++++++++++++++++++ 
 
    has the same effect as 
 
               'PIP<RTN>' 
               "P:"'/L/S' 
 
    When you type PIP at the command mode level followed by a command line, 
    PIP/Plus will execute your command line and then return  you  to  HDOS. 
    You  will  therefore  not  be able to use the PIP/Plus command SY0:/RES 
    except within PIP/Plus.  The command: 
 
               'PIP^SY0:/RES<RTN>' 
 
    will  cause  PIP/Plus to reset SY0: and then immediately exit PIP/Plus. 
 
    The  various  file  functions  of  copying, renaming, and so on are not 
    actually duplicated between PIP/Plus and the system command mode, as it 
    may  seem.  When you type a command, the system first decodes it, using 
    a  program  which  resides  in  the  file  SY0:SYSCMD.SYS.   SYSCMD.SYS 
    contains  certain  "built-in"  commands, and if the command you type is 
    one of these, such as STAT, VER,  and  DATE,  SYSCMD.SYS  executes  it. 
    Otherwise,  SYSCMD.SYS  checks  to  ascertain  whether the command is a 
    "transient" command - that is, a command which is a program residing in 
    a file, such as SET.ABS and ONECOPY.ABS.  All other transient commands, 
    such as COPY, RENAME, etc, reside in PIP.ABS. 
     
    If  the  command  you  have  typed  is neither a built-in command nor a 
    transient command, SYSCMD.SYS prints an error message, which  it  finds 
    on  SY0:ERRORMSG.SYS.   If  your  command  is a transient command, then 
    SYSCMD.SYS passes it  on  to  PIP  for  execution.   PIP/Plus  normally 
    resides  in  a  file  called  SY0:PIP.ABS.   In  order  to  execute any 
    transient command, HDOS reads SY0:PIP.ABS into  your  system's  memory. 
    The  command  is  then  passed  on to PIP/Plus, which uses other system 
    resources, such as device drivers, to execute the command.  Thus,  even 
    though  you type COPY in the command mode level of HDOS, it is PIP/Plus 
    that actually performs the copy operation. 
 
     
    If you have only one or  two  file  operations  to  perform,  you  will 
    probably  find  it more convenient to use the command mode forms of the 
    commands.  For more extensive file manipulation, it will be  faster  to 
    run PIP.ABS and command PIP/Plus directly. 
 
    Remember  that you can exit from PIP back to the command mode by typing 
    'CTRL-D'.  You can also obtain a listing  of  PIP  commands  by  typing 
    HELP.  from the command mode.  This causes the file HELP.  to be listed 
    on your terminal. 
    ********************************************************************** 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                        PAGE 6-35 
    ===========         ==================                        ========= 
 
               APPENDIX 6-A: MOST USED HDOS 3.02 SYSTEM COMMANDS 
               +++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    CF filename(s)=flags ......... Clear selected flags from listed files  
                                 
    CO DVn:=source ............... Copy source DVn: to destination DVn:. 
                                   (SY0: is destination in this example) 
 
    CO SY2:READ.DOC=SY1:READ.DOC . Copy to SY2: from SY1: a file, READ.DOC 
 
    DEL DVn: or .................. Delete all files on DVn:.  Gives a 
    DEL SY1:*.*                    verification query first  
 
    DEL SY1:JILL.001 ............. Deletes file JILL.001 on drive SY1: 
 
    Dn ........................... Dismount unit n of primary drive chain 
 
    D1 ........................... Dismount unit SY1: 
 
    HA (Halt) .................... Runs "Shutdown.BAT" first.  Then shuts 
                                   down system same as BYE. 
 
    MD ........................... Multi-Dismount primary drives except for 
                                   SY0: 
 
    Mn ........................... Mount primary device DVn: 
 
    M1 ........................... Mount drive SY1: 
 
    MM ........................... Multi-Mount all primary drives except  
                                   for SY0: 
 
    MOV DVn:=Source .............. Copy source filename(s) to destination; 
                                   then delete source filenames if CRC okay 
 
    REN .......................... Rename destination=source 
 
    REN .......................... SY1:JILL.DOC=JANE.DOC 
 
    RDVn: ........................ Reset drive DVn: 
 
    R1 ........................... Reset drive SY1: 
 
    SF filename(s)=flags ......... Set selected flags of listed filenames 
 
    SF JANE.DOC=C ................ Sets contiguous flag on file JANE.DOC 
 
    ST taskname .................. Start a task       
 
    T filename ................... Type a filename to the screen 
 
 
 
 
 
 



    CHAPTER SIX         HDOS 3.02 COOKBOOK                        PAGE 6-36 
    ===========         ==================                        ========= 
 
 
           APPENDIX 6-A: MOST USED HDOS 3.02 SYSTEM COMMANDS (Cont) 
           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
 
    SY1:.T KAREN.LTR.............. Type a file by the name of KAREN.LTR 
                                   to the screen.  Then place the contents 
                                   in a "hold screen" configuration.  This 
                                   file resides on SY1:. 
 
    Un ........................... Set active user (0 thru 7) 
 
    U2 ........................... Set user 2 
 
    PU filename(s)=user .......... Put selected files into the selected 
                                   user area you designated previously 
                                   with the command: Un<RTN> 
 
    RU filename(s)=user .......... Remove selected files from the  
                                   designated user area when you typed 
                                   Un<RTN> 
 
    NOTES:  
 
    1.   The  term  n,  such  as Un stands for a number.  In this case, the 
    number may be from 1 thru 7.   Another  example  is:  DVn:,  where  the 
    expression stands for a disk drive from SY0: thru SY3:. 
     
    2.  DVn: stands for a disk drive.  In this case, the number may be from 
    1 thru 3. 
     
    3.  A User is a discrete disk area where certain files may be  made  to 
    reside.   Each of these discrete disk areas is "stand-alone."  With the 
    the use of "user" you are permitted to copy the same  filename  on  the 
    disk  several  times,  provided  the  files  are sent to different user 
    areas. 
     
 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                   CHAPTER 7 
 
                              ADVANCED TECHNIQUES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-i 
    =============       ===================                        ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4 ,5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    Chapter   7,  Advanced  Techniques,  lists  and  describes  the  native 
    utilities that are  a  part  of  HDOS  3.02.   Further,  it  lists  the 
    associated  utilities that make using this version of HDOS so pleasant. 
    It provides new techniques etc., which have been  ported  from  MS-DOS. 
    This  chapter  makes  available  many  new facilities that are not only 
    challenging but quite practical to daily computer use. 
 
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West Branch  Mobile Home Village, 
    West Branch, IA 52358. 
 
 
     
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-1 
    =============       ===================                        ======== 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
           INTRODUCTION .................................... 7-2 
 
           SECTION 1: HDOS 3.02 UTILITIES .................. 7-3 
             Archive (DG) .................................. 7-3 
             Bad (DG) ...................................... 7-4 
             DS ............................................ 7-5 
             Dskcpy (DG) ................................... 7-5 
             MegaPip ....................................... 7-7 
             Prodump (DG) .................................. 7-9 
             Verify (DG) .................................. 7-12 
 
           SECTION 2: ADVANCED TECHNIQUES ................. 7-15 
             Path ......................................... 7-15 
             Task ......................................... 7-15 
             Batch Files .................................. 7-16 
               List of Batch Commands ..................... 7-17 
             Job Translator (JTRA) Utility ................ 7-19 
               String Variables ........................... 7-21 
               JTRA Commands .............................. 7-24 
               Character Mapping and Special Characters ... 7-26 
               Programmer Notes ........................... 7-27 
             TDU Utility .................................. 7-28 
               Description ................................ 7-28 
               Usage ...................................... 7-28 
               Commands ................................... 7-29 
               Hints ...................................... 7-30 
             OPE Utility .................................. 7-20 
               Scall ...................................... 7-32 
               Open ....................................... 7-32 
               Command Format in Open ..................... 7-33 
               OPE Prompts ................................ 7-33 
               OPE Registers .............................. 7-34 
               OPE Delimeters ............................. 7-34 
             KEYS Task Utility ............................ 7-36 
               Key Definition File ........................ 7-37 
               Program Operation .......................... 7-38 
               Mappimg Characters ......................... 7-39 
               Program Cautions ........................... 7-39 
 
           SECTION 3: SYSTEM ANALYSIS ..................... 7-41 
             DFD -- Deleted Files Directory ............... 7-41 
             DVL -- Display Volume Label Sector ........... 7-42 
             DVT -- Device Driver Table ................... 7-44 
             IOT -- I/O Channel Table Display ............. 7-48 
             MAP -- "Magic" Addresses ..................... 7-49 
 
           APPENDIX 7-A 
             Task Manager ................................. 7-50 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-2 
    =============       ===================                        ======== 
 
 
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    HDOS  3.02  has  several  new  utilities, advanced techniques, and test 
    programs.  Some of the utilities are available  with  the  distribution 
    disks,  and  some  of them are associated utilities that are written by 
    D-G Electronics, and which work well with HDOS 3.02.  Each of these new 
    features  will  provide  the user with new tools and facilities to make 
    his computer activities easier and more fun. 
 
    SECTION 1: HDOS 3.02 Utilities 
    ------------------------------ 
    New  utilities are available as a companion set for use with HDOS 3.02. 
    These utilities include the following: 
 
             Archive  
             Bad                                                   
             DS - Directory Sort 
             Dskcpy  
             MegaPip 
             Prodump 
             Verify                                              
 
    These  utilities are described within this chapter.  Any or all of them 
    would be a fine addition to your computer program collection.  Refer to 
    the Table of Contents to determine their location. 
     
    Fortunately,  HDOS  3.02  associated  utilities  may be purchased for a 
    mere pittance  from  Kirk  L.   Thompson  editor  of  the  Staunch'8/89 
    Newsletter,  Lot  #6  -  Route 1, West Branch Mobile Home Village, West 
    Branch, IA 52358. 
 
    SECTION 2: Advanced Techniques 
    ------------------------------ 
    The Advanced Techniques were imported from the MS-DOS Operating System. 
    Once you learn them, you will find  that  using  them  is  almost  like 
    entering  a  new dimension.  Chances are, you will elect to add them to 
    your personal bag of computer tricks. 
 
    SECTION 3: System Analysis 
    -------------------------- 
    The  test  programs  provide  a comprehensive means for testing certain 
    aspects of your HDOS 3.02 system.  Selected programs are displayed  for 
    close  inspection.   You will find that they are more detailed and more 
    useful  than the programs heretofore available within HDOS version 2.0, 
    with the possible exception of TEST17/37/47, which  is  only  available 
    with HDOS 2.0. 
    *********************************************************************** 
 
     



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-3 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES                    
    ++++++++++++++++++++++++++++++                      
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    ARCHIVE -- Disk Archive Utility (From D.G. Electronics) 
    ======================================================= 
 
    ARCHIVE  (ARC.ABS) is a disk back-up program for use with more than two 
    drives.  With this utility, you can store, retrieve, and directory  the 
    contents of a complete diskette into a single save file.  Utilizing the 
    fact that files are set up by groups, this utility allows the  user  to 
    waste  at most one group on the destination device instead of one group 
    per  source  file.   For  example,  the  H47,  utilizing  double-sided, 
    double-density  disks,  has  a  group  size of 16 sectors.  If the user 
    backed up a 400-sector H17 disk, he may be using more than 500  sectors 
    on the H47 due to the group allocation.  By packing an entire disk into 
    a single file, the user also avoids file-naming conflicts,  since  HDOS 
    never  knows  about the directory structure of the archived disk.  This 
    utility may be used with HDOS V 3.0 and up. 
 
    [A] SAVING A DISK TO AN ARCHIVE FILE : 
    -------------------------------------- 
 
 ARC savefile=inputdevice:  [/switches] 
 
 /Q - Prompt the user whether to include  the  named  file  in 
             the archive  file.  If the user  doesn't  want  to  save 
      the file, simply respond with 'N' to the prompt. 
 
        /S - Don't include 'S' flagged files in the archive file. 
 
 Note: If both the '/S' and '/Q'  switches  are used,  ARCHIVE 
 will only prompt for those files without the 'S' flag. 
 
 
    [B] RESTORING A DISK FROM AN ARCHIVE FILE : 
    ------------------------------------------- 
 
 ARC ouputdevice:=archivefile [/switches] 
 
        /Q - This  switch  controls  the  deleting  of files  on  the 
             destination device.  Each file will be prompted for, and 
             if  the  user  wishes  not to delete the file, he should  
             respond with an 'N' to the prompt. 
 
        /S - This  switch  keeps  all  files  with the  'S'  flag  on 
      the destination  device.  This  can  be helpful  when 
      converting from one version of an operating  system  to 
      another. 
 
        /K - This  switch  allows  the  user  simply to add the files 
             of  the   savefile  to  the   destination  disk  without 
             changing  volume  control  information  or  deleting any 
      files on the destination. 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-4 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
                                                                             
 
    ARCHIVE - Disk Archive Utility (Cont) 
    ===================================== 
 
    [C] TO DIRECTORY AN ARCHIVE FILE: 
    --------------------------------- 
 
 ARC [listfile=]archivefile /LI 
 
    [D] TO RESTORE A SINGLE FILE FROM AN ARCHIVE FILE: 
    -------------------------------------------------- 
 
 ARC dev:filename=archivefile 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    BAD -- Bad Block Correction Utility (From D.G. Electronics) 
    =========================================================== 
 
    BAD  (BAD.ABS)  is a utility to find and remove bad blocks from an HDOS 
    recognized directory device.  In this way the disk may  be  patched  to 
    remove bad groups from use without reinitialization. 
     
    These bad sectors are normally detected through the "TEST" routine that 
    destroys all data contained on the disk.  Through the use of  BAD,  the 
    user  may remove bad sectors without reinitialization.  By telling HDOS 
    that the group is bad, the user will save  the  frustration  of  having 
    HDOS  detect  a  bad  sector and return a "Write Failure" error message 
    while writing out a data file that just took two hours to edit.   These 
    bad  blocks  may be due to wear, excessive heat, poor quality recording 
    surfaces, misaligned heads, etc. 
     
    Through  the  use  of  BAD, the user may keep any disk "up-to-par."  By 
    reading each group on the disk, the user may remove sectors from a file 
    which has bad sectors, then save most of the data contained in the file 
    without getting a "Read Failure" error message while copying the files. 
    The  user  will  also avoid getting write errors on the disk, since all 
    bad sectors are accounted for and blocked from being  used.   Also,  by 
    using  BAD  to  examine  a disk after initialization, the user can tell 
    INIT the bad sectors on the disk without running TEST.   It  should  be 
    noted  that  any  program  file, i.e.  those files with an extension of 
    .ABS or .SYS, may NOT be used after a group has been removed  from  the 
    file.   In  these  cases,  the  file  should  be  deleted, and the file 
    restored from a distribution diskette. 
     
    The basic format for the bad command is: 
 
        BAD [listfile]=input device: [/switches] 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-5 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
 
    BAD - Bad Block Correction Utility (Cont) 
    ========================================= 
 
    The  "listfile"  is optional, but if specified, the default device will 
    be "SY0:," and the default extension will be ".BAD", "Input device"  is 
    the  name  of  the  device  to  be checked, and switches are one of the 
    following; 
     
 /LI  -- To only show the bad blocks currently on the device. 
 
 /MAN -- To allow the user to check individual groups on the 
  specified device. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   
 
    DS -- A Directory Sort Utility 
    ============================== 
 
    Usage:  DS [DVn:] [/sort keys] [/X] 
 
  ascending descending 
 
    Sort Keys:      N = name        NR = name 
                    E = ext         ER = ext 
                    D = date        DR = date 
                    T = time        TR = time 
                    A = acc. date   AR = acc. date 
                    C = count       CR = count 
 
    DVn: is any valid HDOS device (SY1:, DK0:, etc.) 
 
    The /X switch will produce an extended audit of the sort operation. 
 
    The directory on the specified disk will be sorted. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    DSKCPY -- Universal Disk Copy (From D.G. Electronics) 
    ===================================================== 
      
    DSKCPY  (CPY.ABS)  is  a  disk  duplication  utility  for use with HDOS 
    version 3.0 or higher.  Its main purpose is to eliminate the  need  for 
    device-dependent copy programs, such as "FTCOPY" or "COPYER".  By using 
    the operating system device values, DSKCPY  can  determine  all  needed 
    device  parameters  for  complete  device  initialization  and copying. 
    Since this is a 'universal' disk copy utility, optimum speed cannot  be 
    obtained   by   using   particular  device-dependent  copy  algorithms. 
    However, as the disk is copied one full track at a time, the  speed  of 
    this program will be comparable to device-dependent programs. 
     
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-6 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
 
    DSKCPY -- Universal Disk Copy (Cont) 
    ==================================== 
 
    For  example, benchmark tests on the H17 comparing DSKCPY with "COPYER" 
    show  that  DSKCPY  is  70%  as  fast  as  "COPYER".   Since  no  other 
    device-dependent  copy  routines  exist  for other devices, comparisons 
    cannot be made. 
     
    The general form of the command is as follows: 
 
        CPY [destination device:=source device:] 
 
  *** O P T I O N S *** 
 
 V - Copy a disk with verification 
 C - Copy a disk without verification 
 I - Initialize and copy a non-HDOS volume 
 Q - Quit, returning to HDOS 
 
 
    V: Verify a Disk 
    ---------------- 
    The "V" command is used to copy and verify a disk.  UNDER NO CONDITIONS 
    SHOULD A USER INITIALIZE THE DESTINATION VOLUME!  This option will copy 
    all  tracks from the source to destination.  This is the most extensive 
    command allowed under DSKCPY.  During this command, the user may change 
    both  the  volume  ID  and volume label.  The user should note that the 
    volume ID may ONLY be changed if the destination device is initialized. 
     
    C: Copy a Disk without Verification 
    ----------------------------------- 
    The   "C"  command  is  used  to  copy  a  disk  WITHOUT  verification. 
    Verification requires that the source track be  read,  written  to  the 
    destination,  re-read  from  the destination and compared to the source 
    track that was read.  By eliminating this  extra  read,  the  speed  at 
    which  the disk is copied is increased by 50%.  However, this should be 
    used only if the user is sure  of  the  hardware  and  diskettes.   All 
    options  described in the "V" command will apply: i.e.  volume ID's and 
    labels may be altered during the copy. 
     
    I: Copy a Non-HDOS Disk 
    ----------------------- 
    The  "I"  command  is  used  to  copy  non-HDOS  volumes from source to 
    destination.  This may  be  used  when  copying  CP/M  disks  or  other 
    non-HDOS  volumes  where  the  disk must not be altered.  This copy was 
    set up with  CP/M  disks  in  mind,  i.e.   the  volume  number  on the 
    destination  will  be  set  to  zero.   Naturally, the user will not be 
    prompted to change either the volume  label  or  ID.   The  destination 
    device  MUST  be initialized to determine the device size to be copied. 
    Therefore, the user must be sure that the source device  is  completely 
    compatible  with  the  destination.   That  is,  don't  try  to  copy a 
     



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-7 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
    DSKCOPY -- Universal Disk Copy (Cont) 
    ===================================== 
 
    I: Copy a Non-HDOS Disk (Cont) 
    ------------------------------ 
    single-sided 8" disk on the H47 to a  double-sided  disk.   It  is  the 
    responsibility of the user to insure that the devices are compatible. 
 
 
    Q: Quit and Return to HDOS 
    -------------------------- 
    The "Q" command will return the user to HDOS.  If the device copied was 
    SY0:,  or  the  destination  device  was a Tandon driver, the user must 
    re-boot.  The Tandon driver's INIT code was not designed to  return  to 
    HDOS.  Optionally the user may type <CTRL-D> to return to HDOS. 
    
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =  
 
    MEGAPIP -- File Handling Utility 
    ================================ 
 
    MegaPip  is  an excellent file-handling utility for HDOS 3.02.  This is 
    the first "shell" program developed for the HDOS Operating system. 
     
    When  MegaPip is called up (i.e., MP<RTN>), a graphic rectangle will be 
    "painted" on the screen and it will take up  the  entire  screen.   The 
    question  mark  key [?] will call up the "Help Files" without requiring 
    the pressing of the <RTN>.  The  "Help  Files"  provide  the  following 
    displays: 
    ....................................................................... 
    HELP SCREEN 1 
 
         -- Tagging Functions --             -- File Functions -- 
 
         T = Tag file                        C = Copy files 
         U = Untag file                      R = Rename files 
         W = Wild tag/untag                  D = Delete files 
                                             I = File info 
                                             N = File CRC 
         -- Misc. Functions --               F = Alter file(s) Flags 
                                             A = File(s) user Areas 
         L   = new Login 
         S   = free Space 
         E   = Edit file                     -- Viewing Functions -- 
         X   = eXecute file                                             
         +/- = next/previous screen          V = View file(s) 
         ?   = Help                          P = Print file(s) 
         Q   = Quit MegaPip                  H = Hex Dump 
    ....................................................................... 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-8 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
                                                       
    MEGAPIP - File-Handling Utility (Cont) 
    ====================================== 
    ....................................................................... 
    HELP Screen 2: 
                                 f1 = Run PIP 
                             f2 = Sort file table 
                             f4 = active user area 
                           f5 = mount/dismount/reset 
            
                              arrows move cursor 
                              home -> first file 
                              white -> last file 
 
                              esc = abort at key 
                          ^D (CTRL-D) = abort at text 
 
                                 blue = refresh 
                                  red = quit 
    ....................................................................... 
 
    How to Use MegaPip: 
 
    BACKGROUND: 
    When  MegaPip  is called, it will bring up the list of files from SY0:. 
    If you want to bring up the file list of SY1: or SY2:, just type 'L' at 
    the  cursor.   You  will  be asked for an argument.  In this case, just 
    type 'SY1:', or the desired drive name,  and  press  '<RTN>'.   MegaPip 
    will then log onto SY1: and bring up the files found there. 
     
    You  can  move  the shadow bar with the use of the arrow keys.  To move 
    from screen to screen, place the shadow bar on the last column of files 
    to  the  right  and then place it on the last file in the column.  Then 
    type '<RTN>'. 
 
    HOW TO USE THE UTILITY: 
    Probably  one  of  the  most often-used tasks is copying files from one 
    drive to another.  To copy files, first you must tag them.   Place  the 
    shadow bar on the first file that you want to copy.  Type 'T'.  (Ignore 
    the apostrophes.)  Continue to move the shadow bar to the file(s)  that 
    you  want  to  copy  and type 'T' for each one.  When you are done with 
    tagging the files to be copied, type 'C' at the cursor. 
 
    The  program  will  ask:  "COPY  - <T>agged, <U>ntagged, <F>ile."  Type 
    'T.'  The program will  ask:  "Copy  TAGGED  to?"   Type  'SY1:'.   The 
    program goes to a plain screen and prints the following: 
 
    "PIP SY1:=SY0:Filename.Ext/S/SU:CST" 
 
    "SY0:Filename.Ext --> SY1:Filename.Ext ... Copied" 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                        PAGE 7-9 
    =============       ===================                        ======== 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
                                                       
    MEGAPIP - File-Handling Utility (Cont) 
    ====================================== 
 
    This expression is made for each file that you want copied.  When it is 
    done, the program instructs: "Touch Any Key ....  " When you touch  any 
    key,  the screen shifts, and you find yourself back into MegaPip's main 
    screen. 
     
    When you want to exit the program, type "Q" at the cursor.  The program 
    will  ask:  "Are You Sure ?  Y/N."  Just type 'Y,' and you will be back 
    at the HDOS system prompt (for example, DAN+>). 
 
    This  is  but one example of the versatility of this fine program.  For 
    example, when you are in MegaPip you can perform any of the  day-to-day 
    tasks  that  you  would  normally  do, only with more convenience.  The 
    tasks that you can select are limited by the options provided. 
     
                                    CAUTION 
                                    ------- 
    MegaPip  is  a fine program, but it is recommended that you approach it 
    carefully, since it can cause you to lose files!  The  first  time  one 
    uses  it,  you  can  inadvertently delete all of your files on the disk 
    being displayed.  To prevent deleting all of your files  on  disk  when 
    using  the  Delete  command, FIRST TAG the specific files that you want 
    deleted.  THEN tell the program to delete only the tagged ones. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    PRODUMP -- Disk Dump Utility (From D.G. Electronics) 
    ==================================================== 
 
    PRODUMP  (DMP.ABS)  is  an  intelligent  disk  dump for HDOS.  By using 
    device drivers and small library routines, PRODUMP will be able to dump 
    from any device created for the H8/H89/Z89 running under version 3.0 or 
    higher. 
 
    At  this  time,  two  devices  are  fully supported.  These are the H17 
    (5.25") and the H47 (8").  There are also two other  devices  receiving 
    limited  support  through  library  routines.   These are the TANDON 80 
    track drives, and the ST506 five-megabyte hard disk.  Through  the  use 
    of the configure command, new devices may be added if the device driver 
    exists.  Otherwise, there is no method to access the device. 
 
    MAKING A PARAMETER FILE TO DEFINE NEW DEVICES: 
    ---------------------------------------------- 
    This  section  will describe how to build and edit a parameter file for 
    use with new devices.  During start-up, the file  "SY0:PARAM.DMP"  will 
    be  accessed.   If  found,  the  needed  information will be copied and 
    placed in the device tables.  This file will  contain  the  same  basic 
    formats  as  used  in  the  configure  command.   Note  that once these 
    defaults are read in, the user may still alter the device type  by  use 
    of the configure command.  The format for this file will be: 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-10 
    =============       ===================                       ========= 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
                                                       
    PRODUMP -- Disk Dump Utility (Cont) 
    =================================== 
 
                        DVn:,sides,tracks,sectors/track 
 
    where  "sides"  is  the number of sides/unit, "tracks" is the number of 
    tracks per side, and "sectors/track" is the number of 256-byte  sectors 
    per  track.   An  example  input  for  the H17 and H47 devices is shown 
    below: 
     
    H17 as device SY: 
 
        SY:,1,40,10     As a single-sided, 48 TPI drive 
 
    H47 as device DK: 
 
        DK:,1,76,13     As a single-sided, single-density drive 
 
        DK:,2,76,26     As a double-sided, double-density drive 
 
    These  entries are allowed, one per line for as many devices as needed. 
    The  user  should  note  that  the  H17  and  H47  examples   are   for 
    understanding  the  format.   A  user using only these two device types 
    does NOT need to create a parameter file for PRODUMP.  Only those users 
    using  a new device driver need the ability to create a permanent table 
    for their new devices. 
    ....................................................................... 
 
    COMMAND SUMMARY REFERENCE GUIDE 
    ------------------------------- 
 
      Required      Valid 
    Command         Description                   Mode      Arguments 
    -------         -----------                 --------    --------- 
 
    Address     Find specified address in        File      Split-octal 
                .ABS or PIC file 
 
    Configure   Configure device or terminal     Any       Terminal/Device 
  characteristics 
 
    Device      Select a specified device        Any       Device name 
  for track/sector reading 
 
    Edit        Alter bytes as read from file    File/     None 
                or device                        Device 
 
    File        Select a specified file to       Any       File Name 
  be dumped 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-11 
    =============       ===================                       ========= 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
    PRODUMP -- Disk Dump Utility (Cont) 
    =================================== 
 
      Required      Valid 
    Command         Description                   Mode      Arguments 
    -------         -----------                 --------    --------- 
 
    Group       Calculate and read device        Device    Decimal Group 
  physical group number 
 
    Hex         Change output mode to HEX        Any       None 
  and print the buffer again 
 
    List        Print the current sector         Any       None 
  again 
 
 
    Mode        Set the output mode to either    Any       O,D,H 
                Octal, Hex, or Decimal 
 
    Octal       Change output mode to OCTAL      Any       None 
                and print the buffer again 
 
    Print       Show the sector as valid ASCII   Any       None 
  or EBCDIC without a header 
 
    Quit        Exit PRODUMP and return to HDOS  Any       None 
 
    Rewind      Rewind to beginning of file and  File      None 
  read/show the first sector 
 
    Sector      Position to virtual/physical     File/     Decimal 
                sector number and read it        Device    Sector # 
 
    Track       Get device track and sector      Device    TT/SS number 
  numbers for reading 
 
    Write       Rewrite the current sector       File/     <CR> or "X" 
  to disk     Device 
 
    X           Show current PRODUMP status      Any       None 
 
    <CR>        Read the next virtual/physical   File/     None 
  sector and show it   Device 
 
    <ESC>       Continue previous search         File/     None 
                function, for the same string    Device 
 
    <CTRL-A>    Start hardcopy listing file      Any       Listing File 
                Toggle listing on/off            Any       None 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-12 
    =============       ===================                       ========= 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
    PRODUMP -- Disk Dump Utility (Cont) 
    =================================== 
 
      Required      Valid 
    Command         Description                   Mode      Arguments 
    -------         -----------                 --------    --------- 
 
    <CTRL-B>    Set-up/continue search function  File/     None 
  on file/device    Device 
 
    <CTRL-C>    Reset PRODUMP, and return to     Any       None 
                "<DMP>" prompt 
 
    <CTRL-D>    Exit PRODUMP and return to       Any       None 
  HDOS 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    VERIFY -- Disk Verify Utility (From D.G. Electronics) 
    ===================================================== 
 
    VERIFY  (VFY.ABS)  is  a  utility for use with HDOS format disks with a 
    format compatable with HDOS version 2.0.  This includes  all  disks  in 
    the  range  from  version 1.0, through version 2.0.  Later format types 
    may be different,  and  as  such  are  unsupported.   The  verification 
    process  involves  a  multi-stage  evaluation  of  the  disk structure, 
    followed by a report for the user.  The evaluation involves both format 
    and  integrity  checks,  including  bad  group  detection,  analysis of 
    directory entries, analysis of the  reserved  group  table  (RGT),  the 
    group reservation table (GRT), and volume control block (VCB). 
 
 
    THE BASIC COMMAND FORMAT: 
    ------------------------- 
 
                  vfy [listfile]=input device:[/switches] 
 
    file, which if not  specified  will  default  to  "TT0:".   The  "input 
    device:"  specification must be a valid and known HDOS directory device 
    name, and "/switches" are one of the switches specified in the  section 
    below: 
 
    /B[AD] 
 
    The "/BAD" switch is used to request verify to check the device for bad 
    groups detected within the volume.  No action is taken  to  remove  the 
    bad groups, but the groups are reported to the listing file showing the 
    group  number,  the  physical  sectors  involved,   and   the   file(s) 
    associated with the bad group. 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-13 
    =============       ===================                       ========= 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
    VERIFY -- Disk Verify Utility (Cont) 
    ==================================== 
 
    /C[ORRUPT] 
 
    The  "/CORRUPT"  switch  is  used  to show the user which groups of the 
    device are corrupt.  Corrupt includes any  group  which  is  orphanned, 
    multiply  allocated,  or  circullarly  linked.   This is shown in a map 
    representation  indicating  which  groups  have  specific   attributes. 
    Following  the  mapping,  each  corrupt  group is analyzed to determine 
    which files are allocated, and how each file  joins  into  the  corrupt 
    group.   Following  the file analysis, each orphanned group is analyzed 
    to determine if any of the known files start or end  in  the  specified 
    orphaned group.   In this way, orphans may be reclaimed by their parent 
    files. 
     
    /D[IRECTORY] 
 
    The  directory  switch  will  allow  the  user  to  see individual file 
    mappings.  It will first give a  condensed  directory,  including  file 
    name  size,  flags, first groups number (FGN), last group number (LGN), 
    and the last sector index (LSI).  The  flags  field  will  contain  the 
    standard  HDOS  flags  as  well as four flags created by verify.  These 
    flags are: 
 
        S       - The file is suppressed. 
        L - The file is locked against further HDOS flag changes. 
        W - The file is write-protected. 
        C       - The file's allocation is contiguous on the device. 
        E - The file is past the volume's end-of-direct mark. 
        F - The file's directory entry has a format error. 
        B - The program "BAD" has removed sectors from it. 
        * - The file is found corrupt by Verify. 
 
 
    Following  the  condensed  directory,  each  file will be mapped to the 
    listing file, and the file's attributes shown, including  if  it  is  a 
    .ABS  or .PIC file.  The size calculations given by the file header may 
    not accurately reflect the true file size. 
 
    /F[ULL] 
 
    This  switch  will  request  verify to dump all critical regions to the 
    output file.  These include each directory entry,  the  GRT,  RGT,  and 
    VCB.   All  directory entries, including empty one's will be printed in 
    octal, decimal, and ASCII. 
 
    /G[RT] 
 
    This  switch  will  allow  the  user  to see all files allocated to any 
    specific group.  The section  will  print  each  group,  its  linkages, 
    owners,  and  backward  links.   It  will  search all possibilities for 
    owners to allow caching, multiply, allocated, and other corrupt groups. 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-14 
    =============       ===================                       ========= 
 
    SECTION 1: HDOS 3.02 UTILITIES (Cont)             
    +++++++++++++++++++++++++++++++++++++               
 
    VERIFY -- Disk Verify Utility (Cont) 
    ==================================== 
 
    /R[GT] 
 
    This  switch  will  allow the checking of groups flagged as reserved or 
    bad.  A cross reference will be  made  between  the  GRT  and  RGT  for 
    correspondence.   This  will  aid  in  the identification of completely 
    overlaid GRT files. 
 
    /S[UMMARY] 
 
    This  section  will print out a complete compilation summary, including 
    the number of directory searches, I/O reads, and CPU time used, as well 
    as the device's errors. 
 
    /AL[L] 
 
    This switch will cause VERIFY to include all of the above options. 
 
    /-switch 
 
    All the above switches may be preceeded by an "-" character to indicate 
    its negation.  For example, /B/-B would negate the bad block scan.  The 
    negation  is position sensitive, therefore all negations should follow, 
    i.e. /ALL/-B would perform all functions, except the bad block scan. 
 
    /FIX 
 
    This  routine  will  go  through  the  disk  on  a  file-by-file  basis 
    determining who is linked to any part of the list.  This  routine  will 
    concentrate  ONLY  on  those  groups  determined  to  be corrupt by the 
    corrupt routine.  This operation will attempt to correct the  GRT.   It 
    will  not affect the directory or the RGT files.  If any of these files 
    have an inconsistency, this operation MUST not be performed. 
 
    /ID 
 
    This switch will display the version of VFY.ABS. 
 
    /EXP[ENSE] 
 
    This will display costs for the whole operation. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-15 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES 
    ++++++++++++++++++++++++++++++ 
 
                                     PATH 
                                     ==== 
 
    The  PATH  command  is most useful for those who have a computer system 
    with multiple drives.  You may set, display, or clear the  system  path 
    string.   No  system checking is performed by this command.  Any errors 
    will show up when the PATH is accessed  by  SYSCMD.SYS.   In  case  the 
    system  detects  errors  in  the PATH command, it will issue the phrase 
    'Check  Path,'  show  you  the  offending  characters,  and  give   the 
    appropriate error message. 
 
    You  may  define  your PATH string in several ways.  The delimiters are 
    the SPACE, the TAB, the COMMA, the COLON, the  SEMICOLON,  or  nothing. 
    The following examples are all equivalent: 
 
        SY0 SY1 SY2     SY0       SY1       SY2  (succession of tabs) 
        SY0,SY1,SY2     SY0:SY1:SY2: 
        SY0;SY1;SY2     SY0SY1SY2 
 
    To set a new PATH string: PA text [Example: PA SY0;SY1;SY2] 
    To display a PATH string: PA<RTN> 
    To clear a PATH string: PA ~<RTN> 
 
    NOTE:  [~] Indicates the Tilde sign. 
 
    *********************************************************************** 
 
 
 
                                     TASK 
                                     ==== 
 
    HDOS 3.02 provides a function that is called "TASKing." 
     
    A  "TASK" is a position-independent program, much like a device driver, 
    which loads and executes below HDOS.   Typically,  tasks  are  used  to 
    process  interrupts, and gain control under the supervision of the Task 
    Manager. 
 
    The  Task  Manager  (TMG)  provides  to  the  individual tasks complete 
    interrupt control and dispatching, as well as  task  communication  and 
    control  services.   TMG is itself a task, and must be started (via the 
    START command) before any of its facilities may be  made  available  to 
    the user tasks.                        
     
    The  most  obvious  function  of  the  Task  Manager  is  that  of task 
    identification.  Each task started must call upon the Task Manager  for 
    identification  before  any  other services may be requested.  The fact 
    that a task has called for identification is  evidenced  by  a  message 
    issued  by  TMG  stating  the task's name, version, and a special "task 
    sequence number," or TSN.  It is with the TSN that tasks  may  be  most 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-16 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                                  TASK (Cont) 
                                  =========== 
 
    easily manipulated by other tasks or programs. 
     
    The following task programs are available on your distribution disks: 
 
    TMG.TAS ..... Task Manager.  MUST be started before tasks will work. 
    BATCH.TAS ... Task used with JTRA.ABS. 
    CHAN.TAS .... Shows I/O channel activity on the 25th line. 
    CLOCK.TAS ... Standard software clock. 
    CRASH.TAS ... Touch BREAK key to CRASH system.  For curiosity. 
    ECHO.TAS .... Send screen output to LP.DVD at same time.  Requires 
                    you to load LP: first. 
    KEYS.TAS .... Program all 8 function keys. 
    SCALL.TAS ... All SCALL activity is directed to LP:. 
    SYSMON.TAS .. Monitors STACK for overflow and S.FASER calls. 
    TDU.TAS ..... Terminal Debug Utility. 
 
    For more details on tasking, refer to Appendix 7-A, "Task Manager." 
    *********************************************************************** 
 
                                  BATCH FILES 
                                  =========== 
 
    To  avoid repetitive typing of repeated command sequences HDOS 3.02 has 
    provided a better way of accomplishing this.  It allows you to  take  a 
    series  of  commands  and store them in a special kind of file called a 
    "batch file."  This file can be repeatedly used,  and  it  will  always 
    have the same result. 
 
    A  "batch  file" is a text file that contains a series of commands.  It 
    is easy to create with  a  standard  text  editor,  such  as  "Pie"  or 
    "Edit19."  Batch file names always end in the  extension of "BAT."  The 
    batch file must always be in ASCII form. 
     
    A  typical  "batch  file"  is  'AUTOEXEC.BAT,' but you may create other 
    batch files with different file names that end in .BAT.   The  contents 
    of a typical AUTOEXEC.BAT file is as follows: 
                                                                   
    START CLOCK 
    PROMPT DAN+> 
    MOUNT SY1: 
 
    In  the  case of AUTOEXEC.BAT, when the disk is booted, after searching 
    for any prologue.sys files and running them, the HDOS 3.02 system  then 
    runs  AUTOEXEC.BAT.   This  provides  a  convenient  place to list your 
    typical start-up commands, such as START CLOCK, PROMPT NAME+>, etc.  so 
    that they would start up automatically upon boot. 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-17 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              BATCH FILES (Cont) 
                              ================== 
 
    To  execute  "batch  files"  other  than  AUTOEXEC.BAT, simply type the 
    filename of the batch file, but not the extension, BAT.  and then press 
    <RTN>.   If  HDOS  3.02  does  not find the "batch file" in the current 
    directory  of  the  current drive or hard disk partition, it will carry 
    the search to the other  drives  or  hard  disk  partitions  previously 
    specified by the PATH command. 
 
    When HDOS 3.02 locates the "batch file," the file's contents are loaded 
    into memory, the first command in the file is displayed, and  then  the 
    command  is  executed.  When the first command has been completed, HDOS 
    3.02 shows the system prompt, and then checks to see whether there is a 
    second prompt listed in the "batch file."  If there is a second command 
    listed, HDOS 3.02 displays it  and  then  executes  it.   This  process 
    continues until all of the commands are run. 
 
    If  an  executable  file named in a batch file requires user input, for 
    example, SPELL.ABS, upon completion of the program, the batch file will 
    automatically execute the next listed command. 
 
    BLANK.BAT ..... Blanks the screen.  Touch any key to restore. 
    BLINK.BAT ..... Clears the screen the hard way. 
    MDRC.BAT ...... Tool for looking at several disks.  Example: 
                      MDRC DKO:<RTN>. 
    SHOWALL.BAT ... Displays HDOS information. 
    TICTOC.BAT .... Start the system clock first.  Then try this. 
 
    In  addition  to names of executable files (those with the extension of 
    BAT or ASM) or valid SYScommands such as PATH, PROMPT, TIME, etc.,  the 
    following  commands  are  allowable  in  user-created batch files.  The 
    following BATCH files may be found on your distribution disks: 
 
    List of batch commands: 
    ----------------------- 
 
    BATCH Command           Meaning 
    -------------           ------- 
    AS[k]                   Wait for key and save key value. 
    AS[k] text              Show text, wait for key and save key value. 
    BIT                     Show BIT flags. 
    BIT S digit             Set specified BIT flag (0 thru 7) to 1. 
    BIT S                   Set all BIT flags (0 thru 7) to 1. 
    BIT C digit             Clear specified BIT flag (0 thru 7). 
    BIT C                   Clear all BIT flags (0 thru 7). 
    BIT T digit             Toggle specified BIT flag (0 thru 7). 
    BIT T                   Toggle all BIT flags (0 thru 7). 
    CB[uf)                  Clear console buffer. 
    COU[nt]                 Show system counter value. 
    COU[nt] +               Increment counter. 
    COU[nt] -               Decrement counter. 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-18 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              BATCH FILES (Cont) 
                              ================== 
 
    BATCH Command           Meaning 
    -------------           ------- 
    COU[nt] [=] value       Set counter (0 thru 255). 
    EC[ho]                  Show ECHO state. 
    EC[ho] text             Show text on screen. 
    EC[ho] ON               Set ECHO state to ON. 
    EC[ho] OF[F]            Set ECHO state to OFF. 
    END                     END batch file (usually before physical end).   
    END C                   Exit BATCH file & clear console screen & modes. 
    END <any argument>      Exit BATCH file & clear only console modes. 
    GO[to] label            Branch to label (label format is ":label"]. 
    IF [NOT] BIT digit      Test BIT flags. 
      command                                
    IF [NOT] EXI[st]        Test for presence of file. 
      filename command 
    IF [NOT] COU[nt] =      Test counter value. 
      value command 
    IF [NOT] ERR[or] =      Test last error code value. 
      value command 
    IF [NOT] CRC = val cmd  Test last CRC value. 
    IF [NOT] KEY = val cmd  Test ASK or TRAP keystroke value. 
    IF [NOT] string =       Test string value.  [NOTE: White space and 
      string command        the equal sign "=" are string delimiters. 
    JU[mp] label            Same as GOTO, but searches forward ONLY. 
    KEY                     Show current ASK keystroke value. 
    KEY alpha               Preset ASK keystroke. 
    KEY ?<CR|space|tab|?>   Preset special value.  CR=null. 
    PAU[se]                 Prompt user & wait for key. 
    PAU[se] text            Show text, prompt user, & wait for key. 
    REM [text]              Remark: do nothing. 
    ' [text]                Remark: do nothing. 
    SH[ift]                 Shift command line arguments left one position. 
    TR[ap]                  Trap keystroke on the fly & save it. 
    WAIT                    Wait indefinitely for user to touch any key. 
    WAIT value              Wait for specified seconds, 0=don't wait. 
 
    NOTE: Replaceable parameters %0 thru %9 may be used in BATCH files.  %0 
    is always the BATCH file name, even after SHIFT.  %1 thru  %9  are  the 
    corresponding arguments entered in command.  White space is used as the 
    delimiter. 
 
        %n = default device name (SY)   %# = active user area (0) 
        %u = default unit number (0)    %p = active LP unit (0) 
        %: = default device (SY0:)      %k = ASK keystroke 
        %X = default extension 
 
    Special  characters  which  may be used in PROMPT, ECHO, PAUSE, and ASK 
    text.  Other control codes are not allowed.  All other characters print 
    normally. 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-19 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              BATCH FILES (Cont) 
                              ================== 
 
        #b = the bell character           $: = default device (xxn:)   
        #d = system date (dd-mm-yy)       $@ = the NULL character 
        #e = the ESCAPE character         $, = the TAB character 
        #h = the sequence BS, '  ' ,BS    $_ = the NEW LINE character 
 
    Special characters: 
 
        #k = the ASK keystroke            $^ = the FORM FEED character 
        #n = default device name (xx)     $= = The CARRIAGE RETURN char 
        #p = active LP unit (0)           $> = default system prompt 
        #s = the SPACE character          $' = the CLICK character 
        $t = system time (00:00:00)       $$ = the DOLLAR character 
        $u = default device unit (n)      $~ = the TILDE character 
        $v = version number (3.02)        $# = active user area (0) 
        $x = default extension (xxx)      $< = the BACKSPACE character 
 
 
    NOTE: The user must put $_ at the end of the ECHO string to go to a new 
    line.  Otherwise, the cursor will remain at  the  end  of  the  string, 
    wherever it may be on the screen. 
    *********************************************************************** 
 
 
                   JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR 
                                by Andy Dessler 
                   ========================================= 
 
    The Job Translator (JTRA) and Batch Processor, working in tandem, allow 
    the user to control user inputs in an automated  fashion.   Interactive 
    commands  allow  complex  tasks to be run based on a number of run time 
    criteria. 
 
    To Set Up: 
    ---------- 
    Using HDOS 3.0 and SYSCMD/Plus, simply STart BATCH.TAS.  After starting 
    the task, a sign-on message will be printed.  The system is  now  ready 
    to run batch files. 
 
    To Run: 
    ------- 
    The format of the command to run a batch file is: 
         >JTRA [$]job[-library] [var0][,var1][,var2][,var3]...[,var9] 
 
    'job':  this  refers  to  the  job  name  given any group of lines that 
    constitutes one job. 
 
    'library':  this  is  the  file  that  contains the job.  A library can 
    contain any number of uniquely named jobs.  If this  parameter  is  not 
    given,  the  program assumes that the library is SY0:STANDARD.JCL.  The 
    default extensions on the library are SY0: and .JCL. 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-20 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                   JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR 
                                by Andy Dessler 
                   ========================================= 
 
    To Run: (Cont) 
    -------------- 
    '$':  this flag signals that the job is not to be executed, but instead 
    to be written  to  an  .ABS  file  of  the  name:  SY0:JOB.ABS.   After 
    executing  this  instruction,  the job may be run at any time by typing 
    'job' in response to the SYSCMD prompt with BATCH.TAS loaded. 
 
    [var0],etc.: these are the string replacement variables. 
 
    Example Runs: 
    ------------- 
        >JTRA DOG 
 
 
    -Runs the job 'DOG' located in library 'SY0:STANDARD.JCL'. 
 
 >JTRA $DOG 
 
 
    -Creates the file 'SY0:DOG.ABS'.  This short program can be run anytime 
    and produce the same results of the command: 
 
 
 >JTRA DOG 
 
 
    The  advantage  of this command is that 'SY0:STANDARD.JCL' and JTRA.ABS 
    do not have to be present to run DOG.ABS.  In order to run the program, 
    however, BATCH.TAS must be resident. 
 
 
 >JTRA DOG-CAT 
 
    -Runs the job 'DOG' from the library 'SY0:CAT.JCL'. 
 
 
 >JTRA DOG-SY1:HAMSTER RHINO,ELEPHANT,WALRUS 
 
    -Runs  the  job  'DOG'  from  the  library  'SY1:HAMSTER.JCL'.   String 
    replacement variable &0 is set to 'RHINO'.  &1 is  set  to  'ELEPHANT'. 
    &2 is set to 'WALRUS'. 
 
 
 >JTRA DOG RHINO,,CANARY 
 
    -Runs  the job 'DOG' from the library 'SY0:STANDARD.JCL'.  &0 is set to 
    'RHINO'.  &1 is not set.  &2 is set to 'CANARY'. 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-21 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
    Libraries: 
    ---------- 
    A  library  is an HDOS file that contains one or more jobs.  The format 
    of these files is: 
 
 $JOB job_name1 
 some batch statements and lines of text 
 $ENDJOB 
 
 $JOB job_name2 
 more batch statements and more lines of text 
 $ENDJOB 
 
 etc. 
 
    As one can see, the job is identified by the 'job_name'.  Thus, to name 
    a job 'DOG' (as from the previous examples), use the line: 
 
 $JOB DOG 
 
    followed by the lines that make up the job followed by: 
 
 $ENDJOB 
 
    This job can be embedded in a file containing many other jobs. 
 
    The 'job_name' is an alpha string (no numbers) up to 6 characters long. 
    No reserved word (BATCH command) can be used. 
 
 
    [A] STRING VARIABLES 
    --------------------  
 
    Use: 
    ---- 
    String  variables  are  used  to  make  submit  files  more flexible by 
    allowing the user to specify certain parameters (such as file names) at 
    run time.  String variables are referred to in the form &n where '&' is 
    the ampersand character and n is an integer  between  0  and  9.   Each 
    integer  refers to a unique string variable not to exceed 24 characters 
    in length. 
 
 Thus, if &0 is set to 'SY0:', then the line: 
                DELETE &0WALRUS.JCL 
 will be expanded to: 
  DELETE SY0:WALRUS.JCL 
 when the job is run. 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-22 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
    Definition: 
    ----------- 
    String  variables  are  defined  two  ways.  The first has already been 
    discussed: command  line  definition.   This  way,  the  variables  are 
    defined when the job is submitted. 
     
    The  second  way  is by use of the $VAL command.  This is a line at the 
    start of your job (immediately  following  the  $JOB  statement).   The 
    syntax of the command is: 
 
 
 $VAL [var0][,var1][,var2]...[,var9] 
 For example, the first two lines of a job could be: 
 
 $JOB DOG 
 $VAL COLLIE,LABRADOR,GERMAN SHEPARD 
 
 
    This  program  segment sets &0 to 'COLLIE', &1 to 'LABRADOR', and &2 to 
    'GERMAN  SHEPARD'.   Imbedded  and  leading  and  trailing  blanks  are 
    significant. 
     
    It  is  important  to know that strings defined on the command line are 
    more signifigant than strings defined on  $VAL  statements.   In  other 
    words,  if  a  string is defined in both places (the command line and a 
    $VAL statement), the definition given on the command line  is  the  one 
    used. 
 
 
    For  example, if the job 'DOG', whose first few lines are defined above 
    is run with the command line: 
    
 >JTRA DOG POODLE,,GREAT DANE,BEAGLE 
 then the strings are defined as follows: 
 
    &0:  'POODLE' - since this string is defined in both the $VAL statement 
    and on the command line, the command line takes precedence. 
     
    &1: 'LABRADOR' - two consecutive commas on the command  line  tell  the 
    translator  that  no  definition  is  given,  thus the program uses the 
    definition given in the $VAL line. 
     
    &2: 'GREAT DANE' - again,  this  string  is  defined  in  both  places. 
    Hence, the command line value is used. 
     
    &3:  'BEAGLE'  -  no  value  is given for this string on the $VAL line, 
    hence the value from the command line is used.  Note however that  EVEN 
    if  the  string  was  defined  on the $VAL line, the command line value 
    would still be used because the command line is more signifigant. 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-23 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
    Definition: (Cont) 
    ------------------ 
 
 If the command to run the job had been: 
 >JTRA DOG 
 
    then  the  definitions  would  rely  strictly on the $VAL command line. 
    Hence, &0 would be 'COLLIE', &1 would be 'LABRADOR', and  &2  would  be 
    'GERMAN SHEPARD'. 
 
 If these are the definitions, then the line: 
  my dogs are &0s, &1s, and &2s! 
 would be: 
  my dogs are COLLIEs, LABRADORs, and GERMAN SHEPARDs! 
 
 
 A sample job could be: 
                $JOB DTE 
  ' delete a file 
  ' NOTE: any line starting with a ' is considered a comment. 
  $VAL ,SY0:,.ABS 
  ' no default value is given for &0 
                '    default values for &0 is 'SY0:' and &1 is '.ABS' 
                DELETE &1&0&2 
  $ENDJOB 
 
    If the user runs: 
                       
 >JTRA DTE BASIC 
 will produce: 
 DELETE SY0:BASIC.ABS 
 
 If the user runs: 
 >JTRA DTE BASIC,SY1: 
 will produce: 
 DELETE SY1:BASIC.ABS 
 
 If the user runs: 
        >JTRA DTE BASIC,,.COM 
 will produce: 
        DELETE SY0:BASIC.COM 
 
 
 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-24 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
    [B] JTRA COMMANDS 
    ----------------- 
    All commands start with a '$'.  The '$' must be in column one. 
 
    There are two types of variables mentioned in JTRA commands.  The first 
    is the 'sense switch.'  This is a binary switch that can only be  0  or 
    1.  There are 32 switches named SW1 to SW32.  The second is the numeric 
    variable.  It is an 8 bit variable that can be set from 0 to 99.  It is 
    referred to as ^l where l is any letter from A to Z. 
 
    $JOB job_name 
 
                 This  command defines the start of a job.  Job_name can be 
                 up to 6 characters and must only be alphas. 
 
    $ENDJOB 
                 This command marks the end of a job.  This command must be 
                 present, even if there is only one job in a file. 
 
 
    $LET SWn,value 
                 This  command  assigns  sense switch n (n ranges from 1 to 
                 32) to value.  Value can be either 0  or  1.   On  initial 
                 start  of  the  batch  task, all switches are set to zero. 
                 However, once a switch is set to one, the  switch  remains 
                 set  even  after  the job that set it has ended and others 
                 have run.  This allows inter-job communication. 
 
    $LET ^l,value 
                 Assigns  the variable ^l (l can be any letter from A to Z) 
                 to value.  Value is an integer between  0  and  99.   Like 
                 sense  switches, the initial value of all variables are 0. 
                 However, all variables are zeroed after a job has ended. 
 
    $LET ^l,^k 
                 This  command  assigns ^l (l is any letter from A to Z) to 
                 ^k (k is any letter from A to Z) 
 
    $JUMP label 
                 This is an unconditional jump to 'label'. 
 
    $JUMP SWn:label1/label2 
                 This  is a conditional jump.  If the value of sense switch 
                 n is 0, then command is transfered to  'label1'.   If  the 
                 value  is  1,  then  command  goes to 'label2'.  Label1 or 
                 label2 can be omitted.  If this occurs and that branch  is 
                 chosen, then execution continues at the next statement. 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-25 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
    [B] JTRA COMMANDS (Cont) 
    ------------------------ 
 
  EXAMPLE: 
                -------- 
  (SW5 is 0): $JUMP SW5:/DOG 
 
                 This   command  causes  execution  to  continue  with  the 
                 statement immediately following this one.  If SW5 had been 
                 one, then execution would have continued with label DOG. 
 
    $INQUIRE 'question?',SWn 
                 Asks  the  user  the  'question?'   and waits for a yes/no 
                 answer.  If the answer is YES, then SWn is set to  1.   If 
                 NO,  then  SWn  is  set  to  0.   A carriage return or any 
                 inappropriate character is set to YES. 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-26 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
    [B] JTRA COMMANDS (Cont) 
    ------------------------ 
 
    $OUTPUT fname 
                 This command opens the log file 'fname'.  The defaults are 
                 SY1:  and  .LOG.   All  characters   (excluding   $INQUIRE 
                 commands  and  output  during $SUSPEND) that appear on the 
                 screen are sent into this file.  It  is  not  possible  to 
                 dismount or reset the disk that is being logged to. 
 
    $CLOSE 
                 This  command  closes the log file opened with the $OUTPUT 
                 command.  After closing the file, another  may  be  opened 
                 with another $OUTPUT command. 
 
    $INR ^l/$DCR ^l 
                 These   commands   increment  and  decrement  the  numeric 
                 variable ^l. 
                  
    $TEST ^l,SWn 
                 If ^l is zero, then SWn is set to zero.  Otherwise, SWn is 
                 set to one. 
                  
    $SUSPEND 
                 When  this command is encountered, execution in the job is 
                 halted until the next SCALL .EXIT is executed. 
 
    $VAL variable list 
                 As  discussed  earlier, this command (which must appear at 
                 the  front  of  the  file)  assigns   string   replacement 
                 variables. 
 
    $LABEL label 
                 This   command  assigns  'label'  to  the  statement  that 
                 follows. 
                  
 
    [C] CHARACTER MAPPING AND SPECIAL CHARACTERS 
    -------------------------------------------- 
    The  Job  Translator  allows  the  control  characters in the job.  All 
    controls characters are defined as: 
 
        \c where c is any letter (case blind). 
 Thus, \a (the same as \A) maps to ASCII 01 or cntrl-a. 
 \D is a cntrl-d. 
 
        There are also several specially defined characters, as follows: 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-27 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
               JOB TRANSLATOR (JTRA) AND BATCH PROCESSOR (Cont) 
                                by Andy Dessler 
               ================================================ 
 
 
    [C] CHARACTER MAPPING AND SPECIAL CHARACTERS (Cont) 
    --------------------------------------------------- 
 
 \; is a carriage return 
 \$ is an escape 
 \\ is a backslash (\) 
 
    There  is one character that does not convert to any literal character. 
    That is the \# character.  When  this  character  is  encountered,  the 
    program  delays  for approximately 1/2 second.  This allows the user to 
    make jobs more readable by pausing.  This helps during fast screen I/O. 
     
 
    [D] PROGRAMMER NOTES: 
    --------------------- 
    The JTRA program and BATCH task communicate using SCALL .SUBMIT (123Q). 
    Here are the appropriate setups: 
 
 To send a job (it must be completely tokenized): 
  (A) = 0 
  (HL) = start 
  (DE) = end (points at last byte) 
 'c' set if error occurs 
 
 Sense Switch Write 
  (A) = 1 
  (B) = sense switch # (1 - 32) 
  (C) = 0,1,2 
   0: set switch to 0 
   1: set switch to 1 
   2: invert switch 
 'c' set if error occurs 
 
 Sense Switch Read 
  (A) = 2 
  (B) = sense switch # (1 - 32) 
 Value returned in (A). 
 'c' set if error occurs 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-28 
    =============       ===================                       ========= 
 
    SECTION 1: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                                    TDU UTILITY 
                               by Wayne J. Parnin II 
                               ===================== 
 
    1.  Credits: 
    ------------ 
 *Original H8 version by Andy Dessler, called "DBUG.TSK" 
 *Enhanced by Wayne Parnin for H8/H89 and M80 
      *Enhanced for HDOS 3.02 by Mighty/Soft 
 
    2.  Description: 
    ---------------- 
    TDU  is  a  basic  debugging task, which allows the user to examine and 
    alter the current state of his CPU.  TDU is compatible  with  any  HDOS 
    environment as long as SCALL 122Q is not implemented by HDOS. 
 
    TDU  must  be  used with DG electronics' SYSCMD/+, but does not use the 
    facilities of TMG; that is, it is a stand-alone task. 
 
    TDU  cannot set breakpoints in a program; they must be assembled in as 
    SCALL 122Q.  This is NOT as bad as it seems, read on. 
 
    3.  Usage: 
    ---------- 
    TDU  is  activated by STARTing TDU.  TDU will identify itself, but will 
    not make itself obvious in any other way at this time.  For details  on 
?   how to start TDU, see page 7- 
     
    TDU  will trap any SCALL 122Q's in the program being run and will enter 
    its command mode with the prompt 'TDU:'.  The user may then use any  of 
    the commands listed below. 
 
    The  user should assemble in SCALL 122Q at all points in his program at 
    which he wishes to examine the CPU state.  I usually put breakpoints at 
    the  entry  and exit of each subroutine.  If the breakpoints are put in 
    as conditionally assembled, they  are  easily  turned  on  and  off  as 
    needed. 
 
 
    4.  Commands: 
    ------------- 
    The user may type any of the following commands in response to the 
    TDU: prompt. 
           
         S         Display  CPU  state.   Displays all 8080 registers, with 
                   the PSW decoded for easy reading. 
            
         M         Display  memory  locations.   Uses  each  register  as a 
                   memory pointer and displays 20 bytes for each  register. 
                   Displays 10 words from current target of stack pointer. 
           
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-29 
    =============       ===================                       ========= 
 
    SECTION 1: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                                 TDU UTILITY (Cont) 
                               by Wayne J. Parnin II 
                               ===================== 
 
    4. Commands: (Cont) 
    ------------------- 
 
         X         Execute.   Restores  CPU state and continues running the 
                   user's program until another SCALL 122Q is  encountered. 
                   Does  an  automatic  "S"  command  when  a breakpoint is 
                   encountered. 
                     
         Daaaa     Display  128  bytes of memory starting with "aaaa" anded 
                   with FFF0H to get us an even paragraph.   If  "aaaa"  is 
                   omitted, the next 128 bytes from where you last used the 
                   "D" command will be displayed. 
         Waaaa   
                   Display word located at address "aaaa".  User may change 
                   the contents of "aaaa" by entering a valid  hex  number, 
                   use  "RETURN" to examine the next location, or return to 
                   the command prompt by use of "SPACE". 
                 
         Baaaa     Same as "W" except displays and updates BYTE values. 
 
         Aaaaa     Same as "B" except displays and updates ASCII values. 
            
         Rr        Displays  current contents of register "r", where "r" is 
                   any of A, B, C, D, E, F, H, or L.  User may  update  the 
                   contents  of "r" as in "B", but TDU will not sequence to 
                   the next register. 
            
         Pp        Same  as  "r" except accesses a register pair, where "p" 
                   is any of B, D, H, or P ("P" is PC).   User  may  update 
                   the contents of "p" as in "W", but TDU will not sequence 
                   to the next register pair. 
 
                   NOTE: At the present time TDU does NOT support update of 
                   the stack pointer.  To display the contents of the stack 
                   pointer you must use the "S" or "M" commands. 
                
         Ooooo     Sets  word  input  and output offset to "oooo".  This is 
                   intended for use  with  relocatable  programs  developed 
                   with  M80,  but  is  also  useful  when debugging device 
                   drivers, etc. 
 
    Once the offset is set to a non-zero value, all word displays resulting 
    from *any command will display two values: the first  is  the  absolute 
    data.   The second, which is enclosed in parentheses, is the same data, 
    relative to the current offset. 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-30 
    =============       ===================                       ========= 
 
    SECTION 1: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                                 TDU UTILITY (Cont) 
                               by Wayne J. Parnin II 
                               ===================== 
 
    4.  Commands: (Cont) 
    ------------------- 
    EXAMPLE:     Offset = 0100H 
                 :TDU:W1000                  < user types "1000" 
                 1000 (0F00) :1234 (1134)    < TDU types 
 
    This  indicates  that  TDU  found 1234H at location 1000H.  The relative 
    values  are  0F00H  and  1134H  for  the  address  and  its   contents, 
    respectively. 
     
    *NOTE: The display of stack contents during the "M" command is absolute 
    only. 
     
    The user may also enter word data and addresses  in  relative  form  by 
    appending "/" at the end. 
 
    EXAMPLE:     Offset = 0100H 
                 :TDU:WF00/                  < user types "F00/" 
                 1000 (0F00) :1234 (1134)    < TDU types 
 
    This  is  the  previous  example,  but  the user entered the address in 
    relative form.  TDU added the offset to the user's input  to  determine 
    the actual address. 
 
    The offset capability is unique to TDU among HDOS debugging aids, to my 
    (wjp's)  knowledge.   This  feature  makes  debugging  of   relocatable 
    programs very easy. 
     
    HELP:    Any invalid command character will display a brief help table. 
 
 
    5.  Hints 
    --------- 
 *For M80 users: 
 
  -Define "BRKPNT" as a macro: 
  BRKPNT MACRO 
   IF     DEBUG 
   DW 52FFH 
   ENDIF 
   ENDM 
 
         -Put BRKPNT in at each key point in your module when you write it. 
          
  -Set DEBUG EQU 1 before assembling. 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-31 
    =============       ===================                       ========= 
 
    SECTION 1: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                                 TDU UTILITY (Cont) 
                               by Wayne J. Parnin II 
                               ===================== 
 
    5.  Hints (Cont) 
    ---------------- 
 
       -Load  the  program  containing  the  new  module  and use the L80 
        command, /M to display the load map.  Note the load point  of your 
        module. 
          
  -At the first entry to TDU, set the offset to the module load point. 
 
  -Debug your module EASILY. 
 
  -Write 0's to location of breakpoints which are no longer needed. 
 
  -Set DEBUG EQU 0 and reassemble when debugging complete. 
 
 *For ASM users: 
         -Use  any  XTEXT  to  define  the  breakpoint (this will slow down 
         assembly). 
          
    OR 
 
  -Put in and remove the SCALL's by hand. 
 
  -I will upload a split-octal version of TDU shortly. 
 
    6.  Support: 
    ------------ 
 If you have any questions, problems, suggestions, etc. 
  Wayne J Parnin II 
  3 Wagner Way 
  Hudson, NH 03051 
  (603) 883-4885 
  MNET: 70310,362 
    *********************************************************************** 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-32 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES 
    ++++++++++++++++++++++++++++++ 
 
                                  OPE UTILITY 
                              by Bill Parrott III 
                              =================== 
 
    ******  SCALL 
 
    SCALL is entered via CTRL/A in OPE  
 
    SCALL is a training tool for new programmers to see what their computer 
    can do.  It will issue SCALL's to the system given  by  the  user  with 
    parameters  for  the  registers also entered by the user.  The register 
    definitions are setup as described below.  Below is a sample session: 
 
     SAMPLE of SCALL 
                   --------------- 
             OCTAL SCALL VALUE>41 
 
             **** REGISTER DEFINITIONS **** 
 
             PSW = 3.0 
             BC =  
             DE = 
             HL = 40.100 
 
    OCTAL SCALL VALUE> 
    ------------------ 
    In  the  above example, SCALL 41Q (.CTLC) was issued for CTRL-C to goto 
    address 40.100.  All <RTN>'s entered place a 0.0 in the register.  This 
    can  be  because  you  want  zero in them or the SCALL doesn't need the 
    register.  Also, any errors  encountered  will  be  printed  after  the 
    program  executes.   Also  note  that  if  you use this program without 
    knowing what is going on, it may crash.  Refer to the programmer's guide 
    for what parameters should be passed. 
 
    If the first value given for the register definition is not a number or 
    <RTN>, then SCALL will assume that the value is a string to be  passed, 
    such  as to open a file.  At this point, SCALL will set up a buffer for 
    the string and place  the  address  of  the  string  in  the  registers 
    currently in use. 
 
 
    ******  OPEN 
 
    OPEn is used to examine or alter memory locations.  Included within the 
    program are 8 registers for use by the user for relocation addresses or 
    just  to  remember it without using the internal stack.  To invoke OPEn 
    you simply reply to HDOS with OPE followed by an  optional  address  to 
    alter. 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-33 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (CONT) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              OPE UTILITY (Cont) 
                              by Bill Parrott III 
                              =================== 
 
    >OPE [Address]   
    -------------- 
 
    If the optional address is given, OPEn will evaluate the expression and 
    place it in the current address register.  OPEn is  a  delimiter-driven 
    program,  that  is, depending on the delimiter, used OPE will perform a 
    certain action on the address and  its  location.   The  example  below 
    describes how to use OPE delimiters and the relocation registers. 
 
 
    COMMAND FORMAT IN OPEN 
    ---------------------- 
    OPEn uses the following command format when issuing commands to it.  It 
    is similar to using DEC's ODT in form.  The format is as follows: 
 
 
               prompt (P1);(P2)delimiter 
 
 
    where  'prompt'  is the prompt character given by OPE, described below. 
    '(P1)' is the first parameter given after the prompt and followed by  a 
    ';'  if  '(P2)'  is  given.  Note that neither '(P1)' or '(P2)' must be 
    given if  not  wanted.   '(P2)'  is  the  second  parameter  given  and 
    generally  is used as an offset to the current address.  '(P2)' may not 
    include any references to a relocation register internal to OPE.  These 
    parameters  vary on the mode of input.  '(P1)' uses the current mode to 
    take data in, but '(P2)' must be an octal or split octal value. 
 
 
    OPE PROMPTS   
    ----------- 
    The  general  prompt for OPE is an '@' to tell the user that OPE has no 
    valid address in its address buffer register.  In this case  '(P1)'  is 
    taken  as  an address to be placed in the address buffer, and '(P2)' is 
    added as an offset to the first value.  Also  note  that  only  a  mode 
    delimiter  may be used with this prompt.  The other type of prompt that 
    is given is a mode prompt after an address and its contents  have  been 
    displayed.  These are as follows, 
 
 
                    '/'       byte mode OCTAL 
                    '\'       word mode OCTAL 
                    '%'       byte mode ASCII 
 
 
    These  prompts  tell  the  user that an alter or other operation may be 
    performed on the data in question. 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-34 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (CONT) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              OPE UTILITY (Cont) 
                              by Bill Parrott III 
                              =================== 
 
    OPE REGISTERS AND USE  
    --------------------- 
    OPE's  eight  registers  may be accessed by the user in three different 
    modes.  The first is addressing the  location  where  the  register  is 
    stored.   In  this  mode the user may set up his registers to key entry 
    points in a PIC program or some other point of  interest.   To  address 
    this  location  the  user  will  use  the character '$' followed by the 
    register number to address that register.  For example: 
 
                    @$3\ 000.000 \ 
 
    would  let  the  user  enter a new address to be defined in register 3. 
 
    The  second  mode for accessing the registers is to get the contents of 
    the register that the user wishes to use.  For example, when altering a 
    large number of memory locations and wishing to place the same value in 
    them, the user may want to place the actual value  in  a  register  and 
    only  use  two  letters to get the desired contents placed in them.  In 
    the example below, the user wants  to  place  147.376  split  octal  in 
    memory location 70.000: 
     
       @$1\ 000.000 \147.376<esc>     ;used to go back to prompt 
       @70.000\ 254.657 \R1 
 
    would  place  the  contents  of  register  1  'R' in the current memory 
    location.  The user could continue placing the contents of  register  1 
    (R1)  in  as  many  places  as desired using offset features, etc.  The 
 
    The  third  mode  of accessing the registers is during normal procedure 
    when the user would like to place either the  current  address  or  the 
    contents  of  the current address in a register.  The command described 
    below does not interfere with normal (P1) or (P2), but is  in  addition 
    to these features. The format for the command is as follows: 
     
               ^Xdelimiter 
 
    where  '^'  tells  OPE  to perform this command, 'X' is the register to 
    receive the data, and delimiter  is  either  ';'  to  use  the  current 
    address or ':' to use the contents of the current address.  After using 
    this command the user may continue and place (P1)  and  (P2)  following 
    the command with the delimiter for the command. 
 
 
    OPE DELIMITERS 
    -------------- 
    Since  OPEn  is a delimiter-driven program, the delimiters are the most 
    important part.  Described below are OPE's delimiters and their  action 
    in  regard  to (P1) and (P2).  In general, (P1) is placed in either the 
    current memory location, if given, or into the  address  buffer  if  no 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-35 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              OPE UTILITY (Cont) 
                              by Bill Parrott III 
                              =================== 
 
    OPE DELIMITERS (Cont) 
    --------------------- 
    address  is  in the buffer.  (P2), on the other hand, is generally used 
    as an offset to the current memory address and will advance  the  given 
    number after executing the command. 
 
    <RTN>  
    ---- 
    A  carriage return is used to close the current location and advance to 
    the  next  location,  opening  it  and  displaying  the  contents.   As 
    described  above,  (P1) is placed in the memory location, if specified. 
    Unless otherwise stated, (P1) and (P2) will be used as described above. 
 
    <ESC>   
    ----- 
    The  escape  key is used to return to the OPE prompt.  This is when the 
    user wants to address another location but  doesn't  wish  to  use  the 
    offset feature.  Also, in this command, (P2) is ignored. 
 
    <CTRL-D>   
    -------- 
    CTRL-D  is  used  to terminate OPE.  (P1) will be placed in the current 
    memory location before OPE exits.  (P2) is ignored. 
 
    <@>   
    --- 
    The character '@' is used to simulate a call instruction when following 
    code in memory.  It will alter the current  location  with  (P1),  then 
    place  the current address in the buffer onto OPE's internal stack, and 
    finally place the contents of the  current  address  into  the  current 
    address  buffer, thus simulating a call instruction.  Note that issuing 
    this command when the CALL instruction is at the current  address  will 
    not work.  The user must advance one location and the use '@'. 
 
    '>'   
    --- 
    The  '>'  character  is  used  to  push  the current address onto OPE's 
    internal stack for later use.  The address buffer is incremented by one 
    to display the next location. 
 
    '<'   
    --- 
    The '<' character is used to 'pop' a value off OPE's internal stack and 
 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-36 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                              OPE UTILITY (Cont) 
                              by Bill Parrott III 
                              =================== 
 
    '<' (Cont) 
    ---------- 
    place it in the current address buffer.  This  may  simulate  a  RETurn 
    instruction or just pop back to an address pushed on before. 
 
 
    '/'   
    --- 
    The  '/'  character  is  used  as a mode expression.  It will alter the 
    current mode and set the current mode to the byte mode octal.  It  will 
    not  affect the current address and will not use (P1) to alter it, only 
    change the current mode.  The user may also use '\', or  '%'  to  alter 
    modes as described above. 
 
 
    '_'   
    --- 
    The  '_' character is used to list bytes.  It will list (P2) bytes from 
    the current address  and add (P2) to the current  address  when  it  is 
    finished. 
 
    *********************************************************************** 
 
 
                               KEYS TASK UTILITY 
                                by Andy Dessler 
                               ================= 
 
    The  Keys program is an interrupt-driven utility written in Task format 
    that allows the user to define the 8 function keys on the H19  terminal 
    to  any key sequence up to 256 characters.  In addition to defining the 
    keys, the KEYS task also puts labels on the 25th line of the  terminal. 
    These  labels are displayed above the keys they represent.  In order to 
    run this program, the user needs: 
 
      SYSCMD/Plus 
 TMG.TAS (the task manager) 
 KEYS.TAS 
 
    To run the KEYS program, the user should type: 
 
 ST TMG (only if not currently loaded) 
 ST KEYS 
 
    at  the SYSCMD/plus prompt.  The program will then load into memory and 
    request a file name.  This file should  contain  the  key  definitions. 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-37 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                           KEYS TASK UTILITY (Cont) 
                                by Andy Dessler 
                           ======================== 
 
    The  default  drive  is  SY0:, and the default extension is .KDF.  Just 
    hitting <RTN> defaults to athe file, SY0:STANDARD.KDF. 
 
 
    1. KEY Definition File 
    ---------------------- 
    The  key  definition file, the file given KEYS when the program is run, 
    contains the labels and text  that  are  assigned  to  each  key.   For 
    example, an average line in the key defintion file might look like: 
 
 RESET1:R1\; 
 
    Every  line  in the KDF (key definition file) must have two parts.  The 
    first is a label.  This is what will appear on the 25th line of the H19 
    terminal.   In  the above example, the label is "RESET1".  The label is 
    separated from the commands assigned to the key by a colon [:].   Thus, 
    everything up to the first colon in the line is the label.  If the user 
    wants to have a colon in the label, then the colon must be preceded  by 
    a backslash (\).  For example, if the user wants one of his keys to run 
    the program SY1:D, and wants to have a label of "SY1:D", the user would 
    have the line in the KDF look like: 
 
 SY1\:D:SY1\:D\; 
 
    Due  to lack of space on the 25th status line, no label should exceed 6 
    printing characters.  Remember that  character  sequences  such  as  \: 
    constitute only  one  printing  character.  Also, all other SYSCMD/Plus 
    character mapping rules apply.  For example, a backslash  [\]  must  be 
    represented by \\, to distinguish it from other character combinations. 
     
    After  the  label  comes  the text of the key.  This text should appear 
    exactly as you would  type  it  on  the  console,  except  for  certain 
    characters  that  must  be represented by two-character sequences.  For 
    example, if the user wants a key that runs the assembler on  SY1:,  and 
    then assembles a program called ZOT, the user would normally type: 
 
 SY1:ASM (carriage return) 
 ZOT=ZOT (carriage return) 
 
    In the keys program, if the user wanted the above text to be a key with 
    the label of "ASM Z", that sequence would be represented by: 
 
 ASM Z:SY1\:ASM\;ZOT=ZOT\; 
 
    Note  the  use of \; as a carriage return.  This must be done because a 
    carriage return signals the end of that particular key.  See section  3 
    for  a  complete  listing of all character mapping sequences.  Remember 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-38 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                           KEYS TASK UTILITY (Cont) 
                                by Andy Dessler 
                           ======================== 
 
    1. KEY Definition File (Cont) 
    ----------------------------- 
 
    that each KDF contains eight lines, each one defining a key.  The first 
    line  defines  key f1, the second one defines f2, and so on, continuing 
    from left to right.  If the user decides that he/she does not  wish  to 
    use a key (just leave it as a null function key), then that line should 
    have just a colon [:]. 
 
    For example, a typical KDF would look like: 
 
    CPS:SY1\:CPS 
    PIP:PIP\; 
    RESET1:R1\; 
    ASM:SY1\:ASM\; 
    : 
    : 
    : 
 
    The  first  line,  which  that  defines  function  key f1, commands the 
    computer to run the program SY1:CPS.  The second  line,  which  defines 
    f2, commands the computer to run PIP.  The third key, which defines f3, 
    RESETs SY1:.  The fourth key, which defines f4, runs SY1:ASM.  Keys f5, 
    BLUE, RED and GRAY are undefined. 
 
 
    2. Program Operation 
    -------------------- 
    After  entering  the  KDF  file name, the program will begin operation. 
    All the user has to do now is hit the  function  key  that  corresponds 
    with  the  command  sequence  that  is desired.  The labels on the 25th 
    status line correspond with the keys (in other words, the label desired 
    appears over the function key).  For instance, if the above example KDF 
    was resident in memory and the user wanted to run PIP,  then  the  user 
    merely hits the f2 key. 
     
    This  program  also intercepts CTRL-X.  This key toggles the program on 
    and off.  For example, when the program is  running,  if  a  CTRL-X  is 
    typed,  then  the  25th  status  line  is  cleared  and  the program is 
    temporarily disabled.  When a CTRL-X is  again  typed,  the  25th  line 
    labels are displayed again, and the program is reenabled. 
     
    Also,  the function keys are dynamically redefineable.  In other words, 
    if the KEYS program has already been loaded, but  the  user  wishes  to 
    have  another  set  of  key definitions in memory, then the user simply 
    reSTarts the KEYS program.  All the user has to do is type: 
 
 ST KEYS 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-39 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                           KEYS TASK UTILITY (Cont) 
                                by Andy Dessler 
                           ======================== 
 
    2. Program Operation (Cont) 
    --------------------------- 
 
    Then  the  user  gives the computer the new .KDF filename, and the keys 
    are redefined. 
 
 
    3. Mapping Characters 
    --------------------- 
    In  the  KEYS  program,  certain characters, commands, or key sequences 
    must be represented by a "word" of two characters, as per the following 
    list: 
 
 \; Carriage Return 
 \$ Escape 
 \: Colon 
 \\ Backslash 
      \A      Ctrl/A 
      \B      Ctrl/B 
       . 
       . 
       . 
      \Y      Ctrl/Y 
      \Z      Ctrl/Z 
 
    4. Program Cautions 
    ------------------- 
    In  using  this  program, there are certain limitations the user should 
    observe.  First, the KDF should not exceed 4 sectors (if you  purchased 
    the source code, then you can change this by modifying the PAGE EQU). 
     
    Also,  KEYS  uses SCALL 111Q, .PPRES.  Any other use of this SCALL will 
    cause terrible results. 
     
    If  the  user  attempts  to  use  a  function  key  while another is in 
    progress, the program will ignore the second function  key.   Also,  if 
    the  user decides to not put a label on a key, then the first character 
    should be a colon [:].  For example, if the user wants the key to MOUNT 
    SY1:,  but he does not want the .KDF command line, the key would appear 
    as: 
     
 :M1\; 
 
    This would leave blank spaces where the label would have appeared. 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-40 
    =============       ===================                       ========= 
 
    SECTION 2: ADVANCED TECHNIQUES (Cont) 
    +++++++++++++++++++++++++++++++++++++ 
 
                           KEYS TASK UTILITY (Cont) 
                                by Andy Dessler 
                           ======================== 
 
    Some  programs  (such as Txtpro and PIE) use the function keys.  Before 
    operation of these or any other program that uses  the  function  keys, 
    the  KEYS  program should be disabled through CTRL-X.  Failure to do so 
    will cause serious problems for the program. 
 
    Each  key  sequence must be completely contained on one line.  The line 
    can be as long as the  user  desires,  but  must  be  contiguous.   Any 
    embedded  carriage  returns  must  be  defined as a \;.  Also, the line 
    should not exceed 256 characters.   Note  that  the  special  character 
    sequences, or words, constitute only one character. 
    *********************************************************************** 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-41 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS     
    ++++++++++++++++++++++++++      
 
                           SYSTEM ANALYSIS PROGRAMS 
                           ======================== 
 
    HDOS 3.02  provides  a  comprehensive  disk analysis, using a series of 
    associated .ABS files.  A summary of  these  files  and  what  they  do 
    follows. 
 
        DFD.ABS .... Displays a directory of deleted files on any  
                       mounted disk specified. 
 
        DVL.ABS .... Displays volume label sectors on any mounted  
                       disk specified. 
 
        DVT.ABS .... Displays the contents of the device table 
                       for the system disk. 
 
        IOT.ABS .... Provides comprehensive dump and interpretation 
                       of the I/O Channel Table. 
 
        MAP.ABS .... Displays all the magic addresses for HDOS 3.02. 
 
        USR.ABS .... Calculates and displays CPU speed. 
 
    Examples of the contents of selected files are as follows: 
                                                                            
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    DFD -- Deleted Files Directory 
    ============================== 
 
    Usage:  DFD [DVn:] 
 
    DVn: is any valid HDOS device (SY1:, DK0:, etc.) 
 
    The directory on the specified disk will be processed. 
    Only deleted files will be displayed. 
 
    The form of the output is: 
 
    DFD -- Deleted Files Directory -- by Mighty/Soft -- Ver 3.0 (dd-mmm-yy) 
 
    Name    .Ext FGN LGN LSI  Created  Time  Flags---  Accessed A/C Status 
 
    ?$$$$$$$.$$$ nnn nnn nnn dd-mmm-yy 00:00 SLWCABDU dd-mmm-yy nnn status... 
    ?$$$$$$$.$$$ nnn nnn nnn dd-mmm-yy 00:00 SLWCABDU dd-mmm-yy nnn status... 
    ?$$$$$$$.$$$ nnn nnn nnn dd-mmm-yy 00:00 SLWCABDU dd-mmm-yy nnn status... 
 
    DFD -- nnn deleted files. 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-42 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont)    
    +++++++++++++++++++++++++++++++++      
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    DFD - Deleted Files Directory (Cont) 
    ------------------------------------ 
 
    The status can be one of the following: 
 
    Complete  = File is possibly complete and could be recovered. 
    Partial B = File is incomplete, only first part was found. 
    Partial M = File is incomplete, only middle part was found. 
    Partial E = File is incomplete, only last part was found. 
    Lost File = File is gone, all sectors are reallocated. 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
    DVL -- Display Volume Label Sector 
    ---------------------------------- 
 
    Usage:  DVL DVn: 
 
    DVn: is any valid HDOS device (SY1:, DK0:, etc.) 
 
    The label sector on the specified disk will be displayed. 
 
    ....................................................................... 
    HDOS 3.0 and after 
 
    Volume Number:          nnn     oooQ 
    Long Volume Number:     nnnnn   xxx.xxxA 
    Volume Label: "... text ..." 
    Trailing Bytes:         oooQ    oooQ    "aa" 
    Initialized by HDOS Version 3.? on dd-mmm-yy. 
    Volume Type:            system/data/?????? 
    RGT Sector Index:       nnnnn 
    GRT Sector Index:       nnnnn 
    First Directory Sector: nnnnn 
    Volume Size:            nnnnn Sectors 
    Physical Sector Size:   nnnnn Bytes 
    Sectors per Group:      nnn 
    Sectors per Track:      nnn 
    Volume Flags:           bbbbbbbb    (sides/tpi/type/???) 
 
    ....................................................................... 
    HDOS 2.0 
 
    Volume Number:          nnn     oooQ 
    Volume Label: "... text ..." 
    Trailing Bytes:         oooQ    oooQ    "aa" 
    Initialized by HDOS Version 2.0 on dd-mmm-yy. 
    Volume Type:            system/data/?????? 
    RGT Sector Index:       nnnnn 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-43 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont)    
    +++++++++++++++++++++++++++++++++      
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
 
    DVL -- Display Volume Label Sector (Cont) 
    ----------------------------------------- 
 
    GRT Sector Index:       nnnnn 
    First Directory Sector: nnnnn 
    Volume Size:            nnnnn Sectors 
    Physical Sector Size:   nnnnn Bytes 
    Sectors per Group:      nnn 
    Sectors per Track:      nnn 
    Volume Flags:           bbbbbbbb    (sides/tpi/type/???) 
 
    An example follows: 
    ------------------- 
    Volume Number           2         002Q 
    Long Volume Number      2         000.002A 
    Volume Label: HDOS 3.02 - 48 TPI System Disk 
    Trailing Bytes          040Q      000Q     "." 
    Initialized by HDOS Version 3.0 on 13-Jul-89 
    Volume Type             System 
    RGT Sector Index        12 
    GRT Sector Index        444 
    First Directory Sector  420 
    Volume Size             1278 Sectors 
    Physical Sector Size    256 Bytes 
    Sectors Per Group       6 
    Sectors Per Track       16 
    Volume Flags            00000001 (Double-Sided Floppy Disk) 
    ....................................................................... 
 
 
    HDOS 1.6 
 
    Volume Number:          nnn     oooQ 
    Volume Label: "... text ..." 
    Trailing Bytes:         oooQ    oooQ    "aa" 
    Initialized by HDOS Version 1.6 on dd-mmm-yy.  What an old diskette ! 
    Volume Type:            system/data/?????? 
    GRT Sector Index:       nnnnn 
    First Directory Sector: nnnnn 
    Sectors per Group:      nnn 
 
    ....................................................................... 
    HDOS 1.5 and before 
 
    Volume Number:          nnn     oooQ 
    Volume Label: "... text ..." 
    Trailing Bytes:         oooQ    oooQ    "aa" 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-44 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont) 
    +++++++++++++++++++++++++++++++++ 
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    DVL -- Display Volume Label Sector (Cont) 
    ----------------------------------------- 
    HDOS 1.5 and before 
 
    Initialized by HDOS Version 1.? on dd-mmm-yy.  GOLLY !! What an old 
                                                   diskette ! 
    Volume Type:            system/data/?????? 
    GRT Sector Index:       nnnnn 
    First Directory Sector: nnnnn 
    Sectors per Group:      nnn 
                                  
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    DVT -- Contents of Device Driver Table 
    -------------------------------------- 
 
    Device Table FWA:        357.152 
 
    Device Name:     TT: 
    ******************** 
 
    Device Driver Address:   366.114 
    Driver Byte Length:      004.264 (1204) 
    Driver Group Address:    10 
    Set Preamble Length:     6 Sectors 
 
    Driver Residence Flag:   01000111  (In memory/Locked/Fixed) 
      
    Device Flag:             00010110  (Read/Write/Characters) 
    Mounted Units Mask:      00000001  (Unit 0 Available) 
    Maximum Number of Units: 1 
 
    Unit Specific Data At:   357.142 
 
    Unit 0: 
 
    Unit Specific Flag:      00010110  (Read/Write/Characters) 
 
 
    Device Name:     SY: 
    ******************** 
 
    Device Driver Address:   025.252 
    Driver Byte Length:      006.233 (1691) 
    Driver Group Address:    29 
    Set Preamble Length:     2 Sectors 
 
    Driver Residence Flags:  10001111  (In memory/Locked/Fixed) 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-45 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont) 
    +++++++++++++++++++++++++++++++++ 
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    DVT - Contents of Device Driver Table (Cont) 
    -------------------------------------------- 
 
    DEVICE NAME: SY: (Cont) 
    *********************** 
    Device Flag:             10001111  (Dir/Read/Write/Random/Notify) 
    Mounted Units Flag:      00000011  (Units 0,1, Mounted) 
    Maximum Number of Units: 3 
 
    Unit Specific Data AT:   357.112 
 
    Unit 0: 
 
    Unit Specific Flag:      10001111 (Dir/Read/Write/Random/Notify) 
    Sectors Per Group:       6 
    Address of GRT:          375,000 
    GRT Sector Number:       444 
    DIRECT Sector Number:    420 
 
    Unit 1: 
 
    Unit Specific Flag:      10001111 (Dir/Read/Write/Random/Notify) 
    Sectors Per Group:       10 
    Address of GRT:          376,000 
    GRT Sector Number:       870 
    DIRECT Sector Number:    840 
 
    Unit 2: 
 
    Unit Specific Flag:      10001111 (Dir/Read/Write/Random/Notify) 
    Sector Per Group:        0 
    Address of GRT:          377,000 
    GRT Sector Number:       0 
    DIRECT Sector Number:    0 
 
 
    Device Name:     UD: 
    ******************** 
 
    Device Driver Address:   342.276 
    Driver Byte Length:      072.242 (2722) 
    Driver Group Address:    65 
    Set Preamble Address:    2 Sectors 
 
    Driver Residence Flag:   00000100 (Write) 
    Mounted Units Mask:      11111111 (Units 0,1,2,3,4,5,6,7 Available) 
    Maximum Number of Units: 8 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-46 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont) 
    +++++++++++++++++++++++++++++++++ 
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    Device Name:    UD:(Cont) 
    ************************* 
 
    Unit Specific Data AT:   357.012 
 
    Unit 0: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 1: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 2: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 3: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 4: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 5: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 6: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 7: 
 
    Unit Specific Flag:      00000100 (Write) 
 
 
    Device Name:     DK: 
    ******************** 
 
    Device Driver Address:   014.167 
    Driver Byte Length:      007.150 (1896) 
 
    Driver Group Address:    79 
    Set Preamble Length:     2 Sectors 
 
    Driver Residence Flag:   00000011 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-47 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont) 
    +++++++++++++++++++++++++++++++++ 
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    DVT - Contents of Device Driver Table (Cont) 
    -------------------------------------------- 
 
    Device Name:    DK: (Cont) 
    ************************** 
 
    Device Flag:             10001111 (Dir/Read/Write/Random/Notify) 
    Mounted Units Mask:      00000000 (No Units Mounted) 
    Maximum Number of Units: 2 
 
    Unit Specific Data At:   356.372 
 
    Unit 0: 
 
    Unit Specific Flag:      10001111 (Dir/Read/Write/Random/Notify) 
    Sectors Per Group:       0 
    Address of GRT:          000.000 
    GRT Sector Number:       0 
    DIRECT Sector Number:    0 
 
    Unit 1: 
 
    Unit Specific Flag:      10001111 (Dir/Read/Write/Random/Notify) 
    Sectors Per Group:       0 
    Address of GRT:          000.000 
    GRT Sector Number:       0 
    DIRECT Sector Number:    0 
 
 
    Device Name:     LI: 
    ******************** 
 
    Device Driver Address:   014.167 
    Driver Byte Length:      005.014 (1292) 
    Driver Group Address:    130 
    Set Preamble Address:    2 Sectors 
 
    Driver Residence Flag:   00000100 (Write) 
    Mounted Units Mask:      11111111 (Units 0,1,2,3,4, Available) 
    Maximum Number of Units: 5 
 
    Unit Specific Data At:   356.322 
 
 
    Unit 0: 
 
    Unit Specific Flag:      00000100 (Write) 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-48 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont) 
    +++++++++++++++++++++++++++++++++ 
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    DVT - Contents of Device Driver Table (Cont) 
    -------------------------------------------- 
 
    Unit 1: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 2: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 3: 
 
    Unit Specific Flag:      00000100 (Write) 
 
    Unit 4: 
 
    Unit Specific Flag:      00000100 (Write) 
                                                                            
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
    IOT - I/O Channel Table Display 
    ================================ 
 
    This  program  will  provide  the  user  with  a comprehensive dump and 
    interpretation of the HDOS I/O channel table. 
 
    Usage:  IOT                     ; show all channels 
            IOT n                   ; show specific channel 
 
    The following information is displayed for each requested I/O channel: 
 
    Link to Next Channel:   xxx.xxx 
    Device Driver Thread:   xxx.xxx 
    File Type Flags:        bbbbbbbb        (Dir/Read/Write/Random/Char/???) 
    Address of GRT:         xxx.xxx 
    Sectors per Group:      nnn 
    Current Group Number:   nnn 
    Current Sector Index:   nnn 
    Last Group Number:      nnn 
    Last Sector Index:      nnn 
    Device Table Address:   xxx.xxx 
    Dir Entry Sector No.:   nnnnn 
    File Name:              xxn:$$$$$$$$.$$$ 
    Creation Time:          hh:mm 
    Number of Accesses:     nnn 
    File Flags:             bbbbbbbb     (Sys/Lock/Prot/Contig/Arc/Bad/Del/Usr) 
    User Area Mask:         bbbbbbbb 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-49 
    =============       ===================                       ========= 
 
    SECTION 3: SYSTEM ANALYSIS (Cont) 
    +++++++++++++++++++++++++++++++++ 
 
                        SYSTEM ANALYSIS PROGRAMS (Cont) 
                        =============================== 
 
    IOT - I/O Channel Table Display (Cont) 
    -------------------------------------- 
 
    First Group Number:     nnn 
    Last Group Number:      nnn 
    Last Sector Index:      nnn 
    Creation Date:          dd-mmm-yy 
    Last Access Date:       dd-mmm-yy 
 
    =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =    
 
    MAP - Magic Addresses for HDOS 3.02 
    =================================== 
 
    System High Memory:      377.377 (FFFF)    HDOS 3.0a Magic Addresses 
    HDOS Scratch Area:       373.000 (FB00)     
    SY: Driver FWA:          357.261 (EFB1)    UIVEC 7:  000.200  (0080) 
    Device Table FWA:        357.152 (EF6A)    UIVEC 6:  000.316  (00CE) 
    Channel Table FWA:       355.254 (EDAC)    UIVEC 5:  000.316  (00CE) 
    Task Table FWA:          Not Available     UIVEC 4:  362.210  (F288) 
    HDOS Resident FWA:       330.226 (D896)    UIVEC 3:  370.117  (F84F) 
    System Resident FWA:     330.226 (D896)    UIVEC 2:  000.316  (00CE) 
    User Memory FWA:         042.200 (2280)    UIVEC 1:  334.162  (DC72) 
    Type-Ahead Buffer FWA:   037.224 (1F94)               
    Editor Buffer FWA:       037.057 (1F2F)    NMIVEC:   025.342  (15E2) 
    Prompt Buffer FWA:       036.312 (1ECA)     
    Path Buffer FWA:         036.145 (1E65)    RST 7:    040.061  (2031) 
    Subst. Buffer FWA:       036.000 (1E00)    RST 6:    040.056  (20E2) 
    Batch Buffer FWA:        035.000 (1D00)    RST 5:    040.053  (202B) 
    System Label FWA:        034.000 (1C00)    RST 4:    040.050  (2028) 
    HDOS Installed Size:     026.157 (166F)    RST 3:    040.045  (2025) 
    HDOS Data Link Addr:     026.053 (162B)    RST 2:    040.042  (2022) 
    SCALL Dispatcher:        000.200 (0080)    RST 1:    025.354  (15EC) 
    Feature Mark Addr:       000.005 (0005)    RST 0:    041.013  (210B) 
    *********************************************************************** 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-50 
    =============       ===================                       ========= 
 
                          APPENDIX 7-A: TASK MANAGER 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
    The  TASK  MANAGER  was  designed  and written to provide a vehicle for 
    managing running tasks within the HDOS environment.  To this  end,  the 
    TASK  MANAGER (TMG) provides to the individual tasks complete interrupt 
    control and dispatching, as well  as  task  communication  and  control 
    services.   TMG  is  itself  a  task and must be started (via the START 
    command) before any of its facilities can be made available to the user 
    tasks. 
     
    The  most  obvious  function  of  the  TASK  MANAGER  is  that  of TASK 
    identification.  Each TASK started must call upon the TASK MANAGER  for 
    identification  before  any  other services may be requested.  The fact 
    that a TASK has called for identification is  evidenced  by  a  message 
    issued  by  TMG  stating  the TASK's name, version, and a special 'TASK 
    sequence number' or TSN.  It is with the TSN that  tasks  may  be  most 
    easily manipulated by other TASKs or programs. 
     
    Any TASK wishing to identify itself to TMG must contain in its resident 
    section a structure called a 'TASK BLOCK.'   The  task  block  contains 
    certain information used by the TASK MANAGER and certain other programs 
    to identify the TASK by name, find the TASK in memory,  and  provide  a 
    simple  means of determining the TASK's current status.  The task block 
    is  defined  in  the  file  TASKDEF.ACM,  which  is  included  on   the 
    SYSCMD/Plus  distribution  disk.   Also  included  in  TASKDEF.ACM  are 
    complete descriptions of each of the support services provided by  TMG. 
    It  follows  that with the introduction of tasks into the system, there 
    may occur errors from time to time, which are  neither  covered  in the 
    HDOS  reference  manual nor included in ERRORMSG.SYS.  These errors are 
    defined individually in the appendices of this  manual  and  should  be 
    added  to  ERRORMSG.SYS.   Refer to Appendix 3-A, page 3-33 for details 
    concerning ERRORMSG.SYS. 
     
    Rather than explain in detail each facet of the  TASK  MANAGER,  it  is 
    felt  that the experienced programmer can, using the examples provided, 
    become quickly proficient at writing his or her own custom tasks.  Each 
    of  the  sample  programs is heavily documented, providing an excellent 
    learning tool for both the novice and the experienced assembly language 
    programmer. 
 
 
    TASK PROGRAMMING 
    ---------------- 
 
 
    A  'TASK' is a position independent program, much like a device driver, 
    which loads and executes below HDOS.   Typically,  TASKS  are  used  to 
    process  interrupts, and gain control under the supervision of the TASK 
    MANAGER.  The actual TASK program consists of  two  parts.   The  first 
    part  is  the  task initialization code.  This is called by SYSCMD/Plus 
    when the TASK is first loaded into  memory.   TASK  initialization  may 
    include  TASK  identification,  requesting  interrupt service from TMG, 
    prompting for user input, allocating buffers, etc.   Nearly  all  TASKS 
    will  perform  the  first two functions of identification and interrupt 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-51 
    =============       ===================                       ========= 
      
                       APPENDIX 7-A: TASK MANAGER (Cont) 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
    service.   It  should  be  noted  that a TASK may not request interrupt 
    service, without first identifying itself to TMG.  If a TASK wishes, it 
    may elect not to utilize the services of the TASK MANAGER  and  perform 
    all   vector  initialization  itself.   This  is  not  the  recommended 
    practice, however,  since  control  of  the  TASK  will  be  lost  once 
    initialization   is  complete.   Generally,  upon  completion  of  TASK 
    start-up, the task  initialization  code  is  removed  from  memory  by 
    SYSCMD/Plus to provide for maximum memory utilization.  This removal of 
    code is controlled by the TASK when control is returned to SYSCMD/Plus. 
    The  (PSW)  is  used  to  indicate  the  type  of  exit  which is to be 
    performed. 
 
    If  the  'C'  flag is set, SYSCMD/Plus will reset the system low memory 
    limit to the value contained in the (HL) register.  If the 'C' flag  is 
    clear,  the low memory bound will remain unchanged.  To remove the TASK 
    initialization code from memory, the TASK would set the contents of the 
    (HL)  register  to  the end of that code, set the 'C' flag, and return. 
    Note that if this technique is to be used, ALL resident  code  MUST  be 
    located after or at a higher address than the initialization code.  The 
    contents of the (A) register have exactly the same  effect  as  when  a 
    SCALL  .EXIT  is  performed.   If the (A) register contains a zero, the 
    exit is said to be normal.  If the (A) register is not zero,  the  exit 
    is  'aborted'.   When  an  aborted exit is performed, either by an .ABS 
    program or by a TASK, the type-ahead buffer  is  emptied,  the  console 
    ports  are  re-initialized,  all  open  channels are cleared, memory is 
    cleared of all non-locked devices and overlays, and  the  system memory 
    limits  are  reset.  The second portion of the task program is the TASK 
    resident  code.   This  is  the  actual  run-time  TASK  program  which 
    processes  interrupts  or whatever.  This code may perform any function 
    the user feels appropriate within the following constraints. 
     
    If  the  interrupt  is  an SCALL, *ALL* registers with the exception of 
    (PSW), which is saved by TMG, must be preserved.  During an  SCALL, the 
    TASK will receive control in the following manner: 
 
          (HL)   = User's return address  (pointing to SCALL) 
          (SP+0) = Return to TASK MANAGER 
          (SP+2) = TASK MANAGER's (HL) 
          (SP+4) = User's (PSW) 
          (SP+6) = User's (HL) 
 
    The  TASK  may  determine whether to process the SCALL by executing the 
    following set of instructions: 
 
           MOV     A,M             ; Get function code 
           CPI     .code           ; Compare for right code 
           RNE                     ; Not equal.  Don't process it. 
            . 
            . 
 
     
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-52 
    =============       ===================                       ========= 
 
                       APPENDIX 7-A: TASK MANAGER (Cont) 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
    If  the  TASK intends to handle the SCALL, the TASK MANAGER's registers 
    should be popped from the stack and the SCALL processed normally. 
 
    If the interrupt is other than an SCALL (vectors 1-6), control will  be 
    passed in the following manner: 
 
          (SP+0) = Return to TMG 
          (SP+2) = Return to user program via TMG 
          (SP+4) = TMG's (HL) 
          (SP+6) = TMG's (BC) 
          (SP+8) = Return to user via $RSTALL 
          (SP+10) = (SP+18) = User's registers 
          (SP+20) = User's interrupted (PC) 
 
    Since  all user registers are saved by TMG, it is not necessary for the 
    TASK to preserve registers, provided that the task returns to the  user 
    via  TMG  or  $RSTALL.   If  the  interrupt  is  a clock interrupt, the 
    following must  be  taken  into  consideration.   The  interrupt  is  a 
    real-time  event  and  must  be processed in as little time as possible 
    since clock interrupts are only 2ms apart and  are  used  for  critical 
    timing  within HDOS.  There may be ABSOLUTELY NO SCALLs, and interrupts 
    must  NOT  be  enabled  by  the   TASK.    (SCALLs   always   re-enable 
    interrupts!).  Within these simple constraints, tasks may do as much or 
    as little processing as is needed to perform the desired  function.   A 
    task must be 4k or less in size, including the initialization code.  In 
    most TASKS, this equates to approximately 17-18 sectors (16 sectors for 
    TASK plus 1-2 sectors for PIC table). 
     
    The  general  form  of a task program is given here for easy reference, 
    however, more can be learned by studying the tasks provided. 
     
    TITLE 'Task Sample Format' STL 'System Definitions' 
     
    *** MYTASK - Sample TASK * * This is a sample task program to show the 
    *            recommended  structure of  a  TASK  and to  point out all 
    *            required components 
    * 
    *       Required components are flagged with '+++'. 
    * 
    *       Note that this example assumes use of TMG. 
 
    VER     EQU     1               ; Version #             +++ 
    SUBV    EQU     0               ; Sub-version #         +++ 
 
    <<      Necessary XTEXT's       >> 
 
            XTEXT   TASKDEF                                 +++ 
 
            STL     'Initialization Code' 
                    
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-53 
    =============       ===================                       ========= 
 
                       APPENDIX 7-A: TASK MANAGER (Cont) 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
            EJECT 
            CODE    PIC             ; Position Independent  +++ 
 
            DB      TASKID          ; Identify as a TASK    +++ 
 
 
 
    ***     Initialization 
    * 
 
    TSKINIT LXI     H,TASBLK        ; Addr. of task block   +++ 
            MVI     B,TAS.ID        ; TMG function code     +++ 
            SCALL   .TASK           ; Identify TASK         +++ 
 
            PUSH    PSW             ; Save TSN 
 
    <<      Other initialization processing    >> 
 
            POP     PSW             ; (A) := TSN 
 
            MVI     C,1             ; Int Vector #1 
            MVI     B,TAS.RIS       ; TMG function code     +++ 
            LXI     H,TSKMAIN       ; Processor Address     +++ 
            SCALL   .TASK           ; Request service       +++ 
            JC      ABORT           ; Had an error 
 
            LXI     H,TSKMAIN       ; Where to set new memory bound 
            XRA     A               ; Normal Exit 
            STC                     ; Tell SYSCMD to squash us. 
 
            RET                     ; Return to SYSCMD      +++ 
 
    ABORT   PUSH    PSW             ; Save error 
            CALL    $TYPTX 
            DB      NL,'TASK Initialization Error ...',240Q 
            POP     PSW             ; (A) := Error code 
            MVI     H,BELL          ; Ding bell 
            SCALL   .ERROR          ; HDOS to print message 
            LXI     H,TSKEND        ; Where this TASK ends 
            MVI     A,1             ; Aborted Exit.    
            STC                     ; SYSCMD will squash us. 
            RET                     ; Return to SYSCMD 
 
            STL     'Task Resident Code' 
            EJECT 
 
 
 
 
 
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-54 
    =============       ===================                       ========= 
 
                       APPENDIX 7-A: TASK MANAGER (Cont) 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
 
    ***     TSKMAIN - TASK time code. 
    * 
 
    TSKMAIN EQU     *               ; Resident code begins here 
 
    <<     Task time processor     >> 
 
            RET                     ; Exit to TASK MANAGER 
 
            STL     'Data Areas' 
            EJECT 
 
 
 
    ***     TASK Block 
    * 
 
    TASBLK  DB      'MYTASK',0,0            ; TASK Name             +++ 
            DB      VER*16+SUBV             ; Version               +++ 
            DB      'foo!'                  ; Identification        +++ 
            DB      TSS.ACT+TSS.UFP         ; Status                +++ 
            DW      TSKMAIN                 ; Start of TASK         +++ 
            DW      TSKEND-1                ; End of TASK           +++ 
            DW      0                       ; Processor Address     +++ 
            ERRNZ   *-TASBLK-TSB.LEN                                +++ 
 
    TSKEND  EQU     *                       ; The end ...           +++ 
 
            END                                                     +++ 
 
 
    Note  the  processor address contained as part of the TASK block.  If a 
    TASK wishes to be notified of suspension and/or  re-activation  by  the 
    TASK  MANAGER, this must contain the address of the TASK's processor to 
    handle such notification.  When either suspension or re-activation of a 
    TASK  occurs,  TMG will call the TASK's processor with the (A) register 
    set to the value corresponding to the function being performed.  If (A) 
    contains  TAS.DEA, the TASK is being de-activated or suspended.  If (A) 
    contains TAS.REA, the TASK is being re-activated.   TASKS  may  perform 
    such  housekeeping  as  disabling  interrupts  and restoring tables and 
    vectors  when being  de-activated.  When  re-activated,  a  TASK  might 
    re-enable interrupts, etc.  Once a TASK has been de-activated, TMG will 
    no longer pass control to that TASK for requested interrupts.  When the 
    task  is  re-activated, TMG will automatically resume processing of the 
    interrupt for the TASK.  It is important that a  TASK  insure  that  no 
    interrupts  which  may  go  unserviced  can happen after de-activation. 
    Also, the ONLY way to re-activate a suspended  TASK  is  via  the  TASK 
    MANAGER. 
     
 
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-55 
    =============       ===================                       ========= 
 
                       APPENDIX 7-A: TASK MANAGER (Cont) 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
 
    SAMPLE TASKS 
    ------------ 
    Four  (4)  TASKS  have  been been included with SYSCMD/Plus so that the 
    user may be readily introduced to the concept of TASKS and to provide a 
    means  by  which  the  user may easily learn about the structure of the 
    TASKS themselves.  As the user becomes more comfortable with TASKS  and 
    begins  to  develop  his own, he will realize the enormous potential of 
    this powerful tool.   Below  are  described  the  TASKS  included  with 
    SYSCMD/Plus,  including instructions for operation.  All of these TASKS 
    have been provided for the user in source as well as object code. 
     
    NOTE: All tasks included here utilize the services of  the  SYSCMD/Plus 
    Task Manager.  TMG (included on the SYSCMD/Plus distribution disk) must 
    therefore be STARTed before any of these tasks may be run. 
     
 
    CLOCK80         (NOTE: HDOS 3.0 USES 'CLOCK') 
    -------           
    This  TASK  provides  the  system  with  a real-time clock identical in 
    function to that found in the D-G FPM/80 monitor.   This  TASK  may  be 
    used  in  systems  not utilizing this monitor to enable use of the TIME 
    command described in Section I.  This TASK contains processors for both 
    the 2ms clock interrupt generated by the system and for a special SCALL 
    called .CLOCK.  The  value  of  .CLOCK  is  376Q.   Clock  is  used  to 
    determine  the  location  in the system of the CLKPTR register.  CLKPTR 
    contains the address of the actual clock data.  This clock keeps hours, 
    minutes,  seconds,  and  milliseconds/2  (2ms  TICs).  In addition, the 
    speed at which the clock ticks may be altered by  changing  the  proper 
    value  in  the  clock  table.  The format of this table is described in 
    detail in the source code.  When the clock  reaches  midnight,  CLOCK80 
    will  automatically  increment the HDOS system date.  No check is made, 
    however, for the end of a month  or  year.   CLOCK80  contains  no  Z80 
    instructions. 
     
    CLOCK80  may  be  started  by  entering  'START  CLOCK80' at the system 
    prompt.  To set or display the time, the TIME command may be used. 
 
 
    ECHO 
    ---- 
    ECHO  is  designed to simulate a system console logging function within 
    HDOS.  That is, all characters which appear on the system console  will 
    be  logged  (or  ECHOed) on a selected output listing device.  ECHO has 
    been included as an excellent example of cooperation between a TASK and 
    the  rest  of  the HDOS operating environment.  It demonstrates several 
    powerful techniques which may be employed when processing  SCALLs.   In 
    addition,  ECHO  is  a very useful TASK for monitoring system operation 
    and preparing hard-copy output of program  execution.   ECHO  processes 
    only the SCALL vector and contains no Z80 instructions. 
     
 



    CHAPTER SEVEN       ADVANCED TECHNIQUES                       PAGE 7-56 
    =============       ===================                       ========= 
 
                       APPENDIX 7-A: TASK MANAGER (Cont) 
                       by Bill Parrott and David Carroll 
                       +++++++++++++++++++++++++++++++++ 
 
    ECHO (Cont) 
    ----------- 
    ECHO is started by typing 'START ECHO' at the system prompt.  ECHO will 
    identify itself and request the user input the name of a serial listing 
    device  to  act  as  the log device.  This must not be a disk file.  In 
    addition, ECHO will not permit the entry of any unknown  device  or  of 
    TT:.  To abort the task at this point, the user may enter CTRL-D.  When 
    the user has  entered  the  device  name  and  ECHO  has  verified  its 
    validity,  the  TASK  MANAGER  will  identify ECHO, and control will be 
    returned to SYSCMD/Plus.  To enable and/or disable ECHO,  please  refer 
    to the LOG command described in Section I. 
     
 
    CHAN 
    ---- 
    This  TASK monitors the system I/O channel table by processing all file 
    open/close related SCALLs.  A status display is maintained on  the  H19 
    25th  line  indicating the status of the system channels.  Channels are 
    numbered from -1 thru 5.  Each entry consists of five (5) flags.   When 
    all  five  flags  are  displayed  as  '.',  the channel is closed.  The 
    following values may appear in  the  flags:  'C'  -  File  is  open  in 
    character  mode;  'U' - File is open for UPDATE; 'W' - File is open for 
    WRITE; 'R' File is open for READ; 'D'  -  File  is  open  on  directory 
    device.   CHAN  processes the SCALL vector and may be run ONLY in a Z80 
    system.  Attempting to run CHAN in an 8080  system  will  result  in  a 
    fatal system error. 
     
    CHAN may be started by typing 'START CHAN' at the system prompt. 
    *********************************************************************** 
 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                   CHAPTER 8 
 
                              THEORY OF OPERATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-i 
    ===========         ===================                        ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4 ,5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    Chapter  8,  Theory  of  Operation, provides a description of the inner 
    workings of HDOS. 
 
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West Branch  Mobile Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-1 
    =============       ===================                        ========  
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
          INTRODUCTION .......................................... 8-2 
 
          THE DISK .............................................. 8-3 
              Domains ........................................... 8-3 
              Bits and Bytes .................................... 8-3 
              Tracks ............................................ 8-3 
              Sectors ........................................... 8-3 
              Single or Double-Sided Drives ..................... 8-3 
              Disk Capacity ..................................... 8-4 
              Groups ............................................ 8-4 
              Disk File Storage ................................. 8-4 
 
          ACCESS TIME -- FINDING THE RIGHT SECTOR ............... 8-4 
              Seeking ........................................... 8-4 
              Rotational Latency ................................ 8-5 
              Access Time ....................................... 8-5 
              Read/Write Rate ................................... 8-5 
 
          THE SOFTWARE SYSTEM ................................... 8-6 
              The HDOS Operating System ......................... 8-6 
              The Heart of HDOS ................................. 8-6 
              The Nucleus ....................................... 8-6 
              The Command Processor ............................. 8-6 
 
          FILES ................................................. 8-7 
              The HDOS "Librarian" .............................. 8-7 
              Clusters .......................................... 8-7 
              Cluster Factor .................................... 8-7 
              The Buffer ........................................ 8-7 
              The Directory ..................................... 8-8 
              Manipulating Files ................................ 8-8 
 
          MEMORY MAP ............................................ 8-8 
              Memory Management ................................. 8-8 
 
          CONTROLLING PERIPHERALS ............................... 8-8 
 
          APPENDIX 8-A  
            Memory Layouts - Memory Map ......................... 8-10 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-2    
    =============       ===================                        ========  
 
 
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    Within  the  following  paragraphs, detailed information concerning the 
    inner workings of HDOS is presented.  It is designed to  tell  you  all 
    you  ever  wanted  to  know  about  the HDOS that functions "behind the 
    scenes." 
     
    You  will  learn  about  the  detailed construction of a computer disk; 
    magnetic domains, bits and bytes, tracks and sectors, groups, clusters, 
    the  directory,  the buffer, disk file storage and much, much more.  In 
    addition, you will learn about how the disk drive interfaces  with  the 
    floppy  disks,  including  details  about  disk  access  time, seeking, 
    read/write rate, the HDOS Operating System, the heart of HDOS, the disk 
    nucleus, and the command processor. 
     
    It is hoped that this chapter will be as interesting as it is unique. 
    *********************************************************************** 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-3 
    =============       ===================                        ======== 
 
    Theory of Operation 
    =================== 
                                   THE DISK 
                                   ++++++++ 
 
    The disk is a circular sheet of  Mylar  (DuPont  Registered  Trademark) 
    coated  with a magnetic oxide.  When you insert the disk into the drive 
    and close the drive door, the disk settles onto a spindle  attached  to 
    the  drive  door.  As the disk rotates at approximately 300 revolutions 
    per minute, a fixed electromagnetic read/write  head  passes  over  the 
    oxide  material,  or  "medium,"  and  interacts  with  it by means of a 
    magnetic field.  This combination of head and medium is very similar to 
    that of a magnetic tape recorder. 
 
    DOMAINS 
    The medium consists of  millions  of  tiny  magnetic  particles  called 
    "domains."   Each of these domains is magnetized, and the polarity of a 
    given domain describes the binary data stored on the disk. 
 
    BITS AND BYTES 
    If the read/write head is "reading" information, it senses the polarity 
    of  the  domains  in  a  given  area and converts this information into 
    electric impulses.  These, in turn, are converted into  binary  digits, 
    or  "bits."    If the head is "writing," the procedure is reversed: the 
    bits are converted into electric impulses  which  change  the  magnetic 
    field  around  the  head.    The  changed  magnetic field polarizes the 
    domains according to the value of the bits.  Eight "bits" are  combined 
    together to make a single "byte." 
 
    TRACKS 
    Each  disk  is  subdivided  into  a  series of concentric rings, called 
    "tracks."  Typically, the H17-style disk uses 40 tracks, although it is 
    possible,  using  non-Heath software, to use special floppy disk drives 
    that provide 80 tracks.  The H37-style drives can hold either 40 or  80 
    tracks, using the standard Heath software.  The H47-style drives (i.e., 
    8-inch size) always use 77 tracks. 
 
    SECTORS 
    Each track is  subdivided into areas called "sectors."  The  H17  disks 
    have  11  holes punched into the media to indicate the location of each 
    of the 10 sectors allowed per track.  The eleventh  hole  is  a  marker 
    hole.    The  H37  and  H47  can control the number of sectors in their 
    formatting software; hence they  are  referred  to  as  "soft-sectored" 
    disks.    Typically,  an  H37 disk holds 10 sectors in "single density" 
    mode, or 16 sectors in "double density" mode.  With non-Heath software, 
    it  is  possible  to INIT H37 disks with 18 sectors per track.  The H47 
    disks can hold 13 or 26 sectors per track, depending upon whether  they 
    are  formatted  in  "single  density" or "double density."  Each sector 
    holds 256 bytes of data. 
 
    SINGLE OR DOUBLE-SIDED DISK DRIVES 
    Standard H17 drives  record only on a single side of the  disk  medium. 
    With  non-Heath  software,  it  is  possible  for the H17 controller to 
    handle a double-sided disk drive, and record on both sides of the disk. 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-4 
    =============       ===================                        ======== 
 
 
                                THE DISK (Cont) 
                                +++++++++++++++ 
    
    The  standard  H37  software  can control either single or double-sided 
    floppy disk drives.  The H47 uses special 8-inch disk drives  that  are 
    always  double-sided.   You  have  the  option  of using less expensive 
    single-sided disks for recording on only one side if you wish. 
 
    DISK CAPACITY 
    Because  of  the  enormous  number  of  possible  combinations  of disk 
    controllers,  number  of  sides,  number  of  tracks,  and   electronic 
    recording  densities,  it is impractical to list all the different disk 
    capacities.  They range from 400 sectors (H17,  single-side,  40-track) 
    to 4004 sectors (H47, double-side, double density). 
 
    GROUPS 
    HDOS internally  combines nearby sectors of data together into what are 
    called  "groups."    Because  of the intrinsic structure of HDOS, it is 
    possible to keep track of no more than 255 "groups" of data sectors per 
    disk.    A  400-sector  disk  will be organized into 200 groups, with 2 
    sectors  per group.  A 2560-sector  disk  (H37,  double-sided,  double- 
    density  80  track,  16  sectors  per track) will be organized into 213 
    groups  of 12  sectors each.  A  4004-sector  H47  disk  (double-sided, 
    double-density) will be organized into 250 groups of 16 sectors each.  
 
    DISK FILE STORAGE 
    Because of this  internal grouping of sectors, the  minimum  amount  of 
    space HDOS will use when recording a file is a single group.  Using the 
    examples shown of standard H17, H37, and H47 disk sizes,  10  files  of 
    one sector each will use the following amount of actual disk space: H17 
    - 20 sectors; H37 - 120 sectors; H47 - 160 sectors.  However, to  store 
    10 files of 16 sectors each would require: H17 - 160 sectors; H37 - 240 
    sectors; H47 - 160 sectors.  
    *********************************************************************** 
 
                    ACCESS TIME -- FINDING THE RIGHT SECTOR 
                    ======================================= 
 
    SEEKING 
    The  process by which HDOS finds a given track is called "seeking."  It 
    takes a small amount of time for the head to move  from  track-to-track 
    as it seeks the correct one.  This is called "track step-time."  The 5- 
    1/4 inch drive used in the H89, H17, and H77 has a guaranteed step time 
    of 30 milliseconds (0.03 seconds), although many 5 1/4 inch floppy disk 
    drives  are  actually  capable  of  much  faster  operation.   You  may 
    determine  the  optimum  step-time of your 5-1/4 inch drives during the 
    TEST17 procedure.  (NOTE: TEST17 is only available under  HDOS  Version 
    2.0.)  The guaranteed step-time for the 8-inch drive(s) in the H47 is 3 
    milliseconds (0.003 seconds). 
 
 
 
 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-5 
    =============       ===================                        ======== 
       
                 ACCESS TIME - FINDING THE RIGHT SECTOR (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    ROTATIONAL LATENCY 
    Another  factor  that  determines  system  speed  is called "Rotational 
    Latency."  When you type in a command and a filename, the system  first 
    locates the track upon which the file is located.  Since the read-write 
    head is fixed, the system may have to wait for the  correct  sector  to 
    rotate  underneath  the  head  after having selected the correct track. 
    Rotational latency is thus defined as the amount of time that it  takes 
    for  the  spindle  in  the disk drive unit to rotate the desired sector 
    into a position where the read/write head can read data from  the  file 
    you  have specified.  The amount of rotational latency depends upon the 
    relative positions of sector and read-write head.  If there is a  great 
    amount  of distance between the head and sector, the rotational latency 
    of the drive may be as great as 200 milliseconds for 5-1/4 inch drives, 
    and  as  great  as  166.6  milliseconds  for  the  8-inch  drives.  The 
    rotational  latency  period  of  a  5-1/4  inch   disk   averages   100 
    milliseconds:  the average rotational latency for 8-inch drives is 83.3 
    milliseconds. 
     
    ACCESS TIME 
    The access time,  or period of  time  it  takes  to  locate  a  sector, 
    depends  upon  the  track  step-time  of  the disk drive as well as the 
    relative positions of sector and head.  This  access  time  may  be  as 
    great  as  216  milliseconds  in  the  case  of the 8-inch drives.  The 
    average access time for 5-1/4 inch  drives  is  225  milliseconds;  the 
    average  access  time  for  8-inch  drives  is  91 milliseconds.  These 
    averages  are based upon calculations which presuppose that during  the 
    average  disk  access,  one-third of the tracks will have to be skipped 
    over.  If many sectors close to one another are accessed,  the  average 
    access time will be much lower, i.e., faster.  
 
    READ/WRITE RATE 
    As soon as HDOS finds the correct sector,  it reads or writes the  data 
    serially  one  bit at a time.  This serial transfer of data takes place 
    at a rate of 16,000 bytes per second with H17 5-1/4 inch drives,  at  a 
    rate  of  30,000 bytes per second with H37 drives, and a rate of 62,745 
    bytes per second with 8-inch drives.  The binary  data  is  transferred 
    between  the  disk drive and the disk drive controller.  The controller 
    converts the serial data into parallel format.  That is, the controller 
    reformats the single-bit data so that, instead of being transferred one 
    bit at a time, the data is transferred 8 bits (one  byte)  at  a  time. 
    The controller then sends the data to the CPU (central processing unit) 
    by means of an input/output port. 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-6 
    =============       ===================                        ======== 
                   
 
                              THE SOFTWARE SYSTEM 
                              +++++++++++++++++++ 
 
    THE HDOS OPERATING SYSTEM 
    An operating system such as  HDOS  is  a  logically  organized  set  of 
    programs  which  perform  various  tasks,  such  as  communicating with 
    peripherals and finding data on the disk.  All the programs of HDOS are 
    accessible  to  you by means of operating system "commands."  The exact 
    command syntax is discussed in the "General Operations" Chapter of this 
    manual. 
 
    THE HEART OF HDOS 
    Two vital programs  within  the  operating  system  control  the  other 
    portions  of  HDOS.  One  of  these programs, HDOS30.SYS, is called the 
    "nucleus;" the other, SYSCMD.SYS, is called the "command processor." 
 
    THE NUCLEUS 
    The "nucleus" is the heart of HDOS.  It  is  a  collection  of  control 
    routines  which the command processor and utility programs, such as PIP 
    and BASIC, call upon to execute your commands.    The  machine-language 
    routines  in  the  nucleus  control  such operations as allocating disk 
    space and memory and transferring data from memory  to  disk  and  from 
    disk  to  memory.  The nucleus resides in memory whenever the operating 
    system is running. 
 
    THE COMMAND PROCESSOR 
    Working  in  conjunction  with  the nucleus is the "command processor," 
    which processes all input from the keyboard when the HDOS system prompt 
    is  displayed.   When you enter data at the terminal keyboard, the data 
    go directly to the  nucleus,  where  it  is  temporarily  stored.   The 
    command  processor continually checks the data in the nucleus to see if 
    a carriage return has been entered.  When the command processor  "sees" 
    that the data in the nucleus have been terminated by a carriage return, 
    it takes whatever data precedes the carriage return as a  command.   If 
    you  enter  a valid command, the command processor then either executes 
    the command itself  (an  internal  command)  or  passes  control  to  a 
    sub-program  which  is  capable  of  executing the command (an external 
    command).  If the command involves some form of disk I/O, the processor 
    or  subprogram  utilizes the control routines in the nucleus.  After an 
    internal command has been executed,  control  returns  to  the  command 
    processor,  which  then  awaits  the  next  command.   When an external 
    command is executed, however, that program takes over  control  of  the 
    keyboard  and  communicates  with  the  nucleus.   It  is not until the 
    program "exits to HDOS" that the system processor regains control. 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-7 
    =============       ===================                        ======== 
 
                                     FILES 
                                     +++++ 
 
    All  information on a disk is stored as bytes within a 256-byte sector. 
    If the storage of a program or some other type of  data  requires  more 
    than 256 bytes, which is often the case, some means of quickly locating 
    all the sectors which contain that data is needed.  Thus, to facilitate 
    location  and  retrieval  of  all the component sectors of a program or 
    mass of data, HDOS organizes sectors  into  data  structures  known  as 
    "files."  Files may be composed of many sectors. 
 
    THE HDOS "LIBRARIAN" 
    With  regard  to  file  management,  the  operating  system  is  like a 
    librarian, who must know where to find all the books  in  the  library. 
    The  operating  system must: find space on the disk for new files; give 
    each file a new name so that it can be easily located; be able to  copy 
    from  one  file  to  another; and be able to rename, update, and delete 
    files.  Above all, the operating system must  be  able  to  communicate 
    with you and execute your commands quickly and effectively. 
 
    GROUPS OR CLUSTERS 
    HDOS  allocates  sectors  to  files  in  groups  called  "clusters"  or 
    "groups."  The name "clusters" was coined by programmers who discovered 
    the  inner  workings  of  HDOS  by disassembling the machine code.  The 
    'official' name as used in the original HDOS source code is "group." 
     
    Each group or cluster is composed of two contiguous sectors in the case 
    of  the  H17 5-1/4 inch disks,  and up to sixteen contiguous sectors in 
    the case of H47 8-inch disks, when using  double-sided,  double-density 
    recording.   inch  disks.   Clusters  on a single-sided, single-density 
    8-inch disk are composed of 4 sectors.   Clusters  on  a  double-sided, 
    double-density 8- inch disk are composed of 16 sectors. 
 
    CLUSTER FACTOR 
    The number of sectors HDOS assigns to a cluster on a particular type of 
    disk is called the "cluster factor."  In the case of a 5-1/4 inch disk, 
    the  cluster  factor  is  2.   If the cluster factor were 2, HDOS would 
    allocate two sectors to a file which required only one sector to store. 
    The  system "remembers" whether or not all the sectors in a cluster are 
    used.  If HDOS needs to extend a  file,  it  uses  one  of  the  unused 
    sectors  in  the  cluster it has assigned to that file.  By keeping the 
    component sectors  of  the  file  close  together  in  this  way,  HDOS 
    minimizes seek-time when reading the disk. 
 
    THE BUFFER 
    Since the 256-byte sector is the basic allocation unit of the disk, all 
    data transfers to and from the disk must involve some multiple  of  256 
    bytes.   Many  of the HDOS system programs such as BASIC, ASM, and EDIT 
    use an area of RAM  called  the  "buffer"  to  store  data  until  some 
    multiple of 256 bytes is accumulated.  When the buffer has become full, 
    whether by "padding" the data is to be transferred or by simply waiting 
    for more information to be added to the buffer, the data are written to 
    the disk.  A buffer of sufficient  size  must  be  set  aside  by  each 
    program   which  reads  files.   BASIC  automatically  sets  aside  any 
    necessary buffer space. 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-8 
    =============       ===================                        ======== 
 
                                 FILES (Cont) 
                                 ++++++++++++ 
 
    THE DIRECTORY 
    In  order  to  keep  track  of all the files in the system, HDOS uses a 
    listing known as the "directory."  The  directory  contains  the  name, 
    location,  size,  and  creation  date  of every file in the system.  In 
    order to access a given file, HDOS first  looks  up  its  name  in  the 
    directory.   It then uses information listed along with the filename to 
    locate the sectors which comprise the file.  The directory is  also  an 
    HDOS  file  called  "Direct.Sys."  HDOS cannot use this file to look up 
    the location of a file, because it cannot read  "Direct.Sys"  until  it 
    can  look  at the data in "Direct.Sys" that tells where "Direct.Sys" is 
    located!  HDOS  solves  this  paradox  by  recording  the  location  of 
    "Direct.Sys" on physical track zero of every disk. 
 
    MANIPULATING FILES 
    Files   can  be  manipulated  at  the  HDOS  level,  at  the  level  of 
    subprograms, such as ONECOPY, as well  as  within  BASIC  and  assembly 
    language programs.  Refer to the appropriate section of this manual for 
    the proper command syntax. 
    *********************************************************************** 
 
                                  MEMORY MAP 
                                  ++++++++++ 
 
    MEMORY MANAGEMENT 
    An operating system requires a memory management capability in order to 
    function with other programs.  When  you  issue  a  command  to  run  a 
    program,  HDOS  locates the file that bears the name of the program and 
    then determines whether or not it will fit into the  available  memory. 
    If  it  will fit, HDOS reads the file into a memory area that begins at 
    the  program's  starting  address.   After  the  loading   process   is 
    completed,  HDOS  jumps  to  the  starting  address  of the program and 
    execution begins. 
 
    Normally,  HDOS  will  give a program only the minimum amount of memory 
    that it actually needs.  However,  the  program  may  request  HDOS  to 
    release  additonal  memory  as needed.  Example: Microsoft BASIC.  This 
    program requires all  available  memory.   For  this  reason  prior  to 
    calling  Microsoft  BASIC,  one  first loads the printer device driver. 
    Refer to Appendix 8-A, "Memory Layouts - Memory Map" for details of the 
    HDOS 3.02 memory map. 
    *********************************************************************** 
 
                            CONTROLLING PERIPHERALS 
                            +++++++++++++++++++++++ 
 
    HDOS will also manage all  the  peripheral  devices  on  your  computer 
    system.    This  gives  you the capability to type in commands from the 
    console terminal and have the operating system perform  some  input  or 
    output  function  without  your  further  intervention.    You can also 
    include I/O commands in your programs without having to write  detailed 
    instructions for controlling the peripherals. 
 
 



    CHAPTER EIGHT       THEORY OF OPERATION                        PAGE 8-9 
    =============       ===================                        ======== 
 
 
                        CONTROLLING PERIPHERALS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    HDOS  uses  programs  called  "device  drivers" to control peripherals. 
    Each device driver is written with the characteristics of a  particular 
    device  in  mind.  Its speed, line length, and "handshaking" capability 
    or the capability of a peripheral to instruct the CPU not to  send  any 
    more  data  until  the  peripheral  is ready, are all examples of these 
    characteristics.  Device drivers are stored on the disk as files,  with 
    each  device  driver  corresponding  to  one  peripheral  device.   For 
    example, to control the disk drives  of  your  system,  HDOS  uses  two 
    device  drivers  called  SY.DVD  and  DK.DVD.   The  SY.DVD disk driver 
    controls all disk drives which have been  configured  as  primary  boot 
    drives,  while  the  DK.DVD  driver controls all disk drives which have 
    been hardware configured as secondary boot drives. 
 
    After the device drivers are written as files, one for each peripheral, 
    the drivers become a  part  of  the  operating  system.   Since  device 
    drivers  are a part of HDOS, it is not necessary to include the drivers 
    in each program which makes use of the peripherals.  You can also  make 
    a   program   communicate  with  many  different  peripherals,  without 
    rewriting it, by defining the appropriate device drivers.  This ability 
    to  refer to a peripheral without keying instructions into a program is 
    called "device independence." 
 
    The effect of HDOS's device independence is  that  each  peripheral  is 
    given  a symbolic name, as if it were a file.  For instance, the system 
    console terminal is referred to as "TT:,"  and  "SY0:"  identifies  the 
    system disk drive.  The colon (e.g. : ) at the end of the symbolic name 
    identifies it as a device name rather than a filename. 
 
    In addition, it is possible to have more than one printer driver on one 
    disk.  For example,  one  could  add  the  driver  called  "UD.DVD"  to 
    complement  the existing "LP.DVD."  Other device drivers could be added 
    as well.  If new peripheral devices are added to your computer  system, 
    you  might, for example, add a device driver called "MD.DVD" to control 
    a modem.  A  modem is a  hardware item that connects a serial port to a 
    telephone  line.  Data sent to "MD.DVD" would then go out the telephone 
    line in the same way that data sent to device LP: go  to  the  printer. 
    Similarly,  one could add a device driver called "CK.DVD."  This driver 
    would contain instructions that would enable HDOS to communicate with a 
    real-time  clock installed in the computer.  In addition, if you have a 
    Spooldisk mounted in your computer, the device  driver  "SS.DVD"  would 
    enable  you  to  communicate  with  that versatile RAM card.  There are 
    numerous device drivers available. 
    *********************************************************************** 
 



    CHAPTER EIGHT       THEORY OF OPERATION                       PAGE 8-10 
    =============       ===================                       ========= 
 
                   APPENDIX 8-A: MEMORY LAYOUTS - MEMORY MAP 
                   +++++++++++++++++++++++++++++++++++++++++ 
    The  following  is  a complete memory map of the HDOS 3.02 environment. 
    It is the same for an H/Z 90, H/Z89, or an H8 after the BOOT process is 
    complete and you are running. 
     
    Everything  between  the  System Resident FWA (317.116 in this example) 
    and the Channel Table FWA (364.170 in this example) is  dependent  upon 
    the device drivers and tasks you have in your computer setup.  That is, 
    which ones you have LOADed and/or STARTed. 
     
    In this example, seven device drivers and two tasks are resident on the 
    system  disk.  The Device Driver Table is dynamically allocated at BOOT 
    time, and is thus 99 bytes long.  It consists of 7 entries of 14  bytes 
    each,  and  a  trailing  zero  byte.  Following this table are the Unit 
    Specific Tables.  Each one is a multiple of 8 bytes; one entry for each 
    available unit on each device.  Next is the Channel table.  It normally 
    consists of 7 entries of 42 bytes each, for a total of 294 bytes.   The 
    7 normal channels are designated as -1 through 5. 
     
    For  this  sample  Memory  Map, all 7 devices and started and two tasks 
    started.  Under normal operation, this probably would not be the  case. 
    Also, with the use of the UNLOAD command, much of this allocated memory 
    could be recovered and reused for running application programs or other 
    purposes. 
     
    The  GRT  buffer allocation is an interesting function, and worth a few 
    comments.  The SY: device's GRT buffers are allocated first at the  top 
    of  memory.  One memory page, 256 bytes, is reserved for each available 
    unit on the SY: device.  In our example, my SY:  device  had  only  one 
    unit.   As  any  additional  directory  devices are loaded into memory, 
    their  GRT  buffers  are  allocated  in  a  similar  manner,  with  one 
    exception.   A  GRT buffer must reside on an exact page boundary.  That 
    is, the low order byte of its starting address must be zero.   This  is 
    necessary  because  of the way HDOS (older versions and newer versions) 
    navigates through Group Reservation Tables (GRT).   The  GRT  table  is 
    also known as the File Allocation Tables (FAT) in the MS-DOS world.  To 
    achieve this requirement, HDOS abandons any memory between the  current 
    System Resident FWA and the next available page address below it.  This 
    step is illustrated in the example at address 363.000,  where  we  have 
    lost  56  bytes  and  at  address  355.000 where we have lost 45 bytes. 
    Since HDOS has no way of controlling how many bytes  it  will  need  to 
    abandon, you could lose as many as 255 bytes each time, or none at all. 
     
    Anything residing between the System Resident FWA and the HDOS Resident 
    FWA is ONLY temporary, and will be abandoned the next  time  SYSCMD  is 
    re-entered,  unless  it  is  a  directory device, and there are mounted 
    units on the device.  The exception to this rule  is  a  device  driver 
    that  locks  itself  in  memory,  such  as  the  H17  driver.  Since it 
    re-routes an interrupt vector, it MUST  stay  in  memory  until  it  is 
    physically  unloaded,  so  that it can restore the original vector and, 
    thus, be "polite" to HDOS. 
     
    
 
     



    CHAPTER EIGHT       THEORY OF OPERATION                       PAGE 8-11 
    =============       ===================                       ========= 
 
               APPENDIX 8-A: MEMORY LAYOUTS - MEMORY MAP (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++ 
 
                             HDOS 3.02 MEMORY MAP 
+========================+=========+========+=======+=======================+ 
|    Description         | Address | (Addr)*| Bytes |       Comment         | 
+========================+=========+========+=======+=======================+ 
| System High Memory     | 377.377 | (FFFF) |   --- | Last real address     | 
|                        |         |        |       |  in memory            | 
| SY0: GRT Buffer        | 377.000 | (FF00) |   256 |                       | 
| HDOS Scratch Area      | 375.000 | (FD00) |   512 | Directory blocks, etc.| 
| TT: Driver FWA         | 370.114 | (F84C) |  1204 | H19                   | 
| SY: Driver FWA         | 366.121 | (F651) |   507 | Super89 Ram Drive     | 
+------------------------+---------+--------+-------+-----------------------+ 
| Device Table FWA       | 365.356 | (F5EE) |    99 | 14 bytes per device   | 
|                        |         |        |       |  plus trailing zero   | 
| TT: Unit Specific Data | 365.346 | (F5E6) |     8 | 8 bytes/unit          | 
| SY: Unit Specific Data | 365.336 | (F5DE) |     8 | 8 bytes/unit          | 
| DK: Unit Specific Data | 365.316 | (F5CE) |    16 | 8 bytes/unit          | 
| DY: Unit Specific Data | 365.266 | (F5B6) |    24 | 8 bytes/unit          | 
+------------------------+---------+--------+-------+-----------------------+ 
| ND: Unit Specific Data | 365.256 | (F5AE) |     8 | 8 bytes/unit          | 
| LP: Unit Specific Data | 365.246 | (F5A6) |     8 | 8 bytes/unit          | 
| SP: Unit Specific Data | 365.236 | (F59E) |     8 | 8 bytes/unit          | 
| Channel Table FWA      | 364.170 | (F478) |   294 | 42 bytes/channel      |  
| S89CLK Task FWA        | 363.105 | (F345) |   307 | Super89 Real Time CLK | 
+------------------------+---------+--------+-------+-----------------------+ 
| Task Table FWA         | 363.070 | (F338) |    13 | Task Table Entry      | 
| Memory Hole            | 363.000 | (F300) |    56 | <<< Wasted Space >>>  | 
| DK0: GRT Buffer        | 362.000 | (F200) |   256 |                       | 
| DK1: GRT Buffer        | 361.000 | (F100) |   256 |                       | 
| DK: Driver FWA         | 355.057 | (ED2F) |   977 | H47                   | 
+------------------------+---------+--------+-------+-----------------------+ 
| Pointer to UNLOAD DK:  | 355.055 | (ED2D) |     2 |                       | 
| Memory Hole            | 355.000 | (ED00) |    45 | <<< Wasted Space >>>  | 
| DY0: GRT Buffer        | 354.000 | (EC00) |   256 |                       | 
| DY1: GRT Buffer        | 353.000 | (EB00) |   256 |                       | 
| DY2: GRT Buffer        | 352.000 | (EA00) |   256 |                       | 
+------------------------+---------+--------+-------+-----------------------+ 
| DY: Driver FWA         | 342.230 | (E298) |  1896 | H17                   | 
| Pointer to UNLOAD DY:  | 342.226 | (E296) |     2 |                       | 
| ND: Driver Flag        | 342.140 | (E260) |    54 | Null Device           | 
| Pointer to UNLOAD ND:  | 342.136 | (E25E) |     2 |                       | 
| LP: Driver FWA         | 340.076 | (E03E) |   544 | H25                   | 
+------------------------+---------+--------+-------+-----------------------+ 
| Pointer to UNLOAD LP:  | 340.074 | (E03C) |     2 |                       | 
| SP: Driver FWA         | 324.205 | (D485) |  2999 | Screen Dump Utility   | 
| Pointer to UNLOAD SP:  | 324.203 | (D483) |     2 |                       | 
| TDU Task FWA           | 317.133 | (CF5B) |  1320 | Terminal DeBug        | 
|                        |         |        |       |  Utility Task         | 
| Task Table Entry       | 317.116 | (CF4E) |    13 | Task Table Entry      | 
+------------------------+---------+--------+-------+-----------------------+ 
| HDOS Resident FWA      | 317.116 | (CF4E) |   --- |                       | 
| System Resident FWA    | 317.116 | (CF4E) |   --- |                       | 
+========================+=========+========+=======+=======================+              
 



    CHAPTER EIGHT       THEORY OF OPERATION                       PAGE 8-12 
    =============       ===================                       ========= 
 
             APPENDIX 8-A: MEMORY LAYOUTS - MEMORY MAP (Cont) 
             ++++++++++++++++++++++++++++++++++++++++++++++++ 
 
                             HDOS 3.02 MEMORY MAP 
 
+========================+=========+========+=======+=======================+ 
|    Description         | Address | (Addr)*| Bytes |       Comment         | 
+========================+=========+========+=======+=======================+ 
| User Memory FWA        | 042.200 | (2280) | 44238 | Available for User    | 
|                        |         |        |       |  Programming          | 
| Top of STACK           | 042.200 | (2280) |  ---- |                       | 
| Bottom of STACK        | 041.150 | (2168) |   280 |                       | 
| STACK Overflow         | 041.146 | (2166) |     2 |                       | 
| HDOS Work Cells        | 040.100 | (2040) |   294 |                       | 
+------------------------+---------+--------+-------+-----------------------+ 
| Monitor Work Cells     | 040.000 | (2000) |    64 | Some are still in use | 
| Free Space             | 037.371 | (1FF9) |     7 |                       | 
| Type Ahead Buffer FWA  | 037.224 | (1F94) |   101 |                       | 
| Editor Buffer FWA      | 037.057 | (1F2F) |   101 |                       | 
| Prompt Buffer FWA      | 036.312 | (1ECA) |   101 |                       | 
+------------------------+---------+--------+-------+-----------------------+ 
| Path Buffer FWA        | 036.145 | (1E65) |   101 |                       | 
| Substitute Buffer FWA  | 036.000 | (1E00) |   101 |                       | 
| Batch Buffer FWA       | 035.000 | (1D00) |   256 |                       | 
| System Label FWA       | 034.000 | (1C00) |   256 |                       | 
| Free Space             | 033.257 | (1BAF) |    81 | Reserved for HDOS 3.1 | 
+------------------------+---------+--------+-------+-----------------------+ 
| H17 ROM Code           | 033.145 | (1B65) |    74 | DO NOT MESS WITH THIS | 
|                        |         |        |       |  CODE !!!             | 
| Free Space             | 032.223 | (1A93) |   210 | Reserved for HDOS 3.1 | 
| H17 ROM Code           | 031.275 | (19BD) |   214 | DO NOT MESS WITH THIS | 
|                        |         |        |       |  CODE !!!             | 
| Free Space             | 031.222 | (1992) |    43 | Reserved for HDOS 3.1 | 
| H17 ROM Subroutines    | 030.060 | (1830) |   354 | $COMP thru $ZERO      | 
+------------------------+---------+--------+-------+-----------------------+ 
| Free Space             | 030.003 | (1803) |    45 | Reserved for HDOS 3.1 | 
| H17 ROM FWA            | 030.000 | (1800) |     3 | Jump to Fatal System  | 
|                        |         |        |       |  Error!               | 
| Free Space             | 026.157 | (166F) |   401 | Used for PRELOAD.ABS  | 
| HDOS System Code       | 000.200 | (0080) |  5615 | Operating System Code | 
| Base Page              | 000.000 | (0000) |   128 | Vectors, Data, and    | 
|                        |         |        |       |  Pointers             | 
+========================+=========+========+=======+=======================+ 
 
NOTE: 
The term (Addr) indicates the address of an item listed in the left column. 
 
 



 
 
 
 
 
 
 
                         
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                   CHAPTER 9 
 
                               CONSOLE DEBUGGER 
 
                                     DEBUG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
         
 



    CHAPTER NINE                CONSOLE DEBUGGER                   PAGE 9-i 
    ============                ================                   ======== 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4 ,5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West Branch  Mobile Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 



    CHAPTER NINE                CONSOLE DEBUGGER                   PAGE 9-1 
    ============                ================                   ======== 
 
 
     
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
 
           INTRODUCTION .................................... 9-2 
            
           COMPUTER/USER DIALOGUE CONVENTIONS .............. 9-3 
 
           DISK LOADING/DUMPING ............................ 9-3 
             Executing DBUG ................................ 9-4    
 
           MEMORY COMMANDS 
             Format Control ................................ 9-4 
             Range ......................................... 9-6 
             Displaying Memory Contents .................... 9-8    
             Altering Memory - Decimal or Octal ............ 9-8 
             Altering Memory - ASCII Format ................ 9-9 
 
           REGISTER COMMANDS 
             Displaying All Registers ..................... 9-10 
             Displaying Individual Registers .............. 9-11 
             Altering Register Contents ................... 9-12 
 
           EXECUTION CONTROL 
             Single Stepping .............................. 9-12 
             Breakpointing ................................ 9-15 
             Displaying Breakpoints ....................... 9-16 
             Clearing Individual Breakpoints .............. 9-17 
             Clearing All Breakpoints ..................... 9-17 
             GO Command ................................... 9-18 
 
           EXEC ........................................... 9-18 
 
           CTRL-A ......................................... 9-18 
                                                              
           CTRL-D ......................................... 9-19 
 
           COMMAND COMPLETION ............................. 9-19 
 
           APPENDIX 9-A 
             Error Messages ............................... 9-20 
 
           APPENDIX 9-B 
             DEBUG COMMAND SUMMARY ........................ 9-20 
               Memory Commands ............................ 9-20 
               Range ...................................... 9-21 
               Register Commands .......................... 9-22 
 
               Execution Control .......................... 9-22 
               Program Loading and Dumping ................ 9-22 
 
           INDEX .......................................... 9-23 
 



    CHAPTER NINE                CONSOLE DEBUGGER                   PAGE 9-2 
    ============                ================                   ======== 
 
 
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    The  Heath Console Debugger, DBUG, allows you to debug machine language 
    programs from a console terminal.  DBUG occupies the lowest 4K of  user 
    program RAM (random access memory) location, and can be manipulated via 
    DBUG.  Note that your program MUST be ORGed  above  the  end  of  DBUG. 
 
    Refer to Appendix 8-A, "Memory Layout - Memory Map" for details. 
 
    DBUG   contains   facilities  to   perform  the  following  nine  major 
    functions: 
 
        * Display the contents of a selected memory location. 
        * Alter the contents of a selected memory location. 
        * Display the contents of any 8080 compatible register. 
        * Alter the contents of any 8080 compatible register. 
        * Execute the user program a single instruction at a time. 
        * Execute the program. 
        * Insert breakpoints and execute the user program. 
        * Load user programs from a device. 
        * Dump user programs to a device. 
 
    A number of features were designed  into  DBUG  for  your  convenience. 
    Memory  locations  and memory and register contents may be displayed as 
    bytes or as words, in octal, decimal, or  ASCII  format.    With  these 
    features,  you  can select the most familiar or desirable format.  DBUG 
    also contains a single-instruction facility that permits you to execute 
    your program  a  single line of instruction  at  a  time.  And for more 
    advanced program analysis, a breakpointing  feature  is  included  that 
    permits  you  to  execute  several  instructions  in a program and then 
    return control to DBUG for analysis and/or modification. 
 
    DBUG makes use of the console facilities of HDOS: therefore,  the  HDOS 
    console  control conventions, CTRL-S, CTRL-Q, CTRL-O, CTRL-P, etc, also 
    apply to DBUG.  DBUG does not respond to CTRL-Cs.  CTRL-A  is  used  to 
    return  to  DBUG  command  mode.    This  is  done so the program being 
    debugged can make use of CTRL-B and CTRL-C. 
 
    When it is accepting commands from the console keyboard, DBUG uses  the 
    "command  completion"  technique.   As each character is entered, it is 
    checked against a list of all possible  commands.    If  the  character 
    could  not  be  a  part  of  any  valid command, DBUG will refuse it by 
    echoing an ASCII BELL character.  In addition, if DBUG determines  that 
    there  is  only  one choice for the next character in the command, DBUG 
    will type that character for you.  Thus, if you strike the L key,  DBUG 
    knows that all commands that start with L start with the word LOAD, and 
    will print the entire word, LOAD on the terminal. 
 
    NOTE:  The symbol [^] indicates a space.  Spaces are critical in HDOS. 
    *********************************************************************** 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-3 
    ============                ================                  ======== 
  
 
                      COMPUTER/USER DIALOGUE CONVENTIONS 
                      ++++++++++++++++++++++++++++++++++ 
 
    In order to more clearly show the dialogue between the computer and the 
    user, statements made by the computer are set off by  quotation  marks, 
    and  the  responses  made  by the user are set off by apostrophe marks. 
    However, if the statement is an example of a command or similar phrase, 
    showing one or the other  of  the  dialogs,  this  convention  will  be 
    ignored,  since  the meaning will be clear.  Anytime you see the symbol 
    [^] it means to make a space unless otherwise indicated. 
    *********************************************************************** 
 
 
                             DISK LOADING/DUMPING 
                             ++++++++++++++++++++ 
 
    DBUG  offers  two commands for program loading and dumping (or saving). 
    With these commands, described below, you can load or dump an  absolute 
    binary program. 
 
    LOAD Filename.Ext  
    -----------------   
 
    The  LOAD  command causes the contents of the file specified by <fspec> 
    to be loaded into memory.  The file must be in absolute  binary  format 
    (the  format  generated by the HDOS assembler).  Note that the absolute 
    binary file contains information to tell HDOS where the  file  must  be 
    loaded.   DBUG  will not allow you to load a program over the DBUG code 
    or over the HDOS operating system.  The entry  point  address  for  the 
    loaded  program  will be entered into the program counter (Pc register) 
    automatically.  For example: 
 
        ":B:"'LOAD^SY1:TEST.ABS<RTN>' 
 
 
    DUMP^<fspec>^saddr-eadder  
    ------------------------- 
 
    The  DUMP  command  causes  the  contents  of  memory from saddr to and 
    including eadder to be written to the file<fspec>  in  absolute  binary 
 
    format.   The  contents  of the Pc register at the time of the DUMP are 
    stored in the file as the program's entry  point.   You  can  use  this 
    feature  to save a patched binary program without reassembling it.  For 
    example, to save the demo program used on Page 3-13, type: 
         
        ":B:"'DUMP^TEST^70000-70026<RTN>' 
 
    *********************************************************************** 
 
 
 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-4 
    ============                ================                  ======== 
 
 
                                EXECUTING DBUG 
                                ++++++++++++++ 
 
    DBUG is called via the HDOS Operating System as follows: 
 
       ">"'DBUG<RTN>' 
 
         "HDOS DBUG # 102.00.00" 
 
         ":B:" 
 
    Typing a CTRL-D will exit the program. 
 
    Note that the version number may not be the same as yours, but a number 
    will be shown. 
    *********************************************************************** 
 
 
                                MEMORY COMMANDS 
                                +++++++++++++++ 
 
    The  memory  commands  permit  you to display and alter the contents of 
    indicated memory locations.  The format for memory display commands is: 
     
        <FORMAT CONTROL>     <RANGE>     <BLANK> 
 
    The form for the alter memory command is: 
 
        <FORMAT CONTROL>     <RANGE>  =  <VALUE LIST>    
          
   [For example: FA^101102-101105^TAP SPACE BAR ONE TIME] 
 
    Format  control specifies that the memory display/alteration is in word 
    or byte format, and whether octal, decimal, or ASCII notation is to  be 
    used.   The  range  specifies  the  memory  address  or addresses to be 
    displayed or altered, and the command is executed by the  typing  of  a 
    blank using the space bar on the console keyboard. 
 
 
    FORMAT CONTROL 
    ============== 
 
    The  format  control  consists  of  EITHER zero, one, or two characters 
    which specify the form of the values  that  are  to  be  displayed  and 
    entered.   The  format  control field may take on a number of different 
    forms.  They are as follows: 
     
 
 
 
 
 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-5 
    ============                ================                  ======== 
 
 
                            MEMORY COMMANDS (Cont) 
                            ++++++++++++++++++++++ 
 
    FORMAT CONTROL (Cont) 
    ===================== 
 
 
    FORMAT CONTROL      DESCRIPTION 
    --------------      ----------- 
 
      Space Space       Display/alter as octal integers, byte format. 
 
          F             Display/alter as octal integers, word format. 
 
          A             Display/alter as ASCII characters, byte format. 
 
          FA            Display/alter as ASCII characters, word format. 
 
          D             Display/alter as decimal integers, byte format. 
 
          FD            Display/alter as decimal integers, word format. 
 
 
        WORD FORMAT [F] 
        --------------- 
        If an F is specified as the first character of the format control 
        field, it indicates that the values are to  be  displayed/altered 
        as  "full words."  This is to say that memory locations are taken 
        as two-byte pairs.  The second  byte  is  considered  to  be  the 
        high-order  (most  significant) byte and is displayed first.  The 
        first byte is considered to be the low-order (least  significant) 
        byte and is displayed last. 
 
        BYTE FORMAT [NULL] 
        ------------------ 
        If an F is not specified, the first character is null, indicating 
        that the values are to be displayed/altered as single bytes.  You 
        can  create  a  NULL  by  not typing any character for the format 
        control portion of the memory command. 
 
        OCTAL FORMAT [NULL] 
        ------------------- 
        If no option [a NULL] is specified as the second character of the 
        format control field, the  values  to  be  displayed/altered  are 
        taken  to be octal integers.  The NULL was chosen to specify both 
        byte format and  octal  notation,  as  byte  octal  is  the  most 
        commonly  used  format.  A blank separates each octal integer, or 
        octal integer pair if the F is specified. 
 
        DECIMAL FORMAT [D] 
        ------------------ 
        If a D is specified as the second character of the format control 
        field, the values to be displayed/altered are taken to be decimal 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-6 
    ============                ================                  ======== 
 
 
                            MEMORY COMMANDS (CONT) 
                            ++++++++++++++++++++++ 
 
    FORMAT CONTROL (Cont) 
    ===================== 
 
    DECIMAL FORMAT [D] (Cont) 
    ------------------------- 
    integers.  A blank space separates each decimal integer, or decimal 
    integer pair, if the F is specified. 
 
    ASCII FORMAT [A] 
    ---------------- 
    If  an  A  is  specified  as the second character of the format control 
    field, the values to be displayed/altered are converted from/to  eight- 
    bit  representations  of  ASCII  characters.   A  blank  separates each 
    character, or character pair if the F is specified. 
 
    RANGE 
    ===== 
    The  RANGE field consists of a beginning address and an ending address. 
    You can  specify  addresses  by  using  the  appropriate  offset  octal 
    integers,  or  you  can  use  the  NULL #, and CNT (count) as indicated 
    below. 
 
    RANGE FORM          DESCRIPTION 
    ----------          ----------- 
 
    ADDR<NULL>          Range specifies the single memory location ADDR. 
                  
    ADDR1-ADDR2         Range  specifies the memory locations ADDR1 through 
                        ADDR2, inclusive. 
              
    ADDR/cnt            Range  specifies  cnt  memory locations starting at 
                        location ADDR.  NOTE:  cnt  is  a  decimal  integer 
                        <255. 
            
    #-ADDR              Range  specifies  the  memory locations starting at 
                        the beginning of the previous range and  ending  at 
                        ADDR. 
          
    #/cnt               Range  specifies  cnt  memory locations starting at 
                        the beginning of the previous range.  NOTE: cnt  is 
                        a decimal integer <255. 
                 
    <NULL>/cnt          Range  specifies  cnt  memory locations starting at 
                        the address  following  the  last  address  of  the 
                        previous  range.   NOTE:  cnt  is a decimal integer 
                        <255. 
                  
    <NULL>-ADDR         Range  specifies  memory  locations starting at the 
                        address following the last address of the  previous 
                        range and extending to memory location ADDR. 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-7 
    ============                ================                  ======== 
 
 
                            MEMORY COMMANDS (Cont) 
                            ++++++++++++++++++++++ 
 
    RANGE (Cont) 
    ============ 
 
    For  example, to display memory locations 000 043 through 000 047, DBUG 
    simply requires the user to type 43-47 followed by a blank space, which 
    is generated by using the keyboard space bar.  For example: 
 
                ":B:"'43-47^'"100 112 107 114 100" 
                ":B:"'B' 
                ":B:"'/4^'"303 053 040 365" 
                ":B:" 
 
    NOTE:  In  the  first example, the contents of memory locations 000 043 
    through 000 047 are displayed on the first line in octal  byte  format. 
    The  next  four bytes (locations 000 050 to 000 053) are displayed when 
    the command/4 is typed.  The contents of  these  next  four  bytes  are 
    displayed as soon as a blank is typed after the /4. 
 
    If  the  first  address  specified  is  greater than the second address 
    specified, an error message  is  generated.   The  form  of  the  error 
    message is: 
 
                "LWA<FWA" 
 
    For example: 
 
                ":B:"'47-43^"LWA<FWA" 
                ":B:" 
 
    NOTE:  If  you  attempt to enter a numerical address which does not fit 
    the offset (split) octal format, DBUG rejects the  improper  entry  and 
    sounds  the console terminal bell.  For example, the number 067777 does 
    not fit the offset octal format.  Therefore, DBUG does  not  allow  the 
    second 7 to be entered. 
    *********************************************************************** 
 



    CHAPTER NINE                CONSOLE DEBUGGER                   PAGE 9-8 
    ============                ================                   ======== 
 
                          DISPLAYING MEMORY CONTENTS 
                          ++++++++++++++++++++++++++ 
 
    To  display  the  values  in  the  specified range and in the specified 
    format, type a blank space following the format and range fields.  DBUG 
    immediately executes  the  command.   In  the  following  examples, the 
    contents of a number of locations, 002 143 to 002 163  in  the  Monitor 
    ROM, are  displayed  in  octal  byte  format,  in octal word format, in 
    decimal byte format, and in decimal word format.  NOTE:  When  all  the 
    bytes  or words in the specified range cannot be displayed on the line, 
    a new line is started.  DBUG supplied the starting address of  the  new 
    line. 
 
    ":B:"'2143-2163^"343 353 041 011 040 256 136 167 056 033 172 206 276 
          302 002162  160 002" 
    ":B:"'F2143-2163^'"325343 041353 040011 136256 172033 276206 160302 
          303002" 
    ":B:"'D2143-2163^'"227 235 033 009 032 174 094 119 046 027 122 134 190  
          194 002162  112 002" 
    ":B:"'FD2143-2163^'"54755 08683 08201 24238 11895 31259 48774 28866         
          49922" 
 
    Note that you may type CTRL-A to short a memory display. 
 
    For example: 
 
    ":B:"'30000-60000^'"303 014 037 041 300 377 071 353 041 100 040 166 042^A 
          042"'CTRL-A' 
    ":B:" 
    *********************************************************************** 
 
                      ALTERING MEMORY - DECIMAL OR OCTAL 
                      ++++++++++++++++++++++++++++++++++  
 
    To  alter  memory  in  decimal or octal formats, type an equal sign [=] 
    after the format control and range fields.  DBUG  will  then  type  the 
    value  of the first byte, or double byte if an F was used in the format 
    control.  Then follow this with a slash [/].  You can then type  a  new 
    value  if  you  want  to  change the contents of this location.  If the 
    contents of the location are not to be changed, or  if  sufficient  new 
    digits  have  been  entered  to  complete the change, type a space or a 
    <RTN>. 
     
    If  you type a space, DBUG offers the next byte [if there is one in the 
    range] for alteration.  If you type a <RTN>, DBUG returns  you  to  the 
    command mode. 
 
    In  the  following  example,  memory  locations 60000 through 60031 are 
    loaded with the octal values of  the  ASCII  characters  A  through  Z. 
    NOTE:  On the first three lines, the initial address is followed by the 
    = sign, the current octal value in that memory location, and then a  /. 
    The  current  octal  value  may  be  different  from  that shown in the 
    example.  The octal value for  the  letter  is  entered  following  the 
    slash.   On  the  successive lines, a range of successive locations are 
    opened and then changed to the sequentially ascending ASCII characters. 
     



    CHAPTER NINE                CONSOLE DEBUGGER                   PAGE 9-9 
    ============                ================                   ======== 
 
                   ALTERING MEMORY - DECIMAL OR OCTAL (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
    After  the  letters  have  been  entered,  the  26 memory locations are 
    examined in byte format as ASCII characters.  The 26 locations are then 
    examined in word format as ASCII characters.  Note that the second byte 
    is treated as the most significant byte.  Finally, the 26 locations are 
    opened in byte octal format, using the # as the first  address  of  the 
    range. 
     
    ":B:"'60000=324/101<RTN>' 
    ":B:"'60001=030/102<RTN>' 
    ":B:"'60002=353/103<RTN>' 
    ":B:"'60003/23=341/104^330/105^203/106^137/107^076/110^000/111^212/     
          112^127/113^' 
    "060013  322/114^365/115^057/116^311/117^315/120^072/121^030/122^345/ 
          123^" 
    "060023  365/124^345/125^021/126^012/127^000/130^315/131^106/132^" 
    ":B:" 
 
    ":B:"'A60000/26^'"A B C D E F G H I J K L M N O P Q R S T U V W X Y Z" 
    ":B:"'FA#/26^BA DC FE HG JI LK NM PO RQ TS VU XW ZY" 
    ":B:"'#-60031^'"101 102 103 104 105 106 107 110 111 112 113 114 115 116 
          117 120" 
    "060020  121 122 123 124 125 126 127 130 131 132" 
    ":B:" 
 
    The DELETE key is not effective when you are entering memory locations. 
    Values placed in memory are taken as modulus 256 numbers [if  they  are 
    entered  in  byte  format]  or  as  modulus 65.535 numbers [if they are 
    entered in full word format].  Thus, if you make a mistake, simply type 
    the  correct value with enough leading zeroes to cause the bad digit to 
    be eliminated.  For example, if byte 70,000 is to be set to 123  and  a 
    mistype of 125 occurs, it may be correctly entered as: 
     
        ":B:"'70000=111/1250123<RTN>' 
        ":B:"'70000=123/<RTN>' 
 
    NOTE:  Only  the  three  least significant digits are accepted for this 
    byte location. 
    *********************************************************************** 
 
 
                        ALTERING MEMORY - ASCII FORMAT 
                        ++++++++++++++++++++++++++++++ 
 
    To  alter memory in ASCII format, type an = after the format control [A 
    for ASCII] and range fields.  The processing is similar to  decimal  or 
    octal  format memory alterations.  The contents of the opened locations 
    should then be followed by a /.  You can  then  enter  the  replacement 
    character [or two characters if the word format is used].  However, the 
    space and carriage returns are considered to be ASCII character values. 
    To  exit the command prematurely, use the ESCape or CTRL-A key to avoid 
    altering a location. 
    *********************************************************************** 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-10 
    ============                ================                  ========= 
 
 
                      ALTERING MEMORY - DECIMAL OR OCTAL 
                      ++++++++++++++++++++++++++++++++++ 
 
    ":B:"'A70000=/A' 
    ":B:"'A70001=/B' 
    ":B:"'A70002=/C' 
    ":B:"'A70003-70031= /D /E /F /G /H /IT /JT/ /K /L /M /N7 /O /P /Q /R /S 
          /T /U /V' 
    "070026   /W /X /Y /Z" 
    ":B:"'A70000-70031^'"A B C D E F G H I J K L M N O P Q R S T U V W X  
          Y Z" 
    ":B:"'A70000/26^'"A B C D E F G H I J K L M N O P Q R S T U V W X Y Z" 
    ":B:" 
    *********************************************************************** 
 
                               REGISTER COMMANDS 
                               +++++++++++++++++ 
 
    DBUG  permits you to display the contents of all registers using octal, 
    decimal, or ASCII, or to display the contents of  individual  registers 
    using  octal,  decimal,  or  ASCII.   In  addition   to  displaying the 
    contents of these registers, you can alter the various registers in any 
    of  the  three  modes.   NOTE:  If  the F command is used in the format 
    field,  a  register  command  is  rejected,   as   register   size   is 
    predetermined. 
 
 
    DISPLAYING ALL REGISTERS 
    ========================  
 
    To display the contents of all registers, enter a command of the form: 
 
        <FORMAT><CTRL-R> 
 
    DBUG  displays the register contents in a specified format.  NOTE: An M 
    register is displayed in the ALL REGISTERS command and can be specified 
    in  other  commands.  This register is the concatenation of the H and L 
    registers.  For example: 
 
    ":B:"'<CTRL-R>' 
    "A=000 B=000 C=001 D=000 E=004 H=070 L=100 F=203 P=070005 M=070100 
          S=042200" 
    ":B:" 
 
    ":B:D"'<CTRL-R>' 
    "A=000 B=000 C=001 D=000 E=004 H=056 L=064 F=131 P=14341 M=14400 
          S=00832" 
    ":B:" 
 
    ":B:"'A<CTRL-R>' 
    "A= B= C= D= E= H=8 L=@ F= P=8 M=8@ S=" 
    ":B:" 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-11 
    ============                ================                  ========= 
 
                           REGISTER COMMANDS (Cont) 
                           ++++++++++++++++++++++++ 
 
    DISPLAYING ALL REGISTERS (Cont) 
    =============================== 
 
    A  Control-R  [CTRL-R] should be typed after each command.  However, no 
    character is actually displayed.  Also note that the ASCII  display  is 
    not  particularly  meaningful  unless  printing  ASCII  characters  are 
    contained in the desired registers. 
 
 
    DISPLAYING INDIVIDUAL REGISTERS 
    =============================== 
 
    To  display  the  contents of any single register, use a command in the 
    following format: 
 
        <FORMAT>REG<REG-NAME><blank> 
 
    For example, to display the contents of Register A, type: 
 
        ":B:"'REGA^='"101" 
        ":B:"'DREGA^='"065" 
        ":B:"'AREGA^='"A" 
        ":B:" 
 
    In the above example, the first line calls for the contents of Register 
    A to be displayed in octal format.  In the second line, the contents of 
    Register  A are displayed in the decimal format, and on the third line, 
    the contents of Register A are displayed in ASCII format. 
      
    In  the  following  example, the contents of the 16-bit register pair H 
    and L, known as the M  or  memory  register,  are  displayed  in  octal 
    format. 
 
        ":B:"'REGM^='"041031" 
        ":B:"'REGH^='"041" 
        ":B:"'REGL^='"031" 
        ":B:" 
                                                                            
 
    ALTERING REGISTER CONTENTS 
    ========================== 
 
    To  alter  the  contents  of a register, use a command in the following 
    format: 
 
        <FORMAT>REG<REG-NAME> = 
 
    DBUG  will  then  display  the previous contents of the register in the 
    specified format [i.e.  octal, decimal, or ASCII] followed by a /.   It 
    then  accepts a new value if one is typed in.  When you are using octal 
    or decimal format, use a carriage return to close the entry or to  skip 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-12 
    ============                ================                  ========= 
 
                           REGISTER COMMANDS (Cont) 
                           ++++++++++++++++++++++++ 
 
    ALTERING REGISTER CONTENTS (Cont) 
    ================================= 
 
    the  change.   When you are using the ASCII format, type a single ASCII 
    character to close the register.  However, as the carriage return is  a 
    valid  ASCII  character,  you  must  use  ESCape or CTRL-A to abort the 
    change.  The following examples demonstrate the  altering  of  register 
    contents. 
 
    ":B:"'REGA=102/103<RTN>"   Change contents of A from 102 (subscript 8)   
                               (ASCII B) to 103 (subscript 8) (ASCII C). 
    ":B:"'DREGA=067/066<RTN>'  Change contents of A from 67 (subscript 10) 
                               (ASCII C) to 66 (subscript 10) (ASCII B). 
    ":B:"'AREGA=B/C'           Change contents of A from ASCII B to ASCII 
    ":B:"                      C. 
 
    ":B:"'REGA=103/<RTN>'      A carriage return aborts the change. 
    ":B:"'AREGA=C/<CTRL-A>'    A CTRL-A aborts the change. 
    ":B:"'AREGA^=C'            The location is unaltered. 
    ":B:" 
 
    NOTE: The last three examples illustrate aborting the change or leaving 
    the location unaltered. 
    *********************************************************************** 
 
                               EXECUTION CONTROL 
                               +++++++++++++++++         
 
    One of the primary functions of DBUG is execution control.  It lets you 
    step through the program, one or more instructions  at  a  time,  while 
    examining   register   and  memory  contents.   In  addition,  complete 
    breakpointing is available, permitting  you  to  execute  a  number  of 
    instructions  and  then  return to DBUG control to examine register and 
    memory contents.  You may also stop your program execution at any  time 
    by  typing  CTRL-A,  which  will  cause  control  to  return  to  DBUG. 
    Execution control  is  divided  into  the  areas  of  single  stepping, 
    breakpointing, and the GO command. 
 
 
    SINGLE-STEPPING 
    =============== 
 
    The form of the single-step command is: 
 
        STEP ADDR/CNT 
 
    where  ADDR is an offset octal address [or a null] and CNT is a decimal 
    step count, <255.  If an address is not specified, DBUG starts stepping 
    at   the  current  PC-register  address.   When  the  instructions  are 
    completed, DBUG types the PC-register value and returns to the  command 
    mode.   If  an  address  is  specified,  DBUG  starts  stepping  at the 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-13 
    ============                ================                  ========= 
 
                           EXECUTION CONTROL (Cont) 
                           ++++++++++++++++++++++++ 
 
    SINGLE-STEPPING (Cont)  
    ====================== 
 
    specified address and, when the instructions  are  completed,  displays 
    the terminating address value before returning to the command mode. 
     
    The  following  program  increments the contents of memory location 070 
    100 each time the BC register pair is incremented from 000 000  to  027 
    000.   This  program  is  used to demonstrate a number of the execution 
    control features of DBUG. 
 
    ADDRESS                LABEL INSTRUCTION       COMMENT  
    -------                -----------------       ------- 
 
    070.000                START  ORG  070000A 
    070.000  041 100 070   L1     LXI  H,070100A   POINT HL TO 070100 
    070.003  066 000              MVI  M,000       LOAD MEMORY WITH ZERO 
    070.005  003           L2     INX  B           INCREMENT BC PAIR 
    070.006  170                  MOV  A,B         LOAD A WITH B 
    070.007  376 027              CPI  027Q        IS B 027 OCTAL? 
    070.011  302 005 070          JNZ  L2          JUMP BACK IF NOT 
    070.014  064                  INR  M           INCREMENT MEMORY 
    070.015  176                  MOV  A,M         LOAD A WITH MEMORY 
    070.016  376 377              CPI  377Q        IS MEMORY 377 OCTAL? 
    070.020  006 000              MVI  B,000       LOAD B WITH ZERO 
    070.022  302 005 070          JNZ  L2          JUMP IF NOT ZERO 
    070.025  327                  RST  2 
    070.026  000                  END  START 
 
    NOTE:  The  RST2  instruction  is  used to return this program to DBUG. 
    When the CPU encounters an RST2 instruction, it returns to DBUG. 
 
    For example, to load the above program using DBUG: 
 
    ":B:"'70000-70025=101/"041^102/100^103/070^104/066^105/000^106/003^ 
          107/170^110/376^' 
    "070021  122/000^123/302^124/005^125/070^126/327^" 
    ":B:" 
 
    ":B:"'REGB=302/000<RTN>' 
    ":B:"'REGC=110/000<RTN>' 
    ":B:"'STEP 70000/6<RTN>' 
    "-P=070005-" 
    ":B:" 
 
    NOTE:  DBUG  returns  the  value of the PC once the first six steps are 
    executed. 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-15 
    ============                ================                  ========= 
 
                           EXECUTION CONTROL (Cont) 
                           ++++++++++++++++++++++++ 
 
    BREAKPOINTING 
    ============= 
 
    DBUG  contains  several commands to set, display, and clear breakpoints 
    in your program.  Breakpointing permits you to execute  portions  of  a 
    program  once [or a number of times if the portion of a program is in a 
    loop].  Breakpointing  is especially useful in debugging programs which 
    have  a  tendency  to destroy themselves or obliterate the cause of the 
    problem in the process of complete execution. 
 
 
    Setting Breakpoints 
 
    ------------------- 
 
    The  breakpoint  command  is used to set a breakpoint.  The form of the 
    breakpoint command is: 
 
        BKPT ADDR1/CNT1, . . . . . . ,ADDRn/CNTn 
 
    DBUG  allows  up  to 8 breakpoints.  They are entered in the breakpoint 
    table within DBUG, replacing  any  previously  defined  breakpoints  at 
    those  addresses.  No more than eight breakpoints may be entered in the 
    breakpoint table. 
 
    The  CNT  field may be used to specify the breakpoint repeat count.  It 
    is a decimal number in the range of 1 to  255.   Using  the  breakpoint 
    count  means  the  breakpoint  does  not cause control to return to the 
    monitor mode until the breakpoint is executed CNT-1 times.   Thus,  you 
    may  execute a loop a number of times prior to returning to the command 
    mode  via  a  breakpoint  instruction.   As   noted,   the   Breakpoint 
    Instruction  executes  CNT-1 times, without recognizing the breakpoint. 
    The last time through the  loop,  the  instruction  at  the  breakpoint 
    address  is  not  executed.   The  breakpoint  returns control to DBUG. 
    NOTE: If CNT is not specified, the value 1 is assumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-16 
    ============                ================                  ========= 
 
                           EXECUTION CONTROL (Cont) 
                           ++++++++++++++++++++++++ 
 
    BREAKPOINTING (Cont) 
    ==================== 
 
    For   example,  the  program  of  the  previous  example  is  run  with 
    breakpoints. 
 
        ":B:"'70100=000/<RTN>' 
        ":B:"'BKPT 70015/6<RTN>' 
 
        ":B:"'GO 70000<RTN>' 
         
        "-P=070015-" 
 
        ":B:"'70100=006/<RTN>' 
        ":B:" 
 
        NOTE: 070 100 is incremented by 6. 
 
        ":B:"'70100=006/000<RTN>' 
        ":B:"'BKPT 70015/6,70014/10,70022/30<RTN>' 
 
        ":B:"'GO 70000<RTN>' 
 
        "-P=070015-" 
 
        ":B:"'GO<RTN>' 
 
 
        "-P=070014-" 
 
        ":B:"'GO<RTN>' 
 
        "-P=070022-" 
 
        ":B:" 
 
 
    DISPLAYING BREAKPOINTS 
    ====================== 
 
    To  display  the  current  status  of  the  breakpoint  table,  use the 
    breakpoint display command.  DBUG  can  display  the  contents  of  the 
    breakpoint table.  The form of the breakpoint command is: 
 
        BKPT DSPLY 
 
    DBUG provides a listing of the current breakpoints in the form: 
 
        BKPT DSPLY ADDR1/CNT1,ADDR2/CNT2, . . . . ,ADDRn/CNTn 
 
    where ADDR is the address of the breakpoint instruction and CNT are the 
    loop counts remaining on the designated breakpoints.   NOTE:  When  the 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-17 
    ============                ================                  ========= 
 
                           EXECUTION CONTROL (Cont) 
                           ++++++++++++++++++++++++ 
 
    DISPLAYING BREAKPOINTS (Cont) 
    ============================= 
 
 
    breakpoint  count  is  exhausted,  it causes control to return to DBUG. 
    The  exhausted  breakpoint  is  removed  from  the  breakpoint   table; 
    non-exhausted breakpoints remain.                
 
    For example: 
 
        ":B:"'70100=036/000<RTN>' 
        ":B:"'BKPT 70015/6,70014/10,70022/30<RTN>' 
 
        ":B:"'BKPT DSPLY 070015/006 070014/010 070022/030' 
        ":B:"'GO 70000<RTN>' 
 
        "-P=070015-" 
 
        ":B:"'BKPT DSPLY 070014/004 070022/025' 
        ":B:"'GO<RTN>' 
 
        "-P=070014-" 
 
        ":B:"'BKPT DSPLY 070022/021' 
        ":B:"'GO<RTN>' 
 
        "-P=070022-" 
 
        ":B:"'BKPT DSPLY' 
        ":B:" 
 
 
    CLEARING INDIVIDUAL BREAKPOINTS 
    =============================== 
 
    To clear an individual breakpoint, use the command: 
 
        CLEAR ADDR1, . . . . ,ADDRn 
 
    where ADDR1, . . . .,ADDRn specifies the address of the breakpoint to 
    be removed from the table. 
 
 
    CLEARING ALL BREAKPOINTS 
    ======================== 
 
    To  clear all breakpoints from the breakpoint table, use the breakpoint 
    clear command: 
 
        CLEAR ALL 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-18 
    ============                ================                  ========= 
 
                           EXECUTION CONTROL (Cont) 
                           ++++++++++++++++++++++++ 
 
    CLEARING ALL BREAKPOINTS (Cont) 
    =============================== 
 
    For example: 
 
        ":B:"'BKPT 55012/10,55014/15,55020/20,55022/200<RTN>' 
        ":B:BKPT DSPLY 055012/010 055014/015 055020/020 055022/200" 
        ":B:"'CLEAR 55014,55022<RTN>' 
        ":B:"'CLEAR ALL<RTN>' 
        ":B:BKPT DSPLY" 
        ":B:" 
    *********************************************************************** 
 
 
                                  GO COMMAND 
                                  ++++++++++ 
 
    Use  the  GO  command to transfer control to your program.  You can set 
    breakpoints before via the BKPT command.  The form of  the  GO  command 
    is: 
 
        GO [SADDER] 
 
    If  you  specify  "SADDER," execution begins at this specified address. 
    If you do not specify "SADDER," execution begins at the  current  value 
    of  the program counter register.  For example, simple execution of the 
    previous program is accomplished by: 
 
        ":B:"'GO<RTN>" 
        "-P=070025-" 
        ":B:" 
    *********************************************************************** 
 
                                     EXEC 
                                     ++++ 
 
    The  EXEC  (execute)  command  is  a  combination  of  the  GO and BKPT 
    commands.  The form of the EXEC command is: 
 
        EXEC SADDR-ADDR1, . . . . .,ADDRn 
 
    where  SADDR  is  the  starting address for execution.  If the starting 
    address  is omitted, execution starts at the  current  program  counter 
    register  value.   ADDR1 through ADDRn are the addresses of breakpoints 
    to be set before execution.  Thus, for example, to start  at  byte  070 
    and to execute to byte 070 015, type the command: 
 
        ":B:"'EXEC 70000-70015<RTN>' 
        "-P=070015-" 
        ":B:" 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-19 
    ============                ================                  ========= 
 
                                  EXEC (Cont) 
                                  +++++++++++ 
 
        ":B:"'GO 70210<RTN>' 
        'CTRL-A' 
        "-P=072121-" 
    *********************************************************************** 
 
                                    CTRL-A 
                                    ++++++ 
 
    When  you  are executing your program via EXEC or GO, you may return to 
    DBUG by typing  CTRL-A.   This  is  useful  when  you  fail  to  set  a 
    breakpoint, or fail to reach the one that you have set.  For example: 
 
        ":B:"'GO 70210<RTN>' 
        'CTRL-A' 
        "-P=072121-" 
        ":B:" 
    *********************************************************************** 
         
                                    CTRL-D 
                                    ++++++ 
 
    When  you are finished with the DBUG program, you can return to HDOS by 
    typing CTRL-D.  The program will respond  with,"  ARE  YOU  SURE?"   To 
    exit, you must respond with a "Y."  For example: 
 
        ":B:"'CTRL-D' 
        "ARE YOU SURE?" 'Y' 
    *********************************************************************** 
 
                              COMMAND COMPLETION 
                              ++++++++++++++++++ 
 
    When DBUG is in the Command Mode, each terminal keystroke is considered 
    for validity.  If the character belongs to no possible command,  it  is 
    refused, and  the  bell code is echoed to the terminal.  If the command 
    syntax allows only one next character, DBUG supplies  and  prints  this 
    character for the user. 
     
        ":B:"'CTRL-D' 
        "ARE YOU SURE?" 'Y' 
        ">" 
    *********************************************************************** 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-20 
    ============                ================                  ========= 
 
                     APPENDIX 9-A: - DEBUG ERROR MESSAGES 
                     ++++++++++++++++++++++++++++++++++++ 
 
    The  following  error  messages  are generated by DBUG.  In addition to 
    these errors, other errors may be detected by the HDOS Operating System 
    itself.   These errors are discussed in detail in Chapter Three, System 
    Optimization, Appendix 3-A:, Error Messages, page 3-33. 
         
 
    BELL .......... The console terminal's bell is sounded when you type an 
                    illegal  character for the current command.  DBUG sends 
                    the   ASCII  bell  code  to  the  terminal  instead  of 
                    echoing the illegal character. 
                
    LWA < FWA ..... The  second  address  specified in this command must be 
                    the same or larger than the first address specified. 
                        
    FORMAT ERROR .. The  file  you  have  attempted  to  load is not of the 
    FILE            proper type.  The LOAD command will  only  load  BINARY 
                    files. 
                                
    ATTEMPT TO .... A file may not be loaded into the same memory locations 
    LOAD OVER DBUG  occupied by DBUG. 
 
    NO ROOM ....... You  have  attempted  to  specify more breakpoints than 
                    DBUG has room for.  DBUG currently allows a maximum  of 
                    eight breakpoints to be simultaneously specified. 
    *********************************************************************** 
 
 
                     APPENDIX 9-B: - DBUG COMMAND SUMMARY 
                     ++++++++++++++++++++++++++++++++++++ 
 
    MEMORY COMMANDS 
    =============== 
 
    Memory Display Form: 
 
         FORMAT CONTROL   range   blank 
 
    Memory Alter Form: 
 
         FORMAT CONTROL   range   = 
 
            FORMAT             RESULT 
            ------             ------ 
 
          <null><null>        byte octal 
 
          F<null>             word octal 
 
          <null>A             byte ASCII 
 
          FA                  word ASCII 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-21 
    ============                ================                  ========= 
 
                   APPENDIX 9-B: DBUG COMMAND SUMMARY (Cont) 
                   +++++++++++++++++++++++++++++++++++++++++ 
 
    Memory Alter Form: (Cont) 
 
         FORMAT CONTROL   range   = 
 
 
            FORMAT             RESULT 
            ------             ------ 
 
          <null>D             byte decimal 
 
          FD                  word decimal 
 
 
    RANGE 
    ===== 
 
    The  range field consists of a beginning address and an ending address. 
    You can  specify  addresses  by  using  the  appropriate  offset  octal 
    integers,  or  you  can  use  the NULL, #, and cnt (count) as indicated 
    below: 
 
 
    RANGE FORM     DESCRIPTION 
    ----------     ----------- 
 
    ADDR<null>     Range specifies the single memory location ADDR. 
 
    ADDR1-ADDR2    Range  specifies  the  memory  locations  ADDR1  through 
                   ADDR2, inclusive. 
 
    ADDR/cnt       Range  specifies  cnt  (i.e.   count)  memory  locations 
                   starting at location  ADDR.   NOTE:  cnt  is  a  decimal 
                   integer less than 255. 
 
    #-ADDR         Range  specifies  the  memory  locations starting at the 
                   beginning of the previous range and ending at ADDR. 
 
    #/cnt          Range specifies cnt (count) memory locations starting at 
                   the beginning of the previous range.   NOTE:  cnt  is  a 
                   decimal integer less than 255. 
                    
    <NULL>/cnt     Range specifies cnt (count) memory locations starting at 
                   the address following the last address of  the  previous 
                   range.  NOTE: cnt is a decimal integer less than 255. 
                    
    <NULL> - ADDR  Range specifies memory locations starting at the address 
                   following the last address of  the  previous  range  and 
                   extending to memory location ADDR. 
 
 
 
 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-22 
    ============                ================                  ========= 
 
                  APPENDIX 9-B: - DBUG COMMAND SUMMARY (Cont) 
                  +++++++++++++++++++++++++++++++++++++++++++ 
 
    REGISTER COMMANDS   
    =================  
 
        All Registers: 
 
             FORMAT CTRL-R 
 
        Single Register: 
 
             REG REG-NAME blank 
 
        Altering Register: 
 
             REG REG-NAME= 
 
 
    EXECUTION CONTROL 
    ================= 
 
         Single-stepping: 
 
             STEP ADDR/cnt 
 
         Breakpointing: 
 
             BKPT ADDR1/cnt1, . . . . . , ADDRn/cntn 
 
         Breakpoint Display: 
 
             BKPT DSPLY 
 
 
         Clearing Breakpoints: 
 
             CLEAR ADDR1, . . . . ., ADDRn 
             CLEAR ALL 
 
         GO: 
              
             GO(ADDR)     (Starts at PC value if ADDR not specified.) 
 
         Execute: 
 
             EXEC SADDR-ADDR1, . . . . ., ADDRn  (Combines GO and BKPT.) 
 
 
    PROGRAM LOADING AND DUMPING  
    ===========================  
 
         LOAD<Fspec> 
         DUMP<Fspec>,saddr-eadder 
    *********************************************************************** 
 



    CHAPTER NINE                CONSOLE DEBUGGER                  PAGE 9-23 
    ============                ================                  ========= 
 
 
                                     INDEX 
                                     +++++ 
 
    ASCII Characters, 9-4 
    ASCII Format, 9-5, 9-10 
    Altering Memory, 9-9 
    Altering Register Contents, 9-12 
 
    Breakpointing, 9-15 
    Byte Format, 9-5 
 
    Clearing Breakpoints, 9-17 
    Command Completion, 9-18 
 
    Decimal Integers, 9-5 
    DELETE, 9-9 
    Displaying Breakpoints, 9-15 
    DUMP, 9-2, 9-3 
 
    Exec, 9-18 
    Execution Control, 9-12, 9-22 
 
    Format Control, 9-4 
 
    GO, 9-18 
 
    LOAD, 9-3 
 
    Memory Commands, 9-4, 9-21 
 
    Octal Format, 9-5 
    Octal Integers, 9-4 
 
    Range, 9-5, 9-B1 
 
    Setting Breakpoints, 9-15 
    Single-Stepping, 9-13 
 
    Word Format, 9-4 
 
 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                  CHAPTER 10 
 
                              HEATH TEXT EDITOR 
 
                                    EDIT  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-i 
    ============        =================                         ========= 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4 ,5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West Branch  Mobile Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-1 
    ===========         =================                         ========= 
 
 
 
                              TABLE OF CONTENTS 
                              +++++++++++++++++  
 
           INTRODUCTION ....................................... 10-2  
             Character Set .................................... 10-2 
 
           EDITOR MODES OF OPERATION .......................... 10-3      
             The Command Mode ................................. 10-3 
             The Text Mode .................................... 10-3 
       
           THE COMMAND STRUCTURE .............................. 10-4 
             Range Expressions ................................ 10-5  
             Single Line Expressions .......................... 10-5 
             Multiple Line Expressions ........................ 10-7 
             The Verb ......................................... 10-9  
             The Qualifier String ............................ 10-10 
 
           THE OPTION FIELD .................................. 10-10 
 
           THE PARAMETER FIELD ............................... 10-11 
                                                                 
           THE COMMANDS ...................................... 10-12 
 
           COMMAND COMPLETION ................................ 10-23 
 
           APPENDIX 9-A                                                  
             Error Messages .................................  10-24 
 
           APPENDIX 9-B                                                 
             Command Summary ................................  10-26 
               Command Structure ............................  10-26 
               Range Expression Forms .......................  10-26 
               Multiple Line Expression Forms ...............  10-26 
               Verb (Command) Forms .........................  10-27 
               Qualifier String .............................  10-28 
               Option .......................................  10-28 
               Parameter Field ..............................  10-28 
 
          APPENDIX 9-C  
            Sample Edited Source File .......................  10-29 
 
          INDEX .............................................  10-31 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-2 
    ===========         =================                         ========= 
 
 
                                 INTRODUCTION 
 
                                 ++++++++++++ 
 
    The  Heath  Text  Editor  (EDIT)  converts  your  system  into  a  very 
    sophisticated typewriter.  This  typewriter  is  not  only  capable  of 
    generating  text,  but  also  has  powerful editing capabilities.  With 
    these capabilities, even if you are  a  poor  typist,  you  can  create 
    error-free text, organized as you desire. 
 
    EDIT is a very powerful utility program with many uses.  You can use it 
    to enter and edit assembly language programs  and  BASIC  programs,  as 
    well  as  to  create  and edit reports, letters, and manuscripts.  Note 
    that EDIT supports the ASCII TAB character to  conserve  space  in  the 
    text files. 
 
    You  can  do your editing by command, referencing the desired line, and 
    text is stored in a section of memory  called  the  BUFFER.   When  the 
    buffer  is  full, you can transfer the text to a disk file.  Additional 
    text can be read in from previously created files,  or  you  can  place 
    text  into the buffer from the terminal keyboard.  EDIT's file handling 
    capabilities allow it to edit large files on a piecemeal basis. 
 
    All  of  the  RAM  in  your system that is not used by HDOS or the Edit 
    program is available in the buffer. 
 
    EDIT  has  many  unique  features  that  are discussed in detail on the 
    following pages.  Some of these features are: 
 
        * Fifteen commands for text editing versatility 
        * Terminal control of output and input operations 
        * Command completion and command error analysis 
 
 
    CHARACTER SET 
    ============= 
 
    EDIT  supports  the  entire 96-character ASCII set, including the lower 
    case characters, form feed, and tabs.  You may enter text and  commands 
    in  lower  case.   With  the  exception  of  TAB [CTRL-I] and FORM FEED 
    [CTRL-L], you may not use control characters in the text. 
 
    EDIT is called as follows: 
 
        >EDIT<RTN>                 NOTE: The prompt for EDIT is a  
         EDIT ISSUE #103.00.00             double dash. 
         -- 
        
    *********************************************************************** 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-3 
    ===========         =================                         ========= 
 
 
                           EDITOR MODES OF OPERATION 
                           +++++++++++++++++++++++++ 
 
    Two  modes  of  operation called the "Command Mode" and the "Text Mode" 
    are available in EDIT.  These two  modes  distinguish  between  editing 
    commands and text being entered into the buffer. 
 
 
    THE COMMAND MODE 
    ================ 
 
    The  Command  Mode  can be subdivided into three areas: input commands, 
    output commands, and editing commands.  You  execute  all  commands  by 
    typing  the appropriate command on the terminal, and follow this with a 
    carriage return.  The carriage return will be indicated throughout this 
    reference  manual  by: <RTN>.  In actual use, no symbol is displayed on 
    the terminal when the <RTN> key is pressed on the keyboard.  The cursor 
    simply  moves  to  the  first  column of the next line.  In the Command 
    Mode, the prompt character -- (a double dash) appears in the first  two 
    columns. 
     
 
    THE TEXT MODE 
    ============= 
 
    In this mode you can add text to the buffer from the terminal keyboard, 
    the normal source for most text.  Once a source file has been  created, 
 
    it  can  be stored on a file.  Later, you can use this file as a source 
    of text to be read into the buffer. 
 
    Type  CTRL-C  when you wish to return from the Text Mode to the Command 
    Mode.  This performs two functions.  First, it  discards  the  line  of 
    text which it was on when the keys were struck.  Second, it returns the 
    Text Editor to the Command Mode.  To preserve the last  line  of  text, 
    press <RTN> to generate a new line before striking CTRL-C. 
    *********************************************************************** 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-4 
    ===========         =================                         ========= 
 
 
                             THE COMMAND STRUCTURE 
                             +++++++++++++++++++++ 
 
 
    The basic commands for EDIT have the following form: 
 
       [<range>] [<verb>] [<qualifier string>] [<option>] [<parameter>] 
 
          
 
    RANGE ........... Indicates  what  lines  in  the  buffer  the  command 
                      affects.  
 
    VERB ............ The basic command. 
 
    QUALIFIER STRING  Limits  the command to those lines containing a given 
                      string. 
 
    OPTION .......... Permits  you  to  view  the  line before or after (or 
                      both). 
 
    PARAMETERS ...... Contains specific instructions for some commands.   
 
 
 
    For example, the command: 
 
                        -- ^ +42EDIT'TEN'BA,WAS,WERE,30 
                        ------------------------------- 
                        |  |___| |    |  |  |_________| 
       Prompt __________|    |   |    |  |       |________Parameter 
       Character             |   |    |  |                Field 
                Range _______|   |    |  |_________ Option 
                                 |    | 
                  Verb __________|    |_________ Qualifier String 
 
    is read as follows: 
 
    The  lines  starting  with the first line (^)(i.e.,up arrow) and ending 
    with the 43rd line (+42) are to be edited  (EDIT).   The  EDIT  command 
    replaces  one  string  with another.  The affected lines are limited to 
    those containing the string "TEN," the optional QUALIFIER STRING.   The 
    option  (BA) indicates that you wish to view the lines before and after 
    editing.  And in this particular case, the  PARAMETER  FIELD  specifies 
    the  old  and new strings, and the number of times the old string is to 
    be  replaced by the new string.  In this example, the word WAS is to be 
    replaced by the word WERE a maximum of 30 times.  NOTE: The EDIT string 
    used in the RANGE EXPRESSION or QUALIFIER STRINGS must be inclosed in a 
    single quote ['].  Each of  the  various  fields  of  this  command  is 
    discussed below. 
     
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-5 
    ===========         =================                         ========= 
 
                         THE COMMAND STRUCTURE (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    RANGE EXPRESSIONS 
    ================= 
 
    The  Range  Expressions define the buffer lines on which the command is 
    to operate.  They may define a single line, or two expressions  may  be 
    used to define the range over which the command works. 
 
    A Range Expression may consist of: 
 
        A line expression  
        A multiple line expression  
        A null  
        A blank  
        An equal sign       
 
    These different Range Expressions are explained as follows: 
 
    NOTE:  Text  must  be  in  the buffer before a Range Expression will be 
    accepted.  If the text is not in the buffer, a bell code will sound  as 
    you  try  to  complete  the  Range  Expression.   To  use the following 
    examples, use the INSERT command.  See page 4-13 for details. 
 
 
    SINGLE LINE EXPRESSIONS 
    ======================= 
 
    Any of the following expressions may be used to specify a single line: 
 
 
    THIS SYMBOL        SPECIFIES 
    -----------        --------- 
 
    ^                  The first line. 
 
    $                  The last line. 
 
    +n                 The "nth" line beyond the current line pointer. 
 
    -n                 The "nth" line preceding the current line pointer. 
 
    +'string'          The  first  line  in  the text buffer  beyond  the  
                       current   line pointer which contains the designa-      
                       ted 'string'. 
 
    -'string'          The  first line  in the text  buffer preceding the 
                       current line pointer which contains the designated 
                       'string'. 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-6 
    ===========         =================                         ========= 
 
                         THE COMMAND STRUCTURE (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    SINGLE-LINE EXPRESSIONS (Cont) 
    ============================== 
 
    EDIT  has  a  "pointer"  which is always pointing to some line of text. 
    After you have inserted text or invoked a text file, the  EDIT  pointer 
    always points to the first line of text. 
 
    The  effect of the various range commands is to reposition the pointer. 
    Once you  have  used  a  range  expression  to  specify  a  line,  EDIT 
    repositions  the  current  pointer  at  the line indicated by the range 
    expression.  For example, suppose the buffer contains: 
 
 
        --INSERT<RTN>  
        THIS IS THE FIRST LINE<RTN>  
        MARY HAD A LITTLE LAMB<RTN>   
        THIS IS THE THIRD LINE<RTN>  
        ITS FLEECE WAS WHITE AS SNOW<RTN>  
        THIS IS THE FIFTH LINE<RTN>  
        AND EVERY WHERE THAT MARY WENT<RTN> 
        THIS IS THE SEVENTH LINE<RTN>  
        THE LAMB WAS SURE TO GO<RTN>  
        THIS IS THE LAST LINE<RTN>  
        USER TYPES CTRL-C 
 
 
    If you type 
 
        --+1PRINT<RTN> 
 
 
    EDIT will reposition the pointer from the first line to the second line 
    and print: 
 
        MARY HAD A LITTLE LAMB 
 
    Since  the  current  pointer  is now positioned at the second line, the 
    command: 
     
        --+1PRINT 
 
    indicates  to  EDIT  that  it should reposition the pointer to the line 
    that is one line past the current pointer and then print that line: 
 
        THIS IS THE THIRD LINE 
 
    Therefore,  once  you have specified a line, your future range commands 
    should take into account the distance from the current pointer  to  the 
    line you want to manipulate. 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-7 
    ===========         =================                         ========= 
 
                         THE COMMAND STRUCTURE (Cont) 
                         ++++++++++++++++++++++++++++ 
 
 
    MULTIPLE-LINE EXPRESSION 
    ======================== 
 
    Use a multiple-line expression when you want to define a group of lines 
    to be operated on by the command.  Use the  comma  as  a  delimiter  to 
    separate  the  start line from the stop line.  The symbols ^, $, +, +n, 
    -n, + 'string', and - 'string' have the same meaning as they do with  a 
    single-line command.  NOTE: A wide range of combinations may be used to 
    identify the first and last lines of a multiple-line expression. 
     
    For  example, you could print the contents of the previous buffer using 
    these commands: 
 
 
        --^,^+3PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
 
 
        --^+2,+3PRINT<RTN> 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
         
 
        --^+'FLEECE',+1PRINT<RTN> 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
         
 
        --$-'THAT'+'SURE'PRINT<RTN> 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
 
 
        --$-'THAT',+2PRINT<RTN> 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        -- 
 
 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-8 
    ===========         =================                         ========= 
 
                         THE COMMAND STRUCTURE (Cont) 
                         ++++++++++++++++++++++++++++ 
 
 
    THE BLANK 
    ========= 
 
    When  the  verb  is  preceded by a single blank space, the range is the 
    entire buffer.  For example, printing the entire buffer is accomplished 
    by: 
 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
        -- 
 
 
    Note  the  blank  space  between the prompt character (--) and the word 
    PRINT.  The blank is created by typing the space bar on the keyboard. 
 
 
    THE NULL 
    ======== 
 
    The  NULL  expression (the absence of any range expression) causes EDIT 
    to apply the command to whatever text is indicated by the current  line 
 
    pointer.  The position of the current pointer is unchanged. 
 
    For example: 
 
 
        --^+2,+'FIFTH'PRINT<RTN> 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        --PRINT<RTN> 
        THIS IS THE THIRD LINE 
        -- 
 
 
    Note  that there is no blank space between the prompt (--) and the word 
    PRINT. 
     
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                         PAGE 10-9 
    ===========         =================                         ========= 
 
                         THE COMMAND STRUCTURE (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    THE NULL (Cont) 
    =============== 
 
        --^+2,+1PRINT<RTN> 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        --,+2PRINT<RTN> 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        -- 
 
    NOTE: In this example, the NULL starts the range at the position of the 
    current pointer, and the  "+2" directs EDIT  to  print  two  additional 
    lines.   Again,  the  position  of  the current pointer in this example 
    remains unchanged. 
 
 
    THE EQUAL [=] 
    ============= 
 
    The  equal  [=] expression sets the range of the previous command.  For 
    example: 
 
        --$'MARY',+'GO'PRINT<RTN> 
        AND EVERYWHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        --=PRINT<RTN> 
        AND EVERYWHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        -- 
 
    Note that the command =PRINT causes the same lines to be printed in the 
    first and second halves of the example. 
 
 
    THE VERB 
    ======== 
 
    The  verb specifies the action to be taken by the Editor.  For example, 
    the command PRINT or  the  command  EDIT  are  verbs  within  the  Text 
    Editor's vocabulary. 
 
    All  verbs  are command completed.  As soon as the Text Editor receives 
    enough characters to know that only one command is possible, it  prints 
    the balance of the command without any additional keys being struck. 
 
    The  verb  will  be  refused  if  it  is not valid for the current EDIT 
    condition.  For example,  an  attempt  to  PRINT  an  empty  buffer  is 
    meaningless, and the PRINT verb will be rejected. 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-10 
    ===========         =================                        ========== 
 
                        THE COMMAND STRUCTURE (Cont) 
                        ++++++++++++++++++++++++++++ 
      
    THE VERB (Cont) 
    =============== 
 
    For  example,  when you type the P key, the Text Editor knows that only 
    one command begins  with  a  P.   Therefore,  the  "P"  is  immediately 
    followed  by "RINT."  However, if you type the "N," the Editor does not 
    know if the command "NEWIN," "NEWOUT," or "NEXT" is to be used.  So the 
    Editor  prints  "NE" and waits for a "W" or "X."  If it receives a "W," 
    it then waits for an "I" or an "O."  It completes these by  filling  in 
    the  "N"  or  "UT."   If  it receives an "X" following the "E," it then 
    prints the "T."  A complete list of all the  command  verbs  and  their 
    specific actions and limitations follows in the "Commands" section. 
 
 
    THE QUALIFIER STRING 
    ==================== 
 
    The   qualifier   string  is  a  further  restriction  upon  the  range 
    expression.  It is completely optional.  If it is not indicated, it  is 
    not used. 
     
    The  range  expression  may  indicate  work  over  a  certain number of 
    sequential lines, starting with a given  line.   The  qualifier  string 
    further  limits  these  lines  to those within the range containing the 
    string specified in the qualifier field.  This string  is  inclosed  in 
    single  quotes  (')  and contains all normal ASCII characters, with the 
    exception of the single quote ('). 
     
    For example, to print the entire buffer (of the previous example),  but 
    only those lines with the string, "line." 
     
 
        -- PRINT'LINE'<RTN>   
        THIS IS THE FIRST LINE 
        THIS IS THE THIRD LINE 
        THIS IS THE FIFTH LINE 
        THIS IS THE SEVENTH LINE 
        THIS IS THE LAST LINE 
    *********************************************************************** 
     
     
                               THE OPTION FIELD 
                               ++++++++++++++++ 
     
    The  option field contains characters which let you view the line to be 
    worked on and/or the line after it has been reworked. 
     
    As its name implies, it is completely optional.  You may insert any one 
    of the following three option forms or none at all. 
     
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-11 
    ===========         =================                        ========== 
 
                            THE OPTION FIELD (Cont) 
                            +++++++++++++++++++++++ 
 
         1.  B..........  The  BEFORE  option  displays the line BEFORE the 
                          command is executed. 
     
         2.  A..........  The  AFTER  option  displays  the  line AFTER the 
                          command of execution. 
     
         3.  BA..........  This  is  a  combination  of  all  the  previous 
                           commands.  The  line  is  displayed  BEFORE  and  
                           AFTER the command of execution. 
 
    For example, suppose that the buffer erroneously contained: 
     
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS RED AS SNOW 
        THIS IS THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
     
    It may be edited to read correctly by means of this command: 
     
        --^+'RED'EDITBA,RED,WHITE,1<RTN>  
        ITS FLEECE WAS RED AS SNOW 
        ITS FLEECE WAS WHITE AS SNOW 
     
    Note that after the command EDIT, the options A & B are used  to  check 
    the work. 
     
    NOTE:  There  are  certain  times  when  the command renders the option 
    meaningless.  DELETE BA, for example.  The AFTER portion of the command 
    is  meaningness,  as  the  line  (or  lines)  cannot be displayed after 
    deletion. 
    *********************************************************************** 
     
     
                              THE PARAMETER FIELD 
                              +++++++++++++++++++ 
     
    This is a special field used with the EDIT, NEWIN, and NEWOUT commands. 
    These commands  require  additional  operating  information,  which  is 
    placed  in the parameter field.  The nature of this information depends 
    upon the command used.  The  exact  format  is  discussed  under  those 
    commands. 
    *********************************************************************** 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-12 
    ===========         =================                        ========== 
 
                                 THE COMMANDS 
                                 ++++++++++++  
 
    The  following  paragraphs  give  a complete description of each of the 
    command verbs.  Examples of many commands are also given to demonstrate 
    some  of  the  combinations  of  range  expressions, qualifier strings, 
    options, and parameter fields (if required) that may be used with  this 
    command.    NOTE:  All  possible  combinations  of  range  expressions, 
    qualifier strings, options, and parameter fields are  not  given.   You 
    must  review the section for each of these expressions to determine all 
    possible command structures. 
 
     
    BLITZ 
    ===== 
 
    The  BLITZ command discards all text in the working buffer.  Because of 
    the drastic action this  command  takes,  BLITZ  followed  by  a  <RTN> 
    results  in  the  question,  "SURE?"   A  'Y'  in  response  to "SURE?" 
    proceeds with BLITZ.  You may abort BLITZ  at  the  query  "SHURE>"  by 
    typing  an  'N'  or  any other character except 'Y'.  The range option, 
    qualifier, and parameter fields are ignored by a BLITZ command. 
 
 
    BYE 
    === 
 
    The  BYE  command  is the normal way to exit from EDIT to the operating 
    system.  The BYE command first  performs  a  FLUSH,  which  causes  all 
    remaining text in the buffer and in the input file to be written to the 
    output file.  EDIT then closes both input and output files and exits to 
    the operating system. 
     
    If  no  output  file  has  been  specified  (i.e.,  no  NEWOUT  command 
    performed), BYE types the message: 
 
        NO NEWOUT FILE 
 
    An  output filename should be specified via NEWOUT, and the BYE command 
    retyped.  If  you wish to exit  the  editor  without  writing  a  file, 
    simply type CTRL-D. 
     



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-13 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    DELETE 
    ====== 
 
    The  DELETE command causes the eligible line(s) in the command range to 
    be deleted.  You may use  the  option  B;  however,  the  option  A  is 
    meaningless.   You  may  also  use  the  qualifier string.  There is no 
    parameter field accompanying the DELETE command.  Once  you  have  used 
    DELETE,  the  current  pointer  is  reset to the first line of the text 
    buffer.  You may not delete the entire buffer.  To do this,  you  would 
    use the BLITZ command. 
 
    For example: 
 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        THIS LINE IS REPLACED 
        AND EVERY WHERE THAT MARY WENT 
        THIS REPLACES THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS REPLACES THE OLD LAST LINE 
        THIS IS AN ADDITIONAL LAST LINE 
        -- 
 
 
        --$DELETE<RTN> 
        --$PRINT<RTN> 
        THIS REPLACES THE OLD LAST LINE 
        -- 
 
 
        --^,$-1DELETE<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        THIS LINE IS REPLACED 
        AND EVERY WHERE THAT MARY WENT 
        THIS REPLACES THE OLD SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        --PRINT<RTN> 
        THIS REPLACES THE OLD LAST LINE 
        -- 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-14 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    EDIT 
    ==== 
 
    Use the EDIT command to replace one string with another.  The string to 
    be replaced and the new string are given in the parameter field of  the 
    EDIT command.  The parameter field of the EDIT command takes the form: 
 
        <delimiter>old string<delimiter>new string<delimiter><count> 
 
    The delimiter is an arbitrary delimiting character, but it may not be a 
    carriage return.  The count is a decimal count showing  the  number  of 
    replacements  to be made.  NOTE: Only ONE replacement is made PER LINE. 
    If  the  count is left null, it defaults to one.  If an asterisk [*] is 
    substituted for the count, the value of 65,536 is assumed. 
 
    The  EDIT  command  makes  full use of all range expressions, qualifier 
    strings, options; and as noted, a specific parameter field. 
 
    The  following  is  an  example of a text buffer prior to using an EDIT 
    command, and text buffer after the EDIT command is executed. 
 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
        -- 
 
        -- EDIT'LINE',LINE,OF MANY LINES,5<RTN> 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST OF MANY LINES 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD OF MANY LINES 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH OF MANY LINES 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH OF MANY LINES 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST OF MANY LINES 
        -- 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-15 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    EDIT (Cont) 
    =========== 
 
    NOTE:  The  delimiting  characters  may  not  appear  in the old or new 
    strings.  For example, if a comma is used as a delimiter, EDIT will not 
    allow  you to enter 'MARY,' as either the old or new string.  If either 
    string  contains  a  comma, use  a slash [/] or  some  other  character 
    which does not appear in the string as a delimiter. 
 
 
    FLUSH 
    ===== 
 
    Use  the FLUSH command when editing is complete.  It causes the working 
    buffer to be written to the output file, and then any remaining text on 
    the  input file is copied over to the output file without modification. 
    The FLUSH command then closes both the input and the output files. 
 
    The  FLUSH  command  does not use range expressions, options, qualifier 
    strings, or parameter fields.  NOTE: After the lines are written,  they 
    are deleted from the buffer. 
 
 
    INSERT 
    ====== 
 
    The INSERT command places EDIT in the text mode and is used to add text 
    to the buffer from the console keyboard.  This command adds text to the 
    buffer on the next line following the first line specified in the range 
    expression.  If you use a null in the range expression, the  text  will 
    be inserted on the line immediately following the text indicated by the 
    current pointer.  If the range expression is given in  the  form  "-n," 
    the  line  or  lines are still inserted after the line specified in the 
    range command.  The range command " INSERT" is a special case  used  to 
 
    insert a line before the first line in the buffer. 
 
    For example: 
 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
        -- 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-16 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    INSERT (Cont) 
    ============= 
 
        --$INSERT<RTN> 
        THIS IS AN ADDITIONAL LAST LINE<RTN> 
        <CTRL-C> 
        -- 
 
 
        --^+'FIFTH'INSERT<RTN> 
        THIS IS A NEW LINE INSERTED AFTER THE FIFTH LINE<RTN> 
        <CTRL-C> 
        -- 
 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        THIS IS A NEW LINE INSERTED AFTER THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
        THIS IS AN ADDITIONAL LAST LINE 
 
    NOTE:  Use  CTRL-C to return to the command mode.  If you strike CTRL-C 
    after inserting a partial line, that line will be lost.  Therefore,  to 
    preserve  the  last line of inserted text, press <RTN>; prior to typing 
    CTRL-C.  This will create a new blank line in the text buffer. 
     
 
    NEWIN 
    ===== 
 
    The  NEWIN  command opens a disk file for reading.  It is not necessary 
    to have an input disk file to do editing.  You may create a new file in 
    the  buffer  by using the INSERT command.  The name of the disk file to 
    be opened is contained in  the  NEWIN  command  parameter  field.   The 
    parameter field for the NEWIN command is in the form: 
     
        <delimiter><fspec><delimiter> 
 
    The default device for <fspec> is SY0:.  There is no default extension. 
     
    After the NEWIN command is executed, the file is open for reading.  You 
    must use the READ command to read text into the buffer.  Note that  the 
    NEXT, FLUSH, and BYE commands also cause text to be read.  When the end 
    of the file is read, the message "End of File" is typed on the console. 
    EDIT will automatically close the file. 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-17 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    NEWIN (Cont) 
    ============ 
 
    NOTE:  If  an  input  file  is  opened  but not read to the end-of-file 
    record, the NEWIN command asks for a go-ahead prior  to  searching  for 
    the new file.  The reply 'Y', to 'SURE?'  instructs NEWIN to proceed to 
    find the new file. 
 
    For example: 
 
        --NEWIN/WORK.TXT/<RTN>  
 
        OLD INPUT FILE NOT FINISHED.  ARE YOU SURE?Y<RTN> 
 
 
    NEWOUT 
    ====== 
 
    Use  the  NEWOUT  command  to  open  an  output  file.  The filename is 
    supplied in the parameter field in the same  manner  as  in  the  NEWIN 
    command.  The form of the parameter field is: 
     
        <delimiters><fspec><delimiters> 
 
    EDIT  will open the file for WRITE, leaving it ready for text.  Use the 
    WRITE, FLUSH, or BYE commands, as appropriate, to write text  into  the 
    file.  Note that any existing file by that name will be overwritten. 
 
    The  NEWOUT  command  does  not  use  range  expressions,  options,  or 
    qualifier strings. 
 
    If  you  use  NEWOUT  without  closing a previously opened file, NEWOUT 
    responds  with "SURE?"  A 'Y' reply permits NEWOUT to close the current 
    output  file and open a new one.  Note that the closing of the previous 
    file  will cause any preexisting file by that name to  be  replaced  by 
    the newly closed one. 
 
    For example: 
     
         --NEWOUT/WORK2.TXT/<RTN> 
 
 
 
    NEXT 
    ==== 
 
    The NEXT command performs the following sequence: 
 
        $WRITE 
        READ 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-18 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    NEXT (Cont) 
    =========== 
 
    This  command  causes  all  the text in the buffer to be written to the 
    output file and then refills the buffer  from  the  input  file.   This 
    command  is  particularly useful when you are generating large files or 
    performing minor editing on large files.  The NEXT command does not use 
    a range expression, options, or qualifier strings.  It has no parameter 
    field. 
 
 
    PRINT 
    ===== 
 
    The  PRINT  command causes the eligible line(s) in the command range to 
    be printed.  This is the most common method for viewing portions of the 
    text  buffer  or  the  entire  text  buffer.   All  forms  of the range 
    expressions are utilized.  The option commands have no effect.  You may 
    use  the  qualifier  string to limit the range expression.  There is no 
    parameter field for the PRINT command. 
 
    NOTE:  While  the  PRINT  command  is  executing,  you may type control 
    characters to  aid  in  viewing  the  text  buffer.   See  the  section 
    "CHARACTER SET" on page 10-2. 
 
 
    READ 
    ==== 
 
    The  READ command is used to input text into the working buffer.  Lines 
    are read into the buffer until the end of file  is  reached,  or  until 
    less  than  700  free bytes of buffer space remain.  In the first case, 
    EDIT prints the message: 
 
        END OF FILE 
 
    In the second case, EDIT prints: 
 
        NOT ENOUGH RAM 
 
    Text input by the READ command is appended to the working buffer. 
 
 
    REPLACE 
    ======= 
 
    This  command  causes  the  eligible line(s) in the command range to be 
    replaced.  After you have typed some form of  REPLACE  and  <RTN>,  the 
    cursor  moves  to  the  beginning  of the new line so you can enter the 
    replacement text.  Type the replacement lines one at a time,  following 
    each  with  a <RTN>.  You may use tabs as part of the replacement text; 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-19 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    REPLACE (Cont) 
    ============== 
 
    and you may use BACKSPACE, DELETE, and RUBOUT to edit the new line  you 
    are  entering.   However, simply typing <RTN> without entering any text 
    will cause EDIT to replace the old line with a blank line. 
 
    After  the  lines indicated by the range expression have been replaced, 
    EDIT reverts to the command mode.  Typing CTRL-C returns the editor  to 
    the command mode, erasing the current line. 
 
    The  qualifier  strings  and option may be used.  There is no parameter 
    field for the REPLACE command. 
 
 
    For example: 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB  
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTH LINE 
        THIS IS A NEW LINE INSERTED AFTER THE FIFTH LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
        THIS IS AN ADDITIONAL LAST LINE 
        -- 
 
 
        --^+5REPLACE<RTN> 
        THIS IS A NEW LINE INSERTED AFTER THE FIFTH LINE 
        THIS LINE IS REPLACED<RTN> 
        -- 
 
 
        --^+6,+'LAST'REPLACE'LINE'<RTN> 
        THIS REPLACES THE OLD SEVENTH LINE<RTN> 
        THIS REPLACES THE OLD LAST LINE<RTN> 
        -- 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS LINE IS REPLACED 
        AND EVERY WHERE THAT MARY WENT 
        THIS REPLACES THE OLD SEVENTH LINE 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-20 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    REPLACE (Cont) 
    ============== 
 
        THE LAMB WAS SURE TO GO 
        THIS REPLACES THE OLD LAST LINE 
        THIS IS AN ADDITIONAL LAST LINE 
 
 
    NOTE:  Only  lines  containing  the  string  'line' are replaced in the 
    second example, as the string 'line' is used as a qualifier. 
     
 
    SEARCH 
    ====== 
 
    The  SEARCH  command  scans  through  a text file for a given character 
    string.  The desired character string is  specified  in  the  qualifier 
    field.   This  command begins the scan at the first line in the command 
    range  and continues to the end of the buffer, regardless of  the  last 
    line  in the command range.  If the given character string is still not 
    found, the buffer is written into the output file,  and  more  text  is 
    added  from  the input file.  The SEARCH stops when the end of the file 
    is reached, or when the string is found. 
 
    When  the  string  is  found,  the  command  range is set to that line. 
    Subsequent commands can  reference  the  line  containing  the  desired 
    string  by  using  an  equal  sign ( = ) for the range expression.  The 
    SEARCH command uses the range expression, but does not  use  option  or 
    parameter fields. 
 
    For example: 
 
        -- PRINT<RTN> 
        THIS IS THE FIRST LINE 
        MARY HAD A LITTLE LAMB 
        THIS IS THE THIRD LINE 
        ITS FLEECE WAS WHITE AS SNOW 
        THIS IS THE FIFTHE LINE 
        AND EVERY WHERE THAT MARY WENT 
        THIS IS THE SEVENTH LINE 
        THE LAMB WAS SURE TO GO 
        THIS IS THE LAST LINE 
        -- 
 
 
        "--"'SEARCH"FIFTHE"<RTN>' 
        "--"'=EDITBA,FIFTHE,FIFTH,<RTN>' 
        "THIS IS THE FIFTHE LINE" 
        "THIS IS THE FIFTH LINE" 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-21 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    SEARCH (Cont) 
    ============= 
 
    NOTE:  The  given  character string is inclosed in double quotes ["], 
    not single quotes [']. 
 
 
    USE 
    === 
 
    The  USE command displays the number of lines in the command range, the 
    number of memory bytes currently used, and the number  of  free  bytes. 
    The USE command replies by displaying three values: 
 
         1.   A  line count.  The number of lines within the command range. 
    Type USE to display the total number of lines presently used within 
    the buffer. 
 
         2.   A BYTE count.  The number of bytes used by the entire working 
    buffer, not simply the lines within the command range. 
 
         3.   A BYTES free count.  This is the number of remaining bytes in 
    memory. 
 
    You  can  use the range expression and qualifier strings, but they have 
    little meaning.  There is no parameter field.   The  following  example 
    demonstrates  the  USE  command.  The computer employed in this example 
    has 16k RAM with the following text: 
     
        *       DETERMINE MEMORY LIMIT 
         
        INIT1   MOV  M,A    MOVE BYTE 
                DAD  D      INCREMENT TRIAL ADDRESS 
                MOV  A,M     
                DCR  M 
                CMP  M 
                JNE  INIT1  IF MEMORY CHANGED 
 
        INIT2   DCX  H 
                SPHL        SET STACK POINTER=MEMORY LIMIT-1 
                PUSH H      SET *PC* VALUE ON STACK 
                LXI  H,ERROR 
                PUSH H      SET RETURN ADDRESS: 
 
 
                __ 
 
    NOTE: EDIT requires some room for work space.  It refuses to allow more 
    text when unused space in the buffer is down to 200 free bytes.   These 
    200 bytes are its work space. 
                    
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-22 
    ===========         =================                        ========== 
 
                              THE COMMANDS (Cont) 
                              +++++++++++++++++++ 
 
    USE (Cont) 
    ========== 
 
        --  USE<RTN> 
        LINES = 00015 
        USED  = 00273 
        FREE  = 08299 
        -- 
 
 
    WRITE 
    ===== 
 
    The  WRITE  command  outputs text from the buffer into the output file. 
    It starts at the top of the buffer and continues to the first  line  of 
    the command range.  
 
    Thus, the command: 
 
        $WRITE<RTN> 
 
    writes the entire buffer. 
 
    This  command  uses range expressions and options.  It has no parameter 
    field. 
 
    You  can  use the WRITE command to output only certain lines of text to 
    the output file.  To do this, first specify the lines  to  be  written, 
    and  then  use the BLITZ command to delete all other lines of text from 
    the buffer.  Then enter a BYE or FLUSH command.  
 
    For example: 
 
        -- PRINT<RTN> 
        10 LINE INPUT "WHAT IS YOUR NAME";B$ 
        30 END 
        --NEWOUT/SY2:TEST.BAS/<RTN> 
        --+1WRITE<RTN> 
        --BLITZ<RTN> 
        Are You Sure?Y 
        --BYE<RTN> 
 
        End of File 
        >TYPE SY2:TEST.BAS<RTN> 
        10 LINE INPUT "WHAT IS YOUR NAME?;B$ 
        20 PRINT "HELLO, ";B$;"." 
 
    Note that all lines up to and including the line specified in the WRITE 
    command are included in the output file. 
    *********************************************************************** 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-23 
    ===========         =================                        ========== 
 
 
                              COMMAND COMPLETION 
                              ++++++++++++++++++ 
 
    When EDIT is in the command mode, each terminal keystroke is considered 
    for validity.  If the character belongs to no possible command,  it  is 
    refused, and the bell code is echoed to the terminal.  If the character 
    is accepted, and the command syntax allows  only  one  next  character, 
    EDIT supplies and prints this character for you. 
 
    In  addition  to  simple  syntax checking, EDIT processes command range 
    expressions as they are being entered.  If you  should  enter  a  range 
    expression  referring  to nonexistent lines, EDIT refuses further entry 
    and  gives a bell code.  Thus, should valid characters be rejected,  it 
    indicates  that  the command range expression is invalid.  For example, 
    if you attempt to type: 
 
        --^+'TUESDAY' 
 
    and  EDIT  refuses  the  "P"  in  PRINT, it means that it found no line 
    containing Tuesday.  This check is done before the command is executed, 
    so  you  can  use a backspace to eliminate the TUESDAY and replace this 
    string with a valid string for the text. 
 
    NOTE: If no information exists in the text buffer, EDIT will not accept 
    commands which need text to be valid.  For example, the  command  PRINT 
    is  invalid when no text exists in the text buffer, as there is no text 
    to print. 
    *********************************************************************** 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-24 
    ===========         =================                        ========== 
                         
 
                         APPENDIX 10-A: ERROR MESSAGES 
                         +++++++++++++++++++++++++++++ 
 
 
    <BELL> 
    ------ 
    EDIT rings the terminal bell when an illegal command character (for the 
    current command) is typed.  EDIT  also  rings  the  bell  if  the  line 
    expression just entered applies to no line in the text file. 
 
 
    END OF FILE 
    ----------- 
    The  end  of  the  file  was  reached  on the input file.  The file was 
    automatically  closed.   This  message  is  informative  and  does  not 
    indicate an error of any kind. 
 
 
    ERROR - xxx ... xxx 
    ------------------- 
    The  operating  system  detected  the  error,  "xxx  ...   xxx."   This 
    expression stands for an error description which changes from  time  to 
    time,   depending   upon  the  circumstances.   It  is  normally  self- 
    explanatory, and is discussed in  the  HDOS  Operating  System  Manual, 
    Chapter  Three,  "System Optimization," Appendix 3-A, page 3-33, "Error 
    Messages." 
 
 
    FIRST <= LAST 
    ------------- 
    The  line  matching  the FIRST LINE expression must occur before, or be 
    the same as, the line matching the "last line" expression. 
 
 
    ILLEGAL FILENAME 
    ---------------- 
    The  file  specification used in a NEWIN or NEWOUT command contains too 
    many characters.  The file specification should contain  no  blanks  or 
    spurious characters. 
 
 
    NO OUTPUT FILE 
    -------------- 
    EDIT could not write the text buffer to disk because no output file has 
    been opened.  This message can come in  response  to  a  WRITE,  FLUSH, 
    SEARCH,  NEXT,  or  BYE  command  --  all of which can cause text to be 
    written to disk. 
 
 
    NOT ENOUGH RAM 
    -------------- 
    There  is  not enough free RAM to complete the operation.  You can free 
    up RAM by deleting some text lines, or by writing some text lines to 
     
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-25 
    ===========         =================                        ========== 
 
 
                     APPENDIX 10-A: ERROR MESSAGES  (Cont) 
                     +++++++++++++++++++++++++++++++++++++ 
 
 
    NOT ENOUGH RAM (Cont) 
    --------------------- 
    the  output  file.  Note that this message is a typical response to the 
    READ or NEXT command, and only means that EDIT ran  out  of  RAM  space 
    before  it read the end-of-file.  EDIT automatically stops reading with 
    several hundred bytes still free to allow room for editing. 
 
 
    NOT FOUND 
    --------- 
    The line specified in the SEARCH command could not be located. 
 
 
    OLD INPUT FILE NOT FINISHED 
    ARE YOU SURE? 
    --------------------------- 
    You  have  attempted to specify a new input file (via NEWIN) before the 
    end of file was read on the old one.  Replying with a  Y  (YES)  closes 
    the  old  input  file  and  opens  the new one.  Replying with a N (NO) 
    leaves the old file open. 
 
 
    OLD OUTPUT FILE NOT FINISHED 
    ARE YOU SURE? 
    ---------------------------- 
    You have attempted to specify a new output file (via NEWOUT) before the 
    old file was closed.  Replying with a Y (YES)  closes  the  old  output 
    file  and  opens  the  new  one.  Replying with a N (NO) leaves the old 
    output file open. 
     
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
     
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-26 
    ===========         =================                        ========== 
 
 
                         APPENDIX 10-B: COMMAND SUMMARY 
 
                         ++++++++++++++++++++++++++++++ 
 
    Each  of  the commands for the Heath Text Editor are summarized in this 
    Appendix.  For a detailed explanation of each command,  refer  to  "The 
    Commands." 
 
 
    COMMAND STRUCTURE 
 
    ----------------- 
    The general format for an editor command is: 
 
   [<RANGE EXPRESSION>][<VERB>][<QUALIFIER STRING>][<OPTION>][<PARAMETERS>] 
 
 
    RANGE EXPRESSION FORMS 
    ---------------------- 
       NULL - First line in previous command range. 
 
       BLANK - The entire working buffer. 
 
       = - The previous command range. 
 
       A single line expression. 
 
       Multiple expressions. 
 
 
    MULTIPLE LINE EXPRESSION FORMS 
    ------------------------------ 
    EXPRESSION          DEFINITION 
    ----------          ---------- 
 
        ^               The first line in the buffer. 
 
        $               The last line in the buffer. 
 
        NULL            The first line in the previous command range. 
 
        COMMA           Separates (delimits) multiple line expressions. 
 
        +n              Move forward n decimal lines. 
 
        -n              Move backward n decimal lines. 
 
        +'STRING'       Move forward until 'STRING' is located. 
 
        -'STRING'       Move backward until 'STRING' is located. 
 
 
 
 
                             



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-27 
    ===========         =================                        ========== 
 
 
 
                     APPENDIX 10-B: COMMAND SUMMARY (Cont) 
                     +++++++++++++++++++++++++++++++++++++ 
 
    VERB (COMMAND) FORMS 
    -------------------- 
    BLITZ .......... Discards all text after a Y reply to ARE YOU SURE? 
                     (Refer to page 10-12 for details.) 
 
    BYE ............ Exit  to HDOS Operating System after flushing text and 
                     closing files.  (Refer to page 10-12 for details.) 
 
    DELETE ......... Deletes  eligible lines in command range (* except the 
                     entire buffer).  (Refer to page 10-13 for details.) 
 
    EDIT ........... Replaces  old  string  with  new string once per line. 
                     Parameter  field:  <arbitrary  delimiter>  old  string 
                     <arbitrary  delimiter> count.  Count is decimal number 
                     of replacements.  (Refer to page 10-14 for details.) 
                      
    FLUSH .......... Writes working buffer, balance of input file, and end- 
                     of-file character onto output file.  Use when  editing 
                     is   complete.   Text  is  deleted  from  buffer  when 
                     complete.  (Refer to page 10-15 for details.) 
 
    INSERT ......... Add  to  text  buffer  from  keyboard.  CTRL-C returns 
                     Editor  to  command  mode.   (Refer  to page 10-15 for 
                     details.) 
 
    NEWIN .......... Opens  a  new  file  to  be  read in.  Parameter field 
                     specifies filename <delimiter><name><delimiter>. 
                     (Refer to page 10-16 for details.) 
 
    NEWOUT ......... Opens   a   new  file  for  output.   Parameter  field 
                     specifies filename <delimiter><name><delimiter>.  
                     (Refer to page 10-17 for details.) 
 
    NEXT ........... Writes  working  buffer  onto output file.  Then fills 
                     buffer from the input file.   (Refer to page 10-17 for  
                     details.) 
 
    PRINT .......... Print  eligible lines  on computer screen.   (Refer to 
                     page 10-17 for details.) 
 
    READ ........... Reads  text into  memory from  input file.   (Refer to 
                     page 10-17 for details.) 
 
    REPLACE ........ Replaces   eligible   lines   in  command  range  from 
                     keyboard.   CTRL-C returns  Editor  to  Command  Mode. 
                     (Refer to page 10-17 for details.) 
 
    SEARCH "string"  Searches text buffer and input file after initial line 
                     for  'STRING.'   Search stops when STRING is found, or 
                     end-of-file is found.  Command range is  set  to  line 
                     containing 'STRING.'  (Details are on page 10-20.) 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-28 
    ===========         =================                        ========== 
                           
 
                     APPENDIX 10-B: COMMAND SUMMARY (Cont) 
                     +++++++++++++++++++++++++++++++++++++ 
 
    VERB (COMMAND) FORMS (Cont) 
    --------------------------- 
    USE ............ Displays  number  of  lines in buffer, bytes used, and 
                     bytes free.  (Refer to page 10-21 for details.) 
 
    WRITE .......... Writes  text  from  the working buffer to output file. 
                     Writes start of buffer to first line of common  range. 
                     After writing, lines are not deleted.   (Refer to page 
                     10-22 for details.) 
 
 
    QUALIFIER STRING 
    ---------------- 
    Qualifier  string,  if  present,  takes the form 'string.'  A qualifier 
    string limits range expression to those lines containing the  qualifier 
    string. 
 
 
    OPTION 
    ------ 
    The option field is: 
 
    B      Print line before operating on it. 
 
    A      Print line after operating on it. 
 
    BA     Print line before and after operating on it. 
 
    NULL   No option specified. 
 
 
    PARAMETER FIELD 
    --------------- 
    This  field  contains  extra  parameters needed by the EDIT, NEWIN, and 
    NEWOUT commands.  Format is command dependent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-29 
    ===========         =================                        ========== 
 
 
                    APPENDIX 10-C: SAMPLE EDITED SOURCE FILE 
                    ++++++++++++++++++++++++++++++++++++++++ 
 
    The  following  edited  source  file is typical of one you might create 
    using EDIT.  It is intended to show examples of some of EDIT's  editing 
    capabilities. 
 
        -- PRINT 
                  ORG     100000A-160Q 
        FPNRM     EQU     073173A 
                  INX     B          TO 
                  INX     B           EXPONENT 
                  LDAX    A              
                  ANA     B          SET CONDX CODE 
                  RZ 
                  DCR     A          /2 
                  JZ      USRI       IF UNDER FLOW 
                  DCR     A          /2 again (/4) 
        USR1      STAX    B 
                  CALL    FPNRM 
                  RET 
 
                  END     START 
 
        --^+'EQU'INSERTB 
        FPNRM     EQU     073173A 
        START     INX     B          INC 
        --^+'073173'EDITBA,073173A,063207A,1     
        FPNRM     EQU     073173A 
        FPNRM     EQU     063207A 
        -- PRINT 
 
                  ORG     100000A-160Q 
        FPNRM     EQU     063207A 
        START     INX     B          INC 
                  INX     B           TO 
                  INX     B            EXPONENT 
                  LDAX    A          (A) = ACCX EXP 
                  ANA     B          SET CONDX CODE 
                  RZ 
                  DCR     A          /2 
                  JZ      USRI       IF UNDER FLOW 
                  DCR     A          /2 again (/4) 
        USRI      STAX    B 
                  CALL    FPNRM 
                  RET 
 
                  END     START 
 
 
 
 
 
 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-30 
    ===========         =================                        ========== 
 
 
                APPENDIX 10-C: TYPICAL EDITED SOURCE FILE (Cont) 
                ++++++++++++++++++++++++++++++++++++++++++++++++ 
 
        --^+'EXPONENT'INSERTB         
                  INX     B          EXPONENT 
                  LDAX    A          (A)=ACCX EXP 
        --'ACC'+1DELETEB 
                  LDAX    A 
        --^'/4'INSERTB 
                  DCR     A          /2AGAIN(/4) 
        USRI      STAX    B          RET TO ACCX 
        --'ACCX'+1DELETEB 
        USRI      STAX    B 
        --'ACCX'INSERTB 
        USRI      STAX    B          RET TO ACCX 
                  CALL    FPNRM      NORMALIZE 
        --'NORMALIZE'+1DELETEB 
                  CALL    FPNRM 
        -- PRINT 
                  ORG     1200000A-160Q 
        FPNRM     EQU     063207A 
        START     INX     B          INC UP 
                  INX     B           TO 
                  INX     B            EXPONENT 
                  LDAX    B          (A)=ACCX EXP 
                  ANA     A          SET CONDX CODE 
                  RZ 
                  DCR     A          /2 
                  JZ      USRI       IF UNDER FLOW 
                  DCR     A          /2AGAIN(/4) 
        USRI      STAX    B          RET TO ACCX 
                  CALL    FPNRM      NORMALIZE 
                  RET                IN CASE O 
 
                  END     START 
 
 
        --NEWOUT"SY1:TEXT.ASM"<RTN> 
        --BYE<RTN> 
        END OF FILE 
        >              (HDOS PROMPT) 
    *********************************************************************** 
 



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-31 
    ===========         =================                        ========== 
 
 
                                     INDEX 
                                     +++++ 
 
    After (A), 10-11 
 
    Before (B), 10-11 
    Blank, 10-8 
    BLITZ, 10-12 
    Buffer, 10-2 
    BYE, 10-12 
 
    Command Completion, 10-23 
    Command Mode, 10-3 
    Command Structure, 10-4 
    Command Summary, 9-26 
    Control Characters, 10-2 
    CTRL-C, 10-3, 10-13 
    CTRL-I, 10-2 
    CTRL-L, 10-2 
 
    DELETE, 10-13 
    Delimiting Character, 10-17, 10-19, 10-20 
 
    EDIT, 10-14 
    Equal [=], 10-9 
 
    FLUSH, 10-15 
 
    Insert before first line, 10-12 
    INSERT, 10-15 
 
    Loading EDIT, 10-2 
 
    Modes, 10-3 
    Multiple-Line Expression, 10-7 
 
    NEWIN, 10-16 
    NEWOUT, 10-17 
    NEXT, 10-17 
    Null, 10-8 
 
    Option Field, 10-10 
 
    Parameter Field, 10-11 
    PRINT, 10-17 
 
    Qualifier String, 10-10 
    QUIT, 10-12 
 
    Range Expressions, 10-4, 10-10, 10-14 
    READ, 10-17 
    REPLACE, 10-17 
       
                   
                                   



    CHAPTER TEN         HEATH TEXT EDITOR                        PAGE 10-32 
    ===========         =================                        ========== 
 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    SEARCH, 10-20 
    Single-Line Expressions, 10-5 
 
    Text Mode, 10-3 
 
    USE, 10-21 
 
    Verb, 10-9 
 
    WRITE, 10-22 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                  CHAPTER 11 
 
                            HEATH ASSEMBLY LANGUAGE 
 
                                      ASM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-i 
    ==============      =======================                   ========= 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4 ,5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West Branch  Mobile Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-1 
    ==============      =======================                   ========= 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
           INTRODUCTION ........................................ 11-2 
 
           CONVENTIONS ......................................... 11-2 
 
           THE CHARACTER SET ................................... 11-2 
 
           STATEMENTS .......................................... 11-3 
             The Label Field ................................... 11-3 
             The Opcode Field .................................. 11-4 
             The Operand Field ................................. 11-4 
             The Comment Field ................................. 11-4 
             Format Control .................................... 11-5 
 
           OPERAND EXPRESSIONS  
             Operators ......................................... 11-6 
             Tokens ............................................ 11-6 
              
           THE 8080 OPCODES 
             Terms, Symbols, and Nomenclature .................. 11-9  
             Data Transfer Group .............................. 11-16 
             Arithmetic Group ................................. 11-22 
             Logical Group .................................... 11-29 
             Branch Group ..................................... 11-36 
             Stack, I/O, and Machine Control Group ............ 11-40 
 
           PSEUDO OPCODES/ASSEMBLER DIRECTIVES 
             Define Byte, DB .................................. 11-45 
             Define Space, DS ................................. 11-46 
             Define Word, DW .................................. 11-47 
             Conditional Assembly Pseudo Operators ............ 11-48 
             End Program, END ................................. 11-48 
             Define Label, EQU ................................ 11-48 
             Origin Statement, ORG ............................ 11-50 
             Set Statement, SET ............................... 11-50 
             Xtext Statement, XTEXT ........................... 11-51 
             Listing Control .................................. 11-52 
              
           GENERATING THE ASSEMBLER 
             Using the Assembler .............................. 11-56 
             Switches ......................................... 11-57 
             Command Line Examples ............................ 11-59 
             Errors ........................................... 11-60 
 
           APPENDIX 11-A 
             Assembly Language Interface ...................... 11-43 
 
           APPENDIX 11-B 
             Sample Source Code Listing ....................... 11-70 
 
           INDEX .............................................. 11-76 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-2 
    ==============      =======================                   ========= 
                         
 
                                 INTRODUCTION 
                                 ++++++++++++                   
 
    The   Heath  Assembly  Language  program  (ASM)  lets  you  use  source 
    (symbolic) programs  using  letters,  numbers,  and  symbols  that  are 
    meaningful  because  they  are  abbreviated  English statements.  These 
    source programs must be generated with a  text  editor,  such  as  PIE, 
    Textpro, EDIT19,  or  the  Heath Text Editor (EDIT).  ASM assembles the 
    source program into a listing with an  optional  cross-reference  table 
    and  an  object  program  in  absolute binary format executable by your 
    computer. 
     
    This  Manual  assumes that you are already familiar with the writing of 
    assembly language programs.  Also, because of the many cross-references 
    in  this Section, we recommend that you read all of this section to get 
    a good "feel" for ASM. 
                                                                             
    ASM  is  designed  to  produce programs which run on an H8/H89 Computer 
    System.  Therefore, it assembles 8080 symbolic assembly code.   The  H8 
    uses the 8080 microprocessor, whereas the H89/Z90 computers use the Z80 
    microprocessor.  If Heath decided to assemble only in the Z80 code, the 
    results  would  only  run on the H89/Z90 type of computers.  Since they 
    choose to assemble the 8080 code, the results apply to both  computers. 
    This  is  not  untypical,  since  most of the typical user programs are 
    created to run on both codes. 
 
    The  ASM  chapter presumes that you have read the HDOS Operation Manual 
    which came with the H89, Z90, or H8 computer,  and  are  also  familiar 
    with the 8080 instruction set, I/O formats, memory formats, (and for H8 
    or  H8/H19  owners  only,)  front  panel  configuration.   A   thorough 
    knowledge  of  this  data  is  essential to efficient assembly language 
    programming. 
    *********************************************************************** 
 
 
                                  CONVENTIONS 
                                  +++++++++++ 
 
    To clarify the text, statements made by the computer will be set off by 
    quotation marks ["].  Similiarily, responses by the user  will  be  set 
    off by apostrophe marks ['].  NOTE: Since certain ASM commands may also 
    use apostrophes, the reader should be  able  to  discern  according  to 
    context. 
    *********************************************************************** 
 
 
                               THE CHARACTER SET 
                               +++++++++++++++++ 
 
    The  Heath  Assembly  Language  source  program is composed of symbols, 
    numbers,  expressions,  symbolic  instructions,  argument   separators, 
    assembly  directives, and line terminators, all using ASCII characters. 
    Those characters that are acceptable to ASM are listed as follows: 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-3 
    ==============      =======================                   ========= 
 
                           THE CHARACTER SET (Cont) 
                           ++++++++++++++++++++++++ 
 
         1.   The  letters  A  through  Z  [NOTE:  Lower  case  letters are 
    acceptable for quoted strings and comments.] 
 
        2. The numerals 0 through 9. 
 
        3. The  characters  period  [.]  and  dollar  sign [$],  which  are 
    considered alphabetic.   
           
        4. The symbols: : = % # [ ] , ; " ' + - _ ! ? 
 
        5. Blanks and tabs. 
    *********************************************************************** 
 
                                  STATEMENTS 
                                  ++++++++++ 
 
    A  source  program  is composed of a sequence of statements designed to 
    solve a problem.  Each statement must be on a single line. 
 
    A  statement  is composed of up to four fields, identified by the order 
    of appearance, and separated by BLANKS and TABS.  The four fields are: 
 
                   LABEL     OPCODE     OPERAND     COMMENT 
 
    The  label  on  comment  fields  is  optional.  The  opcode and operand 
    fields are interdependent; either may be omitted,  depending  upon  the 
    contents of the other. 
 
 
    THE LABEL FIELD 
    =============== 
 
    The label field always starts in column one.  A label is a user-defined 
    symbol assigned to the current value of the  memory  location  counter. 
    It  is  a  symbolic  means  of  referring to a specific memory location 
    within a program.  Most statements do not require a label.  If  you  do 
    not  want  a  label,  column  one must be left blank  or contain a TAB. 
    Although the label is usually used to allow symbolic reference  to  the 
    address  of  the  labeled  instruction,  the  SET  and EQU pseudos make 
    special use of the label field. 
 
    A  label  must  start  with  an  alphabetic  character, and it consists 
    entirely of alphabetic or numeric characters.  The maximum length of  a 
    label  is  7  characters.   Note  that  the characters "$" and "."  are 
    considered alphabetic.  Therefore,  each  of  the  following  character 
    groups are valid labels: 
     
        A A3 . C9D4  START  ..  $END  END$PGM 
         
    For example, if the current location counter is set to 042 200 and the 
    statement: 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-4 
    ==============      =======================                   ========= 
 
                               STATEMENTS (Cont) 
                               +++++++++++++++++ 
 
    THE LABEL FIELD (Cont) 
    ====================== 
 
        START   MOV  A,B 
 
    is  the  next  statement, the assembler assigns the value of 042 200 to 
    the label START.  Subsequent references to START refer to location  042 
    200. 
 
 
    THE OPCODE FIELD 
    ================ 
 
    All  statements  (except  the  comment  statements) must have an opcode 
    field.  The opcode field need not be located in any particular  column. 
    However,  it  must  be  separated  from the label field by at least one 
    BLANK or TAB.  If no label is specified, the opcode field may start  in 
    or after column 2. 
 
    The opcode is either an instruction mnemonic or an assembler directive. 
    When the entry in the opcode  field  is  an  instruction  mnemonic,  it 
    specifies  a  machine  operation  to  be  performed  on  any  following 
    operands.  When it is an  assembler  directive,  it  specifies  certain 
    functions  or  actions  to  be  performed  by  the assembler during the 
    program assembly. 
 
    The opcode field is terminated by a BLANK, a TAB, or the end of a line. 
 
 
    THE OPERAND FIELD 
    ================= 
 
    The  operand field follows the opcode field, and must be separated from 
    it by at least one BLANK or TAB.  Not  all  opcodes  require  operands. 
    The  operand contains information used by a machine instruction, or, in 
    the case of assembler directives (pseudo opcodes  or  pseudo  ops),  it 
    contains information to be used by the pseudo op. 
 
    Operands  may  be  symbols,  expressions,  or  numbers.   When multiple 
    operands appear with a statement, each is separated from the next by  a 
    comma.  An operand may be followed by a comment. 
 
    The  operand  field  is terminated by a BLANK or TAB when followed by a 
    comment, or by the end of a line when the  operand  ends  the  assembly 
    statement.  For example: 
 
        START    MOV  A,B    THIS IS A COMMENT 
 
    The  TAB  between  START  and MOV terminates the label field; the blank 
    between MOV and A,B terminates the opcode field and begins the  operand 
    field.   The  comma  separates  the  operands  A  and  B,  and  the TAB 
    terminates the operand field and begins the comment field. 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-5 
    ==============      =======================                   ========= 
 
                               STATEMENTS (Cont) 
                               +++++++++++++++++ 
 
    THE COMMENT FIELD 
    ================= 
 
    The  comment field follows the operand field, or the opcode field if no 
    operand field is present.  It must  be  separated  from  its  preceding 
    field by at least one BLANK or TAB.  The comment field is not processed 
    by  the  assembler,  and  it  is  designed   to   contain   documentary 
    information.   The  comment  field  is  optional,  and  may contain any 
    printing ASCII  character.   All  other  characters,  even  those  with 
    special  significance  to  the  assembler, are ignored by the assembler 
    when used in the comment field. 
 
    A  statement with an asterisk [*] in  column one  is taken as a comment 
    statement, and is not otherwise processed by the assembler.  A  totally 
    blank line is also taken as a comment. 
 
 
    FORMAT CONTROL 
    ============== 
 
    The  format  of an assembly language program is controlled by the BLANK 
    and TAB characters.  Format control is  primarily  used  to  produce  a 
    program  which  is  easily  read.   Format control has no effect on the 
    assembly process of the source program.  The following  two  statements 
    are  interpreted identically.  The first one uses BLANKS and the second 
    one uses TABS. 
 
        START MOV A,B  THIS IS A COMMENT 
         
        START     MOV A,B     THIS IS A COMMENT 
    *********************************************************************** 
 
                              OPERAND EXPRESSIONS 
                              +++++++++++++++++++ 
    
    Except  when the opcode is a machine instruction requiring that an 8080 
    register be specified as the operand, all operand fields may  be  coded 
    as  operand  expressions.   Such  operand  expressions  are  made up of 
    integers, symbols, a special  origin  symbol,  and  character  strings, 
    which may be combined using certain operators.  The operand may also be 
    the origin symbol.  The expressions are said to be made up of operators 
    and tokens.  No parentheses are allowed, nor is any operator precedence 
    recognized.  Therefore, evaluation is  strictly  left  to  right.   The 
    result of any expression must fall between -32,767 and 65,534. 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-6 
    ==============      =======================                   ========= 
 
                          OPERAND EXPRESSIONS (Cont) 
                          ++++++++++++++++++++++++++ 
 
    OPERATORS 
    ========= 
 
    ASM recognizes 5 operators.  They are as follows: 
 
        +   Addition of an integer arithmetic expression. 
 
        -   Subtraction of an integer arithmetic expression. 
 
        *   Multiplication of an integer arithmetic expression. 
 
        /   Division of an integer arithmetic expression. 
 
        -   (Unary) negation of a standard integer arithmetic expression. 
 
    Note  the  unary  minus  is  valid  ohly  as  the first character of an 
    expression.  The following are examples of legitimate assembler operand 
    expressions. 
 
        3 + 5 
          - 2     (unary) 
        1 + 2*3 
 
    Note  that  the  last  example  evaluates  to  9, rather than 7, as the 
    assembler does not recognize any operator  precedence.   Therefore,  it 
    evaluates the expression from left to right. 
 
 
    TOKENS 
    ====== 
 
    Heath Assembly Language recognizes four different tokens:  
 
        INTEGERS    SYMBOLS    CHARACTER STRINGS    ORIGIN SYMBOL 
 
    Each  of  these  tokens  has the limitations described in the following 
    paragraphs. 
 
 
    INTEGERS 
    -------- 
 
    Decimal  integers  ranging from 0 to 65,535 are allowed, but no decimal 
    place may be specified.  The radix of an integer expression is  assumed 
    to  be  the  decimal.   However,  you may specify binary, octal, offset 
    octal, decimal, or hexadecimal.  Specify them  by  using  a  post-radix 
    symbol following the integer expression. 
 
        B        Binary            H        Hexadecimal 
        O or Q   Octal             S        Offset Octal 
        D        Decimal 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-7 
    ==============      =======================                   ========= 
 
                          OPERAND EXPRESSIONS (Cont) 
                          ++++++++++++++++++++++++++ 
    For example: 
 
    Expression          Radix                   Decimal Value 
    ----------          -----                   ------------- 
    000 00011B          Binary                          3   
          160Q          Octal (Also 160O)             112 
          3200          Decimal (Also 3200D)         3200 
        77000A          Offset Octal                16128 
         021AH          Hexadecimal                   282 
 
    Legal Integer    Illegal Integer    Comments      
    -------------    ---------------    -------- 
       232               232.1          Decimals may not be specified. 
       10111B             226B          Not a binary number. 
       177Q                888          Not an octal number. 
       A1FH                21C          No hex radix specified 
 
    If  an  integer  expression  evaluates to less than -32,767, or greater 
    than 65,534, an error code is flagged. 
 
 
    SYMBOLS  
    ------- 
 
    An  expression  may  contain  any  user-defined  symbol.  Although most 
    symbols do not need to be defined sequentially before  the  referencing 
    statement,  some  pseudo operators require all their operand symbols to 
    be defined in earlier statements in the program.   Such  operators  are 
    said  to  require "pass one evaluation," and are documented in the "The 
    8080 Opcodes," Page 11-8.   All  symbols  must  consist  of  legal  ASM 
    characters. 
 
    The # Symbol 
 
    If  the  pound  sign [#] is the  first  character in an expression, the 
    expression is evaluated as a 16-bit expression.  After  the  expression 
    is  evaluated,  the  resultant  value is masked to an 8-bit equivalent. 
    Once this is done, a 16-bit operand may be referenced in an instruction 
    requiring 8 bits without causing an overflow [V] error.  For example: 
     
        MVI     H,ADDR/256 
        MVI     L,#ADDR        (HL) = 16 bit address. 
 
    In this example, the first line of code loads the H and L register pair 
    (16-bit register) with the binary  value  associated  with  the  label, 
    "ADDR" divided by 256.  The second line of code immediately loads the L 
    register (an 8-bit register) with the lower 8 bits of the binary  value 
    equated  to the symbol ADDR in the symbol table.  This process does not 
    cause an overflow error, as the 16-bit binary  equivalent  of  ADDR  is 
    masked  to  the  least  significant  8 bits before it is moved into the 
    8-bit L register. 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-8 
    ==============      =======================                   ========= 
 
                         OPERAND EXPRESSIONS (Cont) 
                         ++++++++++++++++++++++++++ 
 
    CHARACTER STRING 
    ---------------- 
 
    A  character  string  consisting  of one or two legal characters may be 
    used as a token in an ASM  expression.   Such  a  character  string  is 
    inclosed in a single apostrophe ['].  For example: 
 
        'A'     The character A (Value 101Q Octal) 
        'GL'    The character string GL (Value 107 114A) 
        '"'     The character quotation mark (Value 042Q Octal) 
 
 
    THE ORIGIN SYMBOL [*] 
    --------------------- 
 
    The  current  value  of  the  origin counter may be referenced with the 
    special symbol asterisk [*].  NOTE:  The  assembler  decides  from  the 
    expression  context  whether  the  asterisk  [*]  represents the origin 
    counter or is the multiplication operator.  For example, the program: 
     
            ORG    10 
            EQU    *** 
 
    defines  the symbol A to have the value 100.  The first statement, "ORG 
    10," sets the origin counter  to  the  value  of  10.   In  the  second 
    statement,  the  label  A is equated with the first asterisk, which the 
    assembler presumes to be the symbol for the origin  counter.   This  is 
    multiplied by the third symbol, which the assembler also presumes to be 
    the origin symbol.  However,  the  middle  asterisk  is  taken  as  the 
    multiplication operator. 
    *********************************************************************** 
 
 
                               THE 8080 OPCODES 
                               ++++++++++++++++ 
 
    Heath  Assembly  Language supports the standard 8080 opcodes.  A review 
    of the 8080 instruction  set  is  presented  on  the  following  pages. 
    Included  in  this  review  is  a  discussion  of  instruction and data 
    formats,   addressing   modes,   conditions   flags,   the  symbols  or 
    abbreviations used in  describing  the  8080  instruction  set,  and  a 
    discussion of the format used to describe each instruction. 
 
    The 8080 instruction set includes five different types of instructions: 
 
    * Data Transfer Group - Move data  between  registers or between memory 
                            and registers. 
 
    * Arithmetic Group ---- Add,  subtract, increment, or decrement data in 
                            registers or in memory. 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                   PAGE 11-9 
    ==============      =======================                   ========= 
 
                            THE 8080 OPCODES (Cont) 
                            +++++++++++++++++++++++ 
 
    INSTRUCTION TYPES (Cont) 
    ------------------------ 
 
    * Logical Group ------ AND, OR, EXCLUSIVE-OR, compare, rotate, or 
                           complement data in registers or memory. 
 
    * Branch Group ------- Conditional and unconditional jump instructions, 
                           subroutine call instructions, and return  
                           instructions. 
 
    * Stack, I/O, and ---- Includes I/O instructions, as well as 
      Machine Control      instructions for maintaining the stack and 
      Group                internal control flags. 
 
 
    TERMS, SYMBOLS, AND NOMENCLATURE 
    ================================ 
 
    INSTRUCTION AND DATA FORMATS 
    ---------------------------- 
 
    Memory  for  the  8080 is organized into 8-bit quantities called bytes. 
    Each byte has a unique  16-bit  binary  address  corresponding  to  its 
    sequential position in memory. 
 
    The  8080  can directly address up to 65,535 bytes of memory, which may 
    consist of both read-only memory (ROM) elements and random-access (RAM) 
    elements (read/write memory). 
 
    Data in the 8080 is stored in the form of 8-bit binary integers: 
 
                                   DATA WORD 
                      +----+---+---+---+---+---+---+---+ 
                      | D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 | 
                      +----+---+---+---+---+---+---+---+ 
                      MSB                            LSB 
 
    When  a register or data word contains a binary number, it is necessary 
    to establish the order in which the bits of the number are written.  In 
    the  Intel  8080,  BIT  0 is referred to as the "Least Significant Bit" 
    (LSB), and BIT 7 of an  8-bit  number  is  referred  to  as  the  "Most 
    Significant Bit" (MSB). 
 
    The  8080  program  instructions  may  be  one,  two, or three bytes in 
    length.  Multiple-byte instructions must be stored in successive memory 
    locations.  The address of the first byte is always used as the address 
    of the instructions.  The exact instruction format will depend  on  the 
    particular operation to be executed. 
     
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-10 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++  
 
    INSTRUCTION AND DATA FORMATS (Cont) 
    ----------------------------------- 
 
                           Single-Byte Instructions 
                      +---+---+---+---+---+---+---+---+ 
                      |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 | Op Code 
                      +---+---+---+---+---+---+---+---+ 
 
                             Two-Byte Instructions 
                      +---+---+---+---+---+---+---+---+ 
             Byte One |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 | Op Code 
                      +---+---+---+---+---+---+---+---+ 
                      +---+---+---+---+---+---+---+---+ Data or 
             Byte Two |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 | I/O Address 
                      +---+---+---+---+---+---+---+---+ 
 
                            Three-Byte Instructions 
 
                      +---+---+---+---+---+---+---+---+ 
           Byte One   |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 | Op Code 
                      +---+---+---+---+---+---+---+---+ 
                      +---+---+---+---+---+---+---+---+ --+ 
           Byte Two   |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 |   | 
                      +---+---+---+---+---+---+---+---+   |_ Data or 
                      +---+---+---+---+---+---+---+---+   |  I/O 
           Byte Three |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 |   |  Address 
                      +---+---+---+---+---+---+---+---+ --+ 
 
 
    ADDRESSING MODES 
    ---------------- 
 
    Often,  the  data  that is to be operated on is stored in memory.  When 
    multi-byte numeric data is used, the data, like instructions, is stored 
    in  successive  memory locations with the least significant byte first, 
    followed  by  increasingly  significant  bytes.   The  8080  has   four 
    different modes for addressing data stored in memory or in registers: 
     
    * Direct ----------- Bytes 2 and 3 of the instruction contain the exact 
                         memory address of the  data  item  (the  low-order 
                         bits  of the address are in byte 2, the high-order 
                         bits in byte 3). 
 
    * Register --------- Specifies  the  register or register pair in which 
                         the data is located. 
 
    * Register Direct -- Specifies  a  register  pair  which  contains  the 
                         memory  address  where  the  data is located.  The  
                         high-order bits  of the address are in  the  first 
                         register of the pair.  The low-order bits  in  the 
                         second. 
    
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-11 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ADDRESSING MODES (Cont) 
    ----------------------- 
 
    * Immediate -------- Contains the data itself.  This is either an 8-bit 
                         quantity  or a  16-bit quantity (least significant 
                         byte first, most significant byte second). 
 
 
    Unless directed by an interrupt or branch instruction, the execution of 
    instructions   proceeds   through   consecutively   increasing   memory 
    locations.   A  branch  instruction can specify the address of the next 
    instruction to be executed in one of two ways: 
 
    * Direct ----------- The branch instruction contains the address of the 
                         next instruction to be executed.  [Except for  the 
                         "RST"  instruction,  byte 2 contains the low-order 
                         address, and byte 3 the high-order address.] 
                          
    * Register Indirect--The  branch  instruction indicates a register pair 
                         which contains the address of the next instruction 
                         to  be  executed.   [The  high-order  bits  of the 
                         address are in the first  register  of  the  pair. 
                         The low-order bits are in the second register.] 
 
    The  RST instruction is a special 1-byte call instruction [usually used 
    during interrupt sequences].   RST  includes  a  3-bit  field;  program 
    control  is transferred to the instruction whose address is eight times 
    the contents of this 3-bit field. 
 
 
    CONDITION FLAGS 
    --------------- 
 
    There  are  five  condition  flags  associated  with  the  execution of 
    instructions on the 8080.  They are: 
 
         1. ZERO   
 
         2. SIGN 
 
         3. PARITY 
 
         4. CARRY 
 
         5. AUXILIARY CARRY 
 
 
    and  are  each  represented  by a 1-bit register in the CPU.  A flag is 
    "set" by forcing the bit to 1; and "reset" by forcing the bit to 0. 
 
 
 
 



    CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                   PAGE 11-12 
    ==============      ======================                   ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    CONDITION FLAGS (Cont) 
    ---------------------- 
 
    Unless  indicated  otherwise,  when  an  instruction affects a flag, it 
    affects it in the following manner. 
 
    ZERO:      If  the  result  of  an instruction has the value of 0, this 
               flag is set.  Otherwise, it is reset. 
 
    SIGN:      If  the  most significant bit of the result of the operation 
               has the value 1, this flag is set.  Otherwise it is reset. 
 
    PARITY:    If  the  modulo  2  sum  of  the  bits  of the result of the 
               operation is 0 (i.e., if the result  has  an  even  parity), 
               this  flag  is  set.   Otherwise  it  is reset (i.e., if the 
               result has odd parity.) 
 
    CARRY:     If the instruction resulted in a carry (from addition), or a 
               borrow (from subtraction or a comparison) out  of  the  high 
               order bit, this flag is set.  Otherwise it is reset. 
 
    AUXILIARY  If  the instruction caused a carry out of bit 3 and into bit 
    CARRY:     4 of the  resulting  value,  the  auxiliary  carry  is  set. 
               Otherwise  it  is  reset.   This flag is affected by single- 
               precision additions, subtractions,  increments,  decrements, 
               comparisons, and logical operations, but is principally used 
               with additions  and  increments  preceding  a  DAA  (Decimal 
               Adjust Accumulator) instruction. 
 
 
    SYMBOLS AND ABBREVIATIONS 
    ------------------------- 
 
    The  following  symbols  and  abbreviations  are used in the subsequent 
    description of the 8080 instructions: 
 
    Symbols             Meaning 
    -------             ------- 
 
    accumulator         Register A 
 
    addr                16-bit address quantity 
 
    data                8-bit data quantity 
 
    data 16             16-bit data quantity 
 
    byte 2              The second byte of the instructions 
 
    byte 3              The third byte of the instructions 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-13 
    ==============      =======================                  ==========  
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    SYMBOLS AND ABBREVIATIONS (Cont) 
    -------------------------------- 
 
    port                8-bit address of an I/O device 
 
    r, r1, r2           One of the registers A,B,C,D,E,H,L 
 
    DDD, SSS            The bit pattern designating one of the registers 
                        A,B,C,D,E,H,L 
                        (DDD = destination: SSS = source) 
 
                        DDD or SSS      Register Name 
                        ----------      ------------- 
                           111                A  
                           000                B 
                           001                C 
                           010                D 
                           011                E 
                           100                H 
                           101                L 
 
 
    rp                  One of the register pairs 
 
                        B  represents the B,C pair with B as the high-order 
                        register and C as the low-order register; 
 
                        D  represents the D,E pair with D as the high-order 
                        register and E as the low-order register; 
 
                        H  represents the H,L pair with H as the high-order 
                        register and L as the low-order register; 
 
                        SP represents the 16-bit stack pointer register. 
 
    RP                  The  bit  pattern  designating  one of the register 
                        pairs B,D,H,S: 
 
 
                        RP      Register Pair 
                        --      -------------  
                        00           B-C 
                        01           D-E 
                        10           H-L 
                        11           SP 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                   PAGE 11-14 
    ==============      ======================                   ========== 
 
                             8080 OPCODES  (Cont) 
                             ++++++++++++++++++++ 
 
    SYMBOLS AND ABBREVIATIONS (Cont) 
    -------------------------------- 
 
    rh                  The  first  (high-order)  register  of a designated 
                        register pair. 
 
    rl                  The  second  (low-order)  register of a  designated 
                        register pair. 
 
    PC                  16-bit  program  counter  register (PCH and PCL are 
                        used to  refer  to  the  high-order  and  low-order 
                        8-bits, respectively). 
 
    SP                  16-bit  stack  pointer  register  (SPH and SPL) are 
                        used to  refer  to  the  high-order  and  low-order 
                        8-bits respectively. 
 
    rm                  Bit  m  of  the  register  r  (bits  are numbered 7 
                        through 0 from left to right). 
 
    Z, S, P, Cy, AC     The condition flags. 
                        Zero,  Sign,  Parity,  Carry,  and Auxiliary Carry, 
                        respectively. 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-15 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    SYMBOLS AND ABBREVIATIONS (Cont) 
    -------------------------------- 
 
    NOTE:  ASM  recognizes  the  E  as well as the Z defining the zero bit. 
    Therefore, JZ (jump zero) or JE (jump equal) are both valid opcodes. 
 
    (  ) The  contents  of the memory location or registers is  inclosed in   
         parentheses. 
 
    <--  "Is transferred to" 
 
    /\   Logical AND 
 
   -\/-  Exclusive OR   (Note: There is a horizontal bar drawn in the  
                         middle of the symbol which the H89 cannot copy.) 
 
    \/   Inclusive OR 
 
    +    Addition 
 
    -    Two's complement subtraction 
 
    *    Multiplication 
 
    <--> "Is exchanged with" 
                                    ___ 
    --   The one's complement (e.g., A ) 
 
    n    The restart number 0 through 7 
 
    NNN  The binary representation 000 through 111 for restart number 0 
         through 7, respectively. 
 
 
    DESCRIPTION FORMAT 
    ------------------ 
 
    The  following  pages provide a detailed description of the instruction 
    set of the 8080.   Each  instruction  is  described  in  the  following 
    manner: 
 
    1.   The  ASM  format,  consisting of the opcode and operand fields, is 
    printed in BOLDFACE on the left of the first line. 
 
    2.   The  name  of  the  instruction  is inclosed in parentheses at the 
    center of the first line. 
 
    3.  The next line(s) contain a symbolic description of the operation of 
    the instruction. 
 
    4.  This is followed by a narrative description of the operation of the 
    instruction. 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-16 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    DESCRIPTION FORMAT (Cont) 
    ------------------------- 
 
    5.   The  following line(s) contain the binary fields and patterns that 
    comprise the machine instructions. 
 
    6.   The  last  two  lines  contain  incidental  information  about the 
    execution of the instruction.  The number of machine cycles and  states 
    required   to  execute  the  instruction  are  listed  first.   If  the 
    instruction has two possible execution times  as  a  conditional  jump, 
    both times will be listed, separated by a slash.  Next, any significant 
    data addressing modes (see "Addressing Modes,"  Page  10)  are  listed. 
    The  last  line  lists  any  of the five flags that are affected by the 
    execution of the instruction. 
 
 
    DATA TRANSFER GROUP 
    =================== 
 
    This  group  of  instructions  transfers data to and from registers and 
    memory.  Condition flags are not affected by any  instruction  in  this 
    group. 
 
 
    MOV r1, r2    (Move Register) 
 
        (r1)<--(r2) 
        The contents of register r2 is moved to register r1. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 1 | D | D | D | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  5                      Flags:  none 
 
 
    MOV r, M     (Move from memory) 
 
        (r)<--((H)(L)) 
        The content of the  memory location whose address is in registers H 
        and L is moved to register r. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 1 | D | D | D | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  none 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-17 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    DATA TRANSFER GROUP (Cont) 
    ========================== 
 
 
    MOV M, r    (Move from memory) 
 
        ((H)(L))<--(r) 
        The content of register r is moved to the memory location whose 
        address is in registers H and L. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 1 | 1 | 1 | 0 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
              Cycles:  2                     Addressing:  reg. indirect 
              States:  7                          Flags:  none 
 
 
    MVI r, data   (Move to register immediate) 
 
        (r)<--(byte 2) 
        The content of byte 2 of the instruction is moved to register r. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | D | D | D | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  none 
 
 
    MVI M, data   (Move to memory immediate) 
 
        ((H)(L))<--(byte 2) 
        The  content of byte 2 of the  instruction  is moved  to the memory 
        location whose address is in registers H and L. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
 
                  Cycles:  3                 Addressing:  immed./reg. 
                                                          indirect 
                  States:  10                     Flags:  none 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-18 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    DATA TRANSFER GROUP (Cont) 
    ==========================  
 
    LXI rp, data 16      (Load register pair immediate) 
 
        (rh)<--(byte 3), 
        (rl)<--(byte 2) 
 
        Byte 3  of the  instruction is  moved into the high-order  register 
        (rh) of the register pair rp.   Byte 2  of the instruction is moved 
        into the low-order register (rl) of the register pair rp. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | R | P | 0 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low order data         | 
                       +-------------------------------+ 
                       |       high order data         | 
                       +-------------------------------+ 
 
                  Cycles:  3                 Addressing:  immediate 
                  States: 10                      Flags:  none 
 
 
    LDA addr    (Load Accumulator direct) 
 
        (A)<--((byte 3)(byte 2)) 
        The content of the  memory location,  whose address is specified in 
        byte 2 and byte 3 of the instruction, is moved to register A. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
 
                  Cycles:  4                 Addressing: direct 
                  States: 13                      Flags: none 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                 PAGE 11-19 
    ==============      =======================                 ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    DATA TRANSFER GROUP (Cont) 
    ========================== 
 
    STA addr     (Store accumulator direct) 
 
        ((byte 3)(byte 2))<--(A) 
        The content  of the accumulator  is moved to the  memory  location 
        whose address is specified in byte 2 and byte 3 of the instruction. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+  
 
                  Cycles:  4                 Addressing: direct 
                  States: 19                      Flags: none 
 
 
    LHLD addr     (Load H and L direct) 
 
        (L)<--((byte 3)(byte 2)) 
        (H)<--((byte 3)(byte 2) + 1) 
 
        The  content of the memory location  whose address  is specified in 
        byte 2 and  byte 3 of the instruction  is moved to register L.  The 
        content of the  memory location at the  succeeding address is moved  
        to register H. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
 
                  Cycles:  5                 Addressing: direct 
                  States: 16                      Flags: none 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                 PAGE 11-20 
    ==============      =======================                 ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    DATA TRANSFER GROUP (Cont) 
    ========================== 
 
    SHLD addr     (Store H and L direct) 
 
        ((byte 3)(byte 2)<--(L) 
        ((byte 3)(byte 2) + 1)<--(H) 
 
        The  content of  register L  is moved to the  memory location whose 
        address is specified in byte 2 and byte 3.  The content of register 
        H is moved to the succeeding memory location. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
                  Cycles:  5                 Addressing: direct 
                  States: 16                      Flags: none 
 
 
    LDAX rp     (Load accumulator direct) 
 
        (A)<--((rp)) 
        The content  of memory location  whose  address is in  the register 
        pair rp is moved to register A.    NOTE: Only register pairs rp = B 
        (registers B and C) or rp = D (registers D and E) may be specified. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | R | P | 1 | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  2                 Addressing: reg. indirect 
                  States:  7                      Flags: none 
 
 
    STAX rp     (Store accumulator indirect) 
 
        ((rp))<--(A) 
        The  content of  register A is moved  to the memory  location whose 
        address  is in the  register pair rp.   NOTE:  Only register  pairs 
        rp = B  (registers  B and C)  or rp = D  (registers D and E) may be  
        specified. 
     
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | R | P | 0 | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  2                 Addressing: reg. indirect 
                  States:  7                      Flags: none 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                 PAGE 11-21 
    ==============      =======================                 ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    DATA TRANSFER GROUP (Cont) 
    ========================== 
 
    XCHG     (Exchange H and L with D and E) 
 
        (H)<-->(D) 
        (L)<-->(E) 
 
        The contents of registers  H and L  are exchanged with the contents 
        of registers D and E. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  none 
 
 



    CHAPTER ELEVEN      HEATH MACHINE LANGUAGE                   PAGE 11-22 
    ==============      ======================                   ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP 
    ================ 
 
    This  group  of  instructions performs arithmetic operations on data in 
    registers and memory. 
 
    Unless  indicated  otherwise, all instructions in this group affect the 
    Zero, Sign, Parity, Carry, and Auxiliary Carry Flags, according to  the 
    standard rules. 
 
    All   subtraction   operations   are  performed  via  two's  complement 
    arithmetic and set the carry flag to one to indicate a borrow and clear 
    it to indicate no borrow. 
 
 
    ADD r     (Add Register) 
 
        (A)<--(A) + (r) 
        The content  of register  r is added  to the content of the accumu- 
        lator.  The result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 0 | 0 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      flags:  Z,S,P,CY,AC 
 
 
    ADD M     (Add memory) 
 
        (A)<--(A) + ((H)(L)) 
        The  content of the memory  location whose address is  contained in  
        the H and L registers  is added to the content  of the accumulator.   
        The result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-23 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP (Cont) 
    ======================= 
 
    ADI DATA     (add immediate) 
 
        (A)<--(A) + (byte 2) 
        The content of the second  byte of the  instruction is added to the 
        content  of the accumulator.   The result is  placed in the accumu- 
        lator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    ADC r     (Add Register with carry) 
 
        (A)<--(A) + (r) + (CY) 
        The  content of  register r and the content  of the  carry bit  are  
        added to the  content of the accumulator.   The result is placed in 
        the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 0 | 1 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    ADC M     (Add memory with carry) 
 
        (A)<--(A) + ((H)(L)) + (CY) 
        The  content of the  memory location whose  address is contained in 
        the  H and L  registers and the content of the CY flag are added to 
        the accumulator.  The result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-24 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP (Cont) 
    ======================= 
 
    ACI data     (Add immediate with carry) 
 
        (A)<--(A) + (byte 2) + (CY) 
        The content of the  second byte of the  instruction and the content 
        of the CY flag  are added to the contents of the accumulator.   The  
        result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    SUB r     (Subtract Register) 
 
        (A)<--(A) -- (r) 
        The  content of register r  is subtracted from the  content  of the 
        accumulator.  The result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 1 | 0 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    SUB M     (Subtract memory) 
 
        (A)<--(A) -- ((H)(L) 
        The  content of the memory  location whose address is contained  in 
        the  H  and  L  registers  is subtracted  from the  content of  the 
        accumulator.  The result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-25 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP (Cont) 
    ======================= 
 
    SUI DATA     (Subtract immediate) 
 
 
        (A)<--(A) -- (byte 2) 
        The  contents of the second  byte of the instruction is  subtracted 
        from the contents of the accumulator.   The result is placed in the 
        accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    SUBB r     (Subtract Register with borrow) 
 
        (A)<--(A) -- (r) -- (CY) 
        The contents of register r and the contents of the CY flag are both 
        subtracted from  the accumulator.   The  result  is  placed  in the 
        accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 1 | 1 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    SBB M     (Subtract memory with borrow) 
 
        (A)<--(A) -- ((H)(L)) -- (CY) 
        The  content of the memory  location whose  address is contained in 
        the  H and L  registers,  and the contents of the  CY flag are both  
        subtracted  from the  accumulator.   The  result is  placed in  the 
        accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg, indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-26 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP (Cont) 
    ======================= 
 
    SBI DATA     (Subtract immediate with borrow) 
         
        (A)<--(A) -- (byte 2) -- (CY) 
        The contents of the second byte of the instruction and the contents 
        of  the CY flag  are both  subtracted  from the  accumulator.   The 
        result is placed in the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    INR r     (Increment Register) 
 
        (r)<--(r) + 1 
        The  contents  of  register  r is incremented  by one.   NOTE:  All 
        condition flags except CY are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | D | D | D | 1 | 0 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  5                      Flags:  Z,S,P,AC 
 
 
    INR M     (Increment memory) 
 
        ((H)(L))<--((H)(L)) + 1 
        The contents of the  memory location  whose address is contained in 
        the H and L registers is  incremented by one.   NOTE: All condition  
        flags except CY are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg. indirect 
                  States: 10                      Flags:  Z,S,P,AC 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-27 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP (Cont) 
    ======================= 
 
    DCR r     (Decrement register) 
 
        (r)<--(r) -- 1 
        The  contents of  register r  is  decremented  by  one.   NOTE: All  
        condition flags except CY are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | D | D | D | 1 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  5                      Flags:  Z,S,P,AC 
 
 
    DCR M     (Decrement memory) 
 
        ((H)(L))<--((H)(L)) -- 1 
        The contents of  the memory location  whose address is contained in 
        the H and L  registers is  decremented by one.  NOTE: All condition 
        flags except CY are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg. indirect 
                  States: 10                      Flags:  Z,S,P,AC 
 
 
    INX rp     (Increment register pair) 
 
        (rh)(rl)<--(rh)(rl) + 1 
        The contents of the register pair  rp is incremented by one.  NOTE: 
        No condition flags are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | R | P | 0 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  5                      Flags:  none 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-28 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    ARITHMETIC GROUP (Cont) 
    ======================= 
 
    DAD rp     (Add register pair to H and L) 
 
        (H)(L)<--(H)(L) + (rh)(rl) 
        The  contents of register  pair rp is added to the  contents of the 
        register pair H and L.  The result is placed in register pair H and 
        L.  NOTE: Only  the CY  flag is affected.   It is set if there is a  
        carry out of the double precision add; otherwise it is reset. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | R | P | 1 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  register 
                  Status: 10                      Flags:  CY 
 
 
    DAA     (Decimal Adjust Accumulator) 
 
        The  eight-bit  number in the accumulator  is adjusted to  form two 
        four-bit Binary-Coded-Decimal digits by the following process: 
 
        1.  If the value of the least significant 4-bits of the accumulator 
            is  greater than 9 or if the AC flag is set,  6 is added to the  
            accumulator. 
 
        2.  If the value of the most significant 4-bits of the  accumulator 
            is now greater than 9, or if the CY flag is set,  6 is added to 
            the most significant 4-bits of the accumulator. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:   1 
                  States:   4 
                   Flags:   Z,S.P,CY,AC 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-29 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP 
    ============= 
 
    This  group  of  instructions  performs logical (Boolean) operations on 
    data in registers and memory and on condition flags. 
 
    Unless  indicated  otherwise, all instructions in this group affect the 
    Zero, Sign,  Parity,  Auxiliary,  and  Carry  flags  according  to  the 
    standard rules. 
 
 
    ANA r     (AND register) 
 
        (A)<--(A)/\(r) 
        The contents of register r is  logically ended with the contents of 
        the accumulator.  The result is placed in the accumulator.   The CY 
        flag is cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 0 | 0 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    ANA M     (AND memory) 
 
        The contents of  the memory location  whose address is contained in 
        the  H and L  registers is  logically anded with the content of the 
        accumulator.   The  result  is  placed in the  accumulator.  The CY  
        flag is cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    ANI data     (AND immediate) 
 
        (A)<--(A)/\(byte 2) 
        The  contents of the  second byte of  the instruction is  logically 
        anded with the  contents of the accumulator.  The  result is placed 
        in the accumulator.  The CY and AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |           data byte           | 
                       +-------------------------------+ 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 



    CHAPTER ELEVEN      HEATH MACHINE LANGUAGE                   PAGE 11-30 
    ==============      ======================                   ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP (Cont) 
    ==================== 
 
    XRA r     (Exclusive OR register) 
 
        (A)<--(A)-\/-(r) 
        The content of register r is exclusive-OR'd with the content of the 
        accumulator.   The result is placed in the accumulator.  The CY and 
        AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 0 | 1 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    XRA M     (Exclusive OR memory) 
 
        (A)<--(A)-\/-((H)(L)) 
        The  contents of the memory location whose address is  contained in  
        the  H and L registers is  exclusive-OR'd with the  contents of the 
        accumulator.   The result is placed in the accumulator.  The CY and 
        AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    XRI data     (Exclusive OR immediate) 
 
        (A)<--(A)-\/-(byte 2)      
        The  contents of the  second byte of the  instruction is  exclusive 
        OR'd  with the  contents of the accumulator.  The  result is placed   
        in the accumulator.  The CY and AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-31 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP (Cont) 
    ==================== 
 
    ORA r     (OR Register) 
 
        (A)<--(A)\/(r) 
        The contents of  register r is inclusive-OR'd with the contents  of  
        the  accumulator.   The result  is placed in the  accumulator.  The 
        CY and AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 1 | 0 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    ORA M     (OR Memory) 
 
        (A)<--((H)(L))  
        The contents of the  memory location  whose address is contained in 
        the  H and L  registers is  inclusive-OR'd with the contents of the 
        accumulator.  The result is placed in  the accumulator.  The CY and 
        AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    ORI data     (OR Immediate) 
 
        (A)<--(A)\/(byte 2) 
        The  content of  the second  byte of the  instruction is  inclusive 
        OR'd  with the  content of the  accumulator.  The  result is placed 
        in the accumulator.  The CY and AC flags are cleared. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-32 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP (Cont) 
    ==================== 
 
    CMP r     (Compare Register) 
 
        (A) -- (r) 
        The contents of register r is subtracted from the accumulator.  The 
        accumulator  remains  unchanged.  The  condition flags are set as a  
        result  of the  subtraction.  The Z flag  is set to 1 if (A) = (r). 
        The CY flag is set to 1 if (A)<(r). 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 1 | 1 | S | S | S | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  4                      Flags:  Z,S,P,CY,AC 
 
 
    CMP M     (Compare memory) 
 
        (A)--((H)(L)) 
        The  contents of the memory location whose address is  contained in 
        the  H and L  registers is  subtracted  from the  accumulator.  The 
        accumulator  remains unchanged.  The  condition  flags are set as a 
        result of the subtraction.  The Z flag is set to 1 if (A)=((H)(L)). 
        The CY flag is set to 1 if (A) < ((H)(L)). 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  reg. indirect 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
    CPI data     (Compare immediate) 
 
        (A)--(byte 2) 
        The  contents of the second byte of the  instruction is  subtracted  
        from the  accumulator.  The  condition flags  are set by the result 
        of the  subtraction.  The  Z flag  is set  to 1 if  (A) = (byte 2). 
        The CY flag is set to 1 if (A) < (byte 2). 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  2                 Addressing:  immediate 
                  States:  7                      Flags:  Z,S,P,CY,AC 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-33 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP (Cont) 
    ====================  
 
    RLC     (Rotate left) 
 
        (An+1)<--(An);(A0)<--(A7)    NOTE: The following characters are 
        (CY)<--(A7)                  subscripted: n+1, n, 0, 7, 7. 
 
        The contents of the accumulator is  rotated left one position.  The 
        low-order bit and the CY flag are both set to the value shifted out 
        of  the high-order  bit  position.  Only  the CY flag  is affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4 
                   Flags:  CY 
 
 
    RRC     (Rotate right) 
         
        (An)<--(An-1);(A7)<--(A0)   NOTE: The following characters are 
        (CY)<--(A0)                 subscripted: n, n-1, 7, 0, 0. 
 
        The content of the  accumulator is rotated right one position.  The 
        high-order  bit and the  CY flag are both set to the  value shifted  
        out of the low-order bit position.  Only the CY flag is affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4 
                   Flags:  CY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-34 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP (Cont) 
    ==================== 
 
    RAL     (Rotate left through carry) 
 
        (An+1)<--(An);(CY)<--(A7)    NOTE: The following characters are 
        (A0)<--(CY)                  subscripted: n+1, n, 7, 0. 
 
        The  contents  of  the  accumulator  is  rotated  left one position 
        through the CY flag.  The  low-order bit is  set to the CY flag and 
        the  CY flag is set to the value shifted out of the high-order bit. 
        Only the CY flag is affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  1 
                  States:  4 
                   Flags:  CY 
 
 
    RAR     (Rotate right through carry) 
 
        (An)<--(An+1);(CY)<--(A0)    NOTE: The following characters are 
        (A7)<--(CY)                  subscripted: n, n+1, 0, 7. 
 
        The  contents  of the  accumulator  is rotated  right one  position  
        through the CY flag.  The high-order bit is set to the CY flag, and 
        the  CY flag is set to  the value shifted out of the low-order bit. 
        Only the CY flag is affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  1 
                  States:  4 
                   Flags:  CY 
 
 
    CMA     (Complement accumulator) 
 
        (A)<--(A) 
        The contents of the accumulator are complemented (zero bits become 
 
        one, one bits become zero).  No flags are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  1 
                  States:  4 
                   Flags:  none 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-35 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    LOGICAL GROUP (Cont) 
    ==================== 
 
    CMC     (Complement carry) 
 
        (CY)<--(NOT CY)     NOTE:  This computer cannot illustrate CY 
                            with a "not" bar above the expression. 
 
        The CY flag is complemented.  No other flags are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4 
                   Flags:  CY 
 
 
    STC     (Set carry) 
 
        (CY)<-- 1 
        The CY flag is set to 1.  No other flags are affected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4 
                   Flags:  CY 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-36 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    BRANCH GROUP 
    ============ 
 
    This group of branch instructions alter normal sequential program flow. 
    Condition flags are not affected by any instruction in this group. 
 
    The two types of branch instructions are unconditional and conditional. 
    Unconditional transfers  simply  perform  the  specified  operation  on 
    register  PC  (the program counter).  Conditional transfers examine the 
    status of one of the four processor flags to determine if the specified 
    branch is to be executed.  The following conditions may be specified: 
 
 
                      CONDITION                 CCC    OCTAL 
 
              NE or NZ ---- Not zero (Z=0)      000      0 
              E or Z ---------- Zero (Z=1)      001      1 
              NC --------- No Carry (CY=0)      010      2 
              C ------------- Carry (CY=1)      011      3 
              PO -------- Parity Odd (P=0)      100      4 
              PE ------- Parity Even (P=1)      101      5 
              P --------------- Plus (S=0)      110      6 
              M -------------- Minus (S=1)      111      7 
 
 
    JMP addr     (Jump) 
 
        (PC)<--(byte 3)(byte 2) 
        Control  is  transferred  to  the   instruction  whose  address  is 
        specified in byte 3 and byte 2 of the current instruction. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
 
                  Cycles:   3                Addressing:  immediate 
                  States:  10                     Flags:  none 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-37 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    BRANCH GROUP (Cont) 
    =================== 
 
    JNE  JNC  JPO   JP     (Condition jump) 
    JE   JC   JPE   JM 
 
        If (CCC), 
        (PC)<--(byte 3)(byte 2) 
 
        If  the specified condition is true, control is transferred to the 
        instruction whose address is specified in byte 3 and byte 2 of the 
        current instruction.  Otherwise, control continues sequentially. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | C | C | C | 0 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
 
                  Cycles:  3                 Addressing:  immediate 
                  States: 10                      Flags:  none 
 
 
    CALL addr     (Call) 
 
        ((SP)--1)<--(PCH) 
        ((SP)--2)<--(PCL) 
        (SP)<--(SP)--2 
        (PC)<--(byte 3)(byte 2) 
 
        The  high-order 8-bits of the next instruction address are moved to 
        the memory location whose address is one less than the  content  of 
        register  SP.  The low-order 8-bits of the next instruction address 
        are moved to the memory location whose address is two less than the 
        content  of register SP.  The content of register SP is decremented 
        by 2.  Control is transferred to the instruction whose  address  is 
        specified in byte 3 and byte 2 of the current instruction. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
 
                  Cycles:  5                 Addressing:  immediate/reg. 
                  States: 17                              indirect 
                                                  Flags:  none 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-38 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    BRANCH GROUP (Cont) 
    =================== 
 
    CNE   CNC   CPO   CP     (Condition call) 
    CE    CC    CPE   CM 
 
        If (CCC) 
        ((SP)--1)<--(PCH) 
        ((SP)--2)<--(PCL) 
        ((SP)<--(SP)--2 
        (PC)<--(byte 3)(byte 2) 
 
        If the  specified condition is true,  the actions  specified in the  
        CALL instructions  (see above)  are performed.   Otherwise, control 
        continues sequentially. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | C | C | C | 1 | 0 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                       |        low-order addr         | 
                       +-------------------------------+ 
                       |       high-order addr         | 
                       +-------------------------------+ 
 
                  Cycles:  3/5               Addressing:  immediate/reg. 
                  States:  11/17                          indirect 
                                                  Flags:  none 
 
 
    RET     (Return) 
 
        (PCL)<--((SP)): 
        (PCH)<--((SP)) + 1); 
        (SP)<--(SP) + 2; 
         
        The content  of the memory location  whose address is  specified in 
        register SP  is moved to the  low-order 8-bits of register PC.  The 
        content  of the memory location  whose address is one more than the 
        content of register  SP  is  moved  to  the  high-order  8-bits  of 
        register PC.  The content of register SP is incremented by 2. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg.indirect 
                  States: 10                      Flags:  none 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-39 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    BRANCH GROUP (Cont) 
    =================== 
 
    RNE   RNC     (Conditional return) 
    RE    RC 
 
        If (CCC), 
        (PCL)<--((SP)) 
        (PCH<--((SP) + 1) 
        (SP)<--(SP) + 2 
 
        If the  specified condition  is true, the actions  specified in the 
        RET  instructions  (see above) are  performed.  Otherwise,  control  
        continues sequentially. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | C | C | C | 0 | 0 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  1/3               Addressing:  reg. indirect 
                  States:  5/11                   Flags:  none 
 
 
    RST n     (Restart) 
 
        ((SP)--1)<--(PCH) 
        ((SP)--2)<--(PCL) 
        (SP)<--(SP)--2 
        (PC)<--8 * (NNN) 
 
        The  high-order bits of the next  instruction address  are moved to 
        the memory  location whose address is one less  than the content of 
        register SP.   The low-order 8-bits of the next instruction address 
        are moved to the memory location whose address is two less than the 
        content of register SP. 
 
        The  content of  register SP  is decremented  by two.   Control  is 
        transferred  to the  instruction whose  address is  eight times the 
        content of NNN.  
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | N | N | N | 1 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                  Cycles:  3                 Addressing:  reg.indirect 
                  States: 11                      Flags:  none 
 
 
          15   14  12  11  10  9   8   7   6   5   4   3   2   1   0 
         +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N | N | N | 0 | 0 | 0 | 
         +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
                         Program Counter after Restart 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-40 
    ==============      =======================                  ========== 
 
                              8080 OPCODES (Cont) 
                              +++++++++++++++++++ 
 
    BRANCH GROUP (Cont) 
    =================== 
 
    PCHL     (Jump H and L indirect -- move H and L to PC) 
 
        (PCH)<--(H) 
        (PCL)<--(L) 
 
        The  content of  register H  is moved to the  high-order  8-bits of 
        register PC.  The  content  of register L is moved to the low-order  
        8-bits of register PC. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1                 Addressing:  register 
                  States:  5                      Flags:  none 
        ******************************************************************* 
 
 
                     STACK, I/O, AND MACHINE CONTROL GROUP 
                     +++++++++++++++++++++++++++++++++++++ 
 
    This  group  of  instructions  performs I/O, manipulates the stack, and 
    alters  the  internal  control  flags.   Unless  otherwise   specified, 
    condition flags are not affected by any instructions in this group. 
 
 
    PUSH rp     (Push) 
 
        ((SP)--1)<--(rh) 
        ((SP)--2)<--(rl) 
        (SP)<--(SP)--2 
 
        The  content of the  high-order register  pair (rp) is moved to the  
        memory  location whose  address is  one less  than the  content  of  
        register  SP.  The  content of  the low-order  register of register 
        pair (rp) is moved to the memory location whose address is two less 
        than  the content  of register SP.  The  content of  register SP is 
        decremented  by  2.   NOTE: Register  pair  (rp)  = SP  may  not be 
        specified. 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | R | P | 0 | 1 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg. indirect 
                  States: 11                      Flags:  none 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-41 
    ==============      =======================                  ========== 
 
                 STACK, I/O, AND MACHINE CONTROL GROUP (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
 
    PUSH PSW     (Push processor status word) 
 
        ((SP)--1)<--(A)                      NOTE: Numbers after the first 
        ((SP)--2)0<--(CY),((SP)--2)1<--1     expression: 0, 2,, 4, 6, are 
        ((SP)--2)2<--(P),((SP)--2)3<--0      subscript.  Also numbers after 
        ((SP)--2)4<--(AC),((SP)--2)5<--0     the third expression: 1, 3, 
        ((SP)--2)6<--(Z),((SP)--2)7<--(S)    5, 7 are subscript. 
        (SP)<--(SP)--2 
         
        The  contents  of  register A is moved to the memory location whose 
        address is  one  less  than  register  SP.   The  contents  of  the 
        condition  flags are assembled into a processor status word and the 
        word is moved to the memory location whose address is two less than 
        the  content  of  register  SP.   The  content  of  register  SP is 
        decremented by two. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg. indirect 
                  States: 11                      Flags:  none 
 
 
                                   FLAG WORD 
 
                        D7  D6  D5  D4  D3  D2  D1  D0 
                      +---+---+---+----+---+---+---+----+ 
                      | S | Z | 0 | AC | 0 | P | 1 | CY | 
                      +---+---+---+----+---+---+---+----+ 
 
 
    POP rp     (Pop) 
 
        (rl)<--((SP)) 
        (rh)<--((SP) + 1 
        (SP)<--(SP) + 2 
 
        The  content  of  the memory location whose address is specified by 
        the content of register SP is moved to the  low-order  register  of 
        register  pair  (rp).   The  content  of  the memory location whose 
        address is one more than the content of register SP is moved to the 
        high-order  register  pair  (rp).   The  content  of register SP is 
        incremented by 2.  NOTE:  Register  pair  (rp)  =  SP  may  not  be 
        specified. 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | R | P | 0 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg. indirect 
                  States: 10                      Flags:  none 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-42 
    ==============      =======================                  ========== 
 
                 STACK, I/O, AND MACHINE CONTROL GROUP (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
 
    POP PSW     (Pop processor status word) 
 
        (CY)<--((SP))0 
        (P)<--((SP))2 
        (AC)<--((SP))4      NOTE:  Numbers after the expressions: 
        (Z)<--((SP))6       0, 2, 4, 6, 7 are subscript. 
        (S)<--((SP))7 
        (A)<--((SP) + 1 
        (SP)<--(SP) + 2 
 
        The  contents  of the memory location whose address is specified by 
        the contents of register SP is used to restore the condition flags. 
        The  content  of the memory location whose address is one more than 
        the content of register SP is moved to register A.  The content  of 
        register SP is incremented by 2. 
         
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  3                 Addressing:  reg. indirect 
                  States: 10                      Flags:  Z,S,P,CY,AC 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-43 
    ==============      =======================                  ========== 
 
                 STACK, I/0, AND MACHINE CONTROL GROUP (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
 
    XTHL     (Exchange stack top with H and L) 
 
        (L)<-->((SP)) 
        (H)<-->((SP) + 1) 
 
        The  contents  of  the L register is exchanged with the contents of 
        the memory location whose address is specified by the  contents  of 
        register  SP.  The contents of the H register is exchanged with the 
        contents of the memory location whose address is one more than  the 
        contents of register SP. 
         
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  5                 Addressing:  reg. indirect 
                  States: 18                      Flags:  none 
 
 
    SPHL     (Move HL to SP) 
 
        (SP)<--(H)(L) 
 
        The  contents of registers  H and L (16-bits) are moved to register 
        SP. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                   Cycles:  1                Addressing: register 
                   States:  5                     Flags: none 
 
 
    IN port     (Input) 
 
        (A)<--(data) 
 
        The  data  placed  on  the  8-bit  bidirectional  data  bus  by the 
        specified port is moved to register A. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                       |          input port           | 
                       +-------------------------------+ 
 
                  Cycles:  3                 Addressing: direct 
                  States: 10                      Flags: none 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-44 
    ==============      =======================                  ========== 
 
                 STACK, I/0, AND MACHINE CONTROL GROUP (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
 
    OUT port     (Output) 
 
        (data)<--(A) 
 
        The  contents  of  register  A is placed on the 8-bit bidirectional 
        data bus for transmission to the specified port. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
                       |          output port          | 
                       +-------------------------------+ 
 
                  Cycles:  3                 Addressing: direct 
                  States: 10                      Flags: none 
 
 
    EI     (Enable interrupt) 
 
        The interrupt system is enabled following the execution of the next 
        instruction. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4                      Flags:  none 
 
 
    DI     (Disable interrupt) 
 
        The  interrupt   system  is  disabled   immediately  following  the 
        execution of the DI instruction. 
 
 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4                      Flags:  none 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-45 
    ==============      =======================                  ========== 
 
                 STACK, I/0, AND MACHINE CONTROL GROUP (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
 
    HLT     (Halt) 
 
        The processor is stopped.   The registers and flags are unaffected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  7                      Flags:  none 
 
 
    NOP     (No op) 
 
        No operation is performed.  The registers and flags are unaffected. 
 
                       +---+---+---+---+---+---+---+---+ 
                       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
                       +---+---+---+---+---+---+---+---+ 
 
                  Cycles:  1 
                  States:  4                      Flags:  none 
    *********************************************************************** 
 
 
 
                      PSEUDO OPCODES/ASSEMBLER DIRECTIVES 
                      +++++++++++++++++++++++++++++++++++ 
 
    The Heath Assembly Language supports several assembler directives, more 
    commonly known as 'pseudo  opcodes'  or  simply  'pseudo  ops.'   These 
    opcodes   are  called  "pseudo"  because  they  are  coded  as  machine 
    operations.   But  as  their  alternate  name  (assembler   directives) 
    indicates,  they  represent  commands  to ASM and are not translated as 
    instructions.  Some pseudo ops affect the operation of  the  assembler. 
    Others  cause  the  assembler  to generate constants into the generated 
    object code. 
     
 
    DEFINE BYTE, DB 
    ===============  
 
    The DB pseudo defines byte contents.  The DB pseudo is of the form: 
 
        Label DB iexp1, . . . . . ,iexpn 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-46 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    DEFINE BYTE, DB (Cont) 
    ====================== 
 
    The  integer  expressions  iexp1  through  iexpn  are expressions which 
    evaluate to 8-bit values.  For the DB pseudo,  a  long  string  can  be 
    substituted  for an expression.  The long string is a character string, 
    delimited by single quotes ('), containing one or more characters.  You 
    can  inclose  a  quote  (')  within a string by coding it as two single 
    quotes.  Each of the expressions is  converted  into  an  8-bit  binary 
    number  and  stored  in sequential memory locations.  A few examples of 
    the DB pseudo are: 
 
        CR      EQU     15Q 
        LF      EQU     12Q 
                DB      1 
                DB      2,3,4 
                DB      10,CR,LF,'H8 BASIC' ,0 
 
    In  each case, the DB pseudo converts the expression into a single byte 
    and stores it in  the  appropriate  memory  location.   The  DB  pseudo 
    recognizes  a  character string as a series of expressions.  Therefore, 
    each character is converted into its ASCII  binary  equivalent  and  is 
    stored in a sequential memory location. 
 
 
    DEFINE SPACE, DS 
    ================ 
 
    The  defined  space  pseudo  (DS)  reserves  a  block  of memory during 
    assembly. 
 
    The form of the DS pseudo is: 
 
        LABEL   DS   iexp   COMMENT 
 
    This  pseudo is used, for example, to set up a buffer area or to define 
    any other storage area.  The DS pseudo causes the assembler to  reserve 
    a  number  of  bytes specified by the expression (iexp) in the operand. 
    These bytes are not preset to any value.   Therefore,  you  should  not 
    presume any special original contents.  Programs using extensive buffer 
    area should use the DS pseudo to  declare  this  area.   Using  the  DS 
    pseudo significantly shortens the program load time.  In the example: 
 
        LINE    DS   80    80 character input line buffer 
 
    an 80-character input buffer is reserved by a single statement. 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-47 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    DEFINE WORD, DW 
    =============== 
 
    The DW pseudo defines word constants.  The form of the DW pseudo is: 
 
        LABEL    DW    iexpl, . . . . . ,iexpn 
 
    The  DW  pseudo  specifies  one  or more data words iexp through iexpn. 
    Data words are 2-byte values which are placed into  memory  space, low- 
    order  byte  first.  NOTE: Strings greater than two characters long are 
    not allowed with the DW pseudo. 
 
 
    CONDITIONAL ASSEMBLY PSEUDO OPERATORS 
    ===================================== 
 
    Frequently, you may want to write a program with certain portions of it 
    that can be turned on or turned off.  That is to  say,  when  they  are 
    turned  on,  these  portions of the program are assembled.  If they are 
    turned off, they are not assembled  during  that  particular  assembly. 
    ASM contains three pseudos to aid in conditional assembly.  They are: 
      
                            IF    ELSE    and ENDIF 
 
 
    IF 
    -- 
 
    The  IF  pseudo  conditionally  disables  assembly  of  any  statements 
    following the IF pseudo operator.  The form of the IF  pseudo  operator 
    is: 
 
        IF      iexp 
 
    If  the  expression  (iexp) evaluates to zero, the statements following 
    the IF pseudo are assembled.  If the expression does  not  evaluate  to 
    zero  (either  negative  or  positive),  any statements in the assembly 
    source code following this expression are  skipped  until  one  of  the 
    three  following  pseudos  are  encountered.   The ELSE, ENDIF, and END 
    pseudos are not skipped regardless  of  the  value  of  the  expression 
    "iexp." 
 
 
    ELSE 
    ---- 
 
    The ELSE pseudo toggles the state of the assembly conditions.  The ELSE 
    pseudo is of the form: 
 
        ELSE 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-48 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    CONDITIONAL ASSEMBLY PSEUDO OPERATORS (Cont) 
    ============================================ 
 
    If the conditional assembly flag is set to skip assembling source code, 
    it is changed so source code is now assembled.  If lines of source code 
    prior  to  encountering  the  ELSE  pseudo  are  being assembled, those 
    following the ELSE pseudo are skipped until an ELSE, ENDIF, or  END  is 
    encountered.  NOTE: The ELSE segment must appear after an IF statement, 
    but before the associated ENDIF statement. 
     
 
    ENDIF 
    ----- 
 
    The  ENDIF  statement  indicates  the  end  of  a  block of source code 
    designated for conditional assembly.  The form of the ENDIF pseudo is: 
 
        ENDIF 
 
    Assembly  resumes  regardless of the current assembly state (assembling 
    or skipping) when the ENDIF conditional assembly pseudo occurs. 
 
 
    END PROGRAM, END 
    ================ 
 
    The  END  pseudo  indicates the END of a program.  The END pseudo takes 
    the form: 
      
        END iexp 
 
    where  iexp is the program entry point.  The program entry point is the 
    memory address where program execution begins.  If the END statement is 
    missing,  the  assembler generates one.  If "iexp" is missing, an error 
    is flagged, and ASM uses 042 200A. 
     
 
    DEFINE LABEL, EQU 
    ================= 
 
    The  equate statement is used to assign an arbitrary value to a symbol. 
    The form of the equate statement is: 
 
        LABEL    EQU    iexp 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-49 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    CONDITIONAL ASSEMBLY PSEUDO OPERATORS (Cont) 
    ============================================ 
 
    DEFINE LABEL, EQU (Cont) 
    ------------------------ 
 
    The  equate  statement is unique, as it must evaluate on pass one.  For 
    this reason, any symbols used within  the  expression  "iexp"  must  be 
    defined  before the assembler encounters the EQU statements.  The label 
    is assigned the value of the integer expression "iexp."  This label may 
    not  be  redefined by subsequent use as a label in any other statement. 
    For example: 
 
        START  EQU  * 
 
    The  label  START  is  set  equal  to  the value of the memory location 
    counter, or: 
 
        START  EQU  100 
 
    The label START is set equal to 100. 
 
    NOTE: If you omit the label, an error is generated. 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-50 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    CONDITIONAL ASSEMBLY PSEUDO OPERATORS (Cont) 
    ============================================ 
 
    ORIGIN STATEMENT, ORG 
    --------------------- 
 
    The  Origin  statement  (ORG)  sets  the  initial  value  of the memory 
    location counter.  The form of the origin statement is: 
 
        LABEL ORG iexp 
 
    The  expression iexp must evaluate on pass one.  Therefore, any symbols 
    used within this  expression  must  be  defined  before  the  assembler 
    encounters  this  statement.   When  the  assembler  encounters the ORG 
    statement, the memory location counter is set to the expression  value. 
    All  subsequent  object  code  generated  by the assembler is placed in 
    sequential memory locations, starting  at  the  address  given  by  the 
    expression.   It  is  legal to establish a new origin, either before or 
    after a previous origin.  If a label is present, it is given the  value 
    iexp.  For example: 
 
        BEGIN   ORG     42200 A 
 
    The program is started at location 042 200 (offset octal) and the label 
    BEGIN is assigned the offset octal value 040 200.  This is  the  lowest 
    address the user (programmer) should use. 
 
        BEGIN   ORG     START+256 
 
    The  memory  location counter is set to the previously defined value of 
    the label START+256.  The label BEGIN also assumes this value. 
 
 
    SET STATEMENT, SET 
    ================== 
 
    The  SET statement assigns an arbitrary value to a desired symbol.  The 
    form of the SET statement is: 
 
        LABEL   SET     iexp 
 
    The  SET  pseudo  op  differs  from the EQU pseudo op in that any label 
    defined in a  SET  statement  can  be  redefined  in  a  following  SET 
    statement  as  many times as desired in the course of the program.  The 
    expression "iexp"  must  evaluate  during  pass  one.   Therefore,  any 
    symbols used within the expression "iexp" must be previously defined. 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-51 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    XTEXT STATEMENT, XTEXT 
    ====================== 
 
    The  XTEXT statement is used to include the contents of another file in 
    the assembly.  The form of the XTEXT statement is: 
 
        XTEXT   <fname>     
 
    When  the  assembler  encounters the XTEXT pseudo operation, it locates 
    the specified file <fname>.  <Fname> must reside upon a disk device and 
    should  contain  assembly  language  statements.   Note that it may not 
    contain an END statement  nor another XTEXT statement.  The  statements 
    in <fname> are assembled into the program where the XTEXT statement was 
    encountered.  The XTEXT statement itself is normally  listed,  but  the 
    included  statements  from  <fname>  normally  are  not.  The C listing 
    control option is provided to cause them to be listed (see LON and  LOF 
    pseudo operations). 
 
    The  file  specification  <fname>  may  specify  a  device  code and an 
    extension.  If no extension is specified,  ASM  assumes  the  extension 
    .ACM.   The  only  device codes that you may specify are codes for disk 
    devices which have been mounted.  If no device is specified  and  XTEXT 
    default  devices  were  specified  on the command line, ASM will search 
    those default devices  for  the  file  in  the  order  that  they  were 
    specified.   If it does not find the named file on the default devices, 
    or if no default devices were specified, ASM will search for  the  file 
    on  the device where the main program resides.  If it still cannot find 
    the named file, ASM will search for the file on device  SY0:.   If  the 
    file  still cannot be located, ASM will flag the XTEXT statement with a 
    "U" error. 
 
    The XTEXT statement is normally used to include files containing symbol 
    definitions and commonly-used subroutines.  For example, Heath provides 
    a  file  intended to be used with XTEXT, "HDOS.ACM."  HDOS.ACM contains 
    symbolic definitions for various operating  system  function  requests. 
    For example, the symbol .EXIT is defined to have the value of 0 (zero). 
    A program including the file HDOS.ACM can use this symbol in generating 
    system  requests.   This  is  not  only  self-documenting, but should a 
    future system revision change the system function codes, the programmer 
    can  convert  over  by simply changing the definitions in HDOS.ACM, and 
    reassembling all of his programs, since they all make use of  the  same 
    definition file, HDOS.ACM. 
 
    You  can  also  use  XTEXT  to  include commonly-used assembly language 
    subroutines  into a program.  In this way a programmer can avoid having 
    to  rewrite  and redebug the same routine for each of his programs.  An 
    assembly language programmer will soon build an  extensive  library  of 
    utility  subroutines,  ready  to  be XTEXTed into any assembly language 
    program. 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-52 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    LISTING CONTROL 
    =============== 
 
    ASM  provides  a  number  of  pseudo operators which affect the listing 
    mode.  They control paging, pagination,  titles,  and  subtitles.   The 
    listing  control  pseudos are used to affect easily read documentation; 
    they do not appear in the program listing. 
 
 
    TITLE 
    ----- 
 
    The pseudo operator TITLE causes a new page title to be used.  The form 
    of the title pseudo op is: 
      
        TITLE    'new title' 
 
    Unless the assembler is already at the top of a page, a new page of the 
    assembly listing is generated.  This page is given the title  contained 
    in the 'new title.' 
 
 
    STL 
    --- 
 
    The  subtitle  pseudo  (STL) causes a new page subtitle to be set.  The 
    form of the subtitle pseudo is: 
 
        STL     'new subtitle' 
 
    The  subtitle  pseudo  does  not affect pagination.  This is to say, it 
    does not generate a new page, but simply titles  a  subsection  of  the 
    program.   Subtitles  are  frequently  used  to indicate subroutines or 
    major program modules. 
 
 
    EJECT 
    ----- 
 
    The  EJECT  pseudo  causes  a  new page to be started.  The form of the 
    eject pseudo is: 
 
        EJECT 
 
    When  ASM processes an EJECT pseudo, the output device is instructed to 
    move to the start of a new page during the listing. 
     
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-53 
    ==============      =======================                  ========== 
 
                    PSEUDO OPCODES/ASSEMBLER DIRECTIVES 
                    +++++++++++++++++++++++++++++++++++ 
          
    LISTING CONTROL (Cont) 
    ====================== 
 
    SPACE 
    ----- 
 
    The  SPACE  pseudo leaves blank lines in the program listing.  The form 
    of the SPACE pseudo is: 
 
        SPACE   iexp1,iexp2 
 
    During  the  assembly  listing,  iexp1  blank  lines  are left.  If the 
    optional expression iexp2 is specified, the assembler checks  during  a 
    listing  to see if the number of lines remaining on the page is greater 
    than or less than iexp2.  If there are less than iexp2 lines  remaining 
    on  the  page,  the  spacing  function  is  skipped,  and a new page is 
    started, as if an EJECT pseudo were encountered. 
 
 
    LON (Listing on) 
    ---------------- 
 
    The  LON  pseudo operator is used to turn on listing options.  The form 
    of the LON pseudo is: 
 
        LON     CCC 
 
    Each  option  is represented by a single character.  The characters for 
    the desired options are supplied as CCC.  The options and their default 
    modes (if they are not specified) are: 
 
 
    L   Master listing 
 
        If this option is enabled, all program lines are listed.  If it is 
        disabled, only lines containing errors are listed. 
        DEFAULT  MODE:  All  program  lines  are  listed (normally enabled; 
        disable using LOF). 
 
    I   Lists the IF-skipped lines.  When this option is enabled, all lines 
        skipped due to IF statements are  listed  (although  they  are  not 
        assembled). 
        DEFAULT MODE: The skip lines are not contained in the listing. 
 
    G   Lists  all  generated  bytes.   When  this  option  is enabled, all 
        generated bytes appear in the listing.  If more  than  three  bytes 
        are  generated  by  a  statement,  new  lines  are generated in the 
        listing to display these bytes.  NOTE: The DB  pseudo  can  produce 
        many  bytes when you are encoding a string.  These are not normally 
        listed. 
        DEFAULT  MODE:  Lists  a  maximum  of the 3-bytes generated in each 
        statement. 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-54 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    LISTING CONTROL (Cont) 
    ====================== 
 
    C   Lists XTEXT-included lines.  When this option is enabled, all lines 
        included via the XTEXT pseudo operator are listed. 
        DEFAULT MODE: XTEXT lines are not listed. 
 
    R   Lists  referenced labels.  When this option is enabled, lines which 
        reference labels in the operand field are  included  in  the cross- 
        reference table. 
        DEFAULT MODE: Lines which reference labels are included. 
 
 
    LOF (Listing off) 
    ----------------- 
 
    The  LOF pseudo is identical to the LON pseudo except that the selected 
    options are disabled.  The form of the LOF pseudo is: 
 
        LOF     CCC 
 
    See LON, above, for a description of the control character CCC. 
 
 
    NOREF 
    ----- 
 
    The NOREF pseudo causes references to the defined symbols to be omitted 
    from the cross-reference listing.  The form of the NOREF pseudo is: 
 
        NOREF   symbol 1, symbol 2, . . . . . symbol n 
 
    Note  that  the  specified  symbols are included in the cross-reference 
    table until NOREF pseudo is encountered. 
 
 
    ERRxx 
    ----- 
 
    ASM contains four conditional error pseudo operators.  These are of the 
    form: 
 
        ERRZR   iexp 
        ERRNZ   iexp 
        ERRPL   iexp 
        ERRMI   iexp 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-55 
    ==============      =======================                  ========== 
 
                  PSEUDO OPCODES/ASSEMBLER DIRECTIVES (Cont) 
                  ++++++++++++++++++++++++++++++++++++++++++ 
 
    LISTING CONTROL (Cont) 
    ====================== 
 
    For  each  of these pseudo operators, the assembler tests the indicated 
    expression.  If the expression matches the expressed  error  condition, 
    an  error  code  is flagged in the listing.  The errors associated with 
    each of the conditional error pseudos are: 
 
        ERRZR   tests for zero expression 
        ERRNZ   tests for non-zero expression 
        ERRPL   tests for positive expression 
        ERRMI   tests for negative expression 
 
    These  pseudo  error  tests  are  particularly  useful  when  you  make 
    assumptions about the configuration  of  various  program  elements  or 
    expressions.  You can encode these assumptions into ERRxx pseudos.  Any 
    change which causes the code to fail generates an error,  flagging  the 
    programmer during the listing.  For example: 
 
        LXI     H,AREA1 
        MOV     B,M             (B) = (AREA1) 
        INX     H                
        ERRNZ   AREA2-AREA1-1   Assumes area 2 follows area 1 
        MOV     C,M             (C) = (AREA2) 
 
    If  when  the program is assembled, AREA 1 and AREA 2 have been defined 
    differently, an error flag warns of the mistake. 
    *********************************************************************** 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-56 
    ==============      =======================                  ========== 
 
                           GENERATING THE ASSEMBLER 
                           ++++++++++++++++++++++++ 
 
    Before you can use the assembler, it must first be copied to your system   
    disk.  You can do this by copying the files: 
 
                ASM .ABS 
                XREF.ABS 
                   *.ACM 
 
    The  file ASM.ABS is the assembler, and XREF.ABS is the cross-reference 
    table generator.  Both files are  necessary  before  you  can  run  the 
    assembler.   The  files  with filename extensions of .ACM are Assembler 
    Common files.  The use of these files will be discussed later. 
 
 
    USING THE ASSEMBLER 
    =================== 
 
    In  order  to  use  the assembler, you must prepare source code using a 
    text editor such as EDIT.ABS.  To get you started, Heath  has  prepared 
    some short assembly language programs which may be found in Appendix A. 
     
    When  the  source  program  is  ready, type ASM in response to the HDOS 
    system prompt.  HDOS interprets this command as  RUN  SY0:ASM.ABS.   If 
    the  assembler  is  on  SY1:, then type RUN^SY1:ASM.  [Note: The ^ mark 
    indicates to make a space.]  In either case, the assembler will type: 
 
        HDOS Assembler Issue #104.00.00 
        * 
 
    Note  that  the issue number may be different, but an issue number will 
    be shown.  The asterisk (*) is the Assembler's prompt,  asking  you  to 
    enter a command line in the form: 
 
        <binary fname>,<listing fname>,<XREF temp fname>= 
        <source fname>,<XTEXT devices>[/SWITCHa . . . /SWITCHn] 
 
    The  <binary  fname> specification tells ASM where to put the generated 
    binary program.  The default extension is .ABS.  If you do not wish  to 
    generate a binary file, omit the filename, but not the following comma. 
 
    The  <listing  fname> specification tells ASM where to put the assembly 
    listing.  The default extension is .LST.  If  you  specify  no  listing 
    file,  ASM will not generate one.  In that case, any program statements 
    that contain errors will be listed on the system console. 
 
    The  <XREF  temp  fname>  specification  tells  ASM  where  to  store a 
    temporary file which will contain information used  in  generating  the 
    cross-reference table.  The default extension is .TMP.  If no .TMP file 
    is specified, ASM will  not  generate  a  cross-reference  table.   The 
    temporary file is automatically deleted after the cross-reference table 
    has been listed. 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-57 
    ==============      =======================                  ========== 
 
                        GENERATING THE ASSEMBLER (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    USING THE ASSEMBLER (Cont) 
    ========================== 
 
    The  <source  fname>  specification  tells  ASM which file contains the 
    assembly language source program.  The default extension is .ASM.   You 
    must  specify  this  file;  it cannot be omitted.  The device specified 
    must be a mounted disk drive. 
 
    The  <XTEXT  devices> specification tells ASM where to search for XTEXT 
    files.  You may specify from 0 to 5 device names, each separated  by  a 
    comma.   The  devices must be disk drives, and the disks must have been 
    mounted.  For further information, see the paragraphs on XTEXT. 
 
 
    SWITCHES 
    ======== 
 
    There  are  several  switches  that  you  may specify at the end of the 
    command line.  These switches are all optional, and you can combine any 
    number of them.  The legal switches are: 
 
    /LARGE 
    ------ 
          This  switch  tells  ASM that the program you wish to assemble is 
          large, and it should use all  the  available  memory.   Normally, 
          when  assembling,  ASM  speeds itself up by letting the operating 
          system use a portion of RAM.  However,  if  your  program  is  so 
          large  that  the  assembler  runs  out  of  RAM, you will have to 
          assemble using the /LARGE switch.  This switch causes ASM to  use 
          all the available RAM for itself, with a slightly slower assembly 
          as  a  result.   For  systems  with  only  32k  RAM,   ASM   will 
          automatically use all of available memory; specifying /LARGE will 
          have no effect. 
           
 
    /ERR 
    ---- 
          This  switch causes ASM to write all program lines with errors in 
          them to the console.  Of course, the lines are  also  written  in 
          the  normal  fashion  to the listing file.  If no listing file is 
          specified, error lines  will  automatically  be  written  to  the 
          console regardless of the /ERR switch. 
           
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-58 
    ==============      =======================                  ========== 
 
                        GENERATING THE ASSEMBLER (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    SWITCHES (Cont) 
    =============== 
 
    /PAGE:nn 
    -------- 
          ASM  writes  the  source listing file formatted into pages so the 
          program can  be  listed  neatly  on  a  printer  or  a  hard-copy 
          terminal.   The  /PAGE  switch tells the assembler how many lines 
          are to appear on a page.  Note that this is not the size  of  the 
          page itself, since you will want to leave several lines to form a 
          gap between the pages.  Thus, for the standard page  size  of  66 
          lines,  a  specification of /PAGE:60 is about right.  This is the 
          default value, so only users with non-standard paper (i.e., other 
          than 8.5 x 11 inches) size need to specify /PAGE. 
           
 
    /WIDE 
    ----- 
          The  /WIDE  switch  informs  the cross-reference program that the 
          listing is to be printed  on  132-column  paper.   Default  paper 
          width is 80 columns. 
 
 
    /FORM:nn 
    -------- 
          When  the  assembler  is told to start a new page for the listing 
          file, it writes an ASCII form-feed  character  into  the  listing 
          file.   This  causes  an  eject to a new page.  If your hard-copy 
          device will not respond to a form-feed in this  manner,  you  can 
          use the /FORM:nn switch to have the assembler generate the proper 
          number of line-feeds to cause the paper to eject.  The "nn" field 
          is  the  size  of  a  page (or "form") for your hard-copy device. 
          This must be larger than the specified /PAGE:nn value. 
 
          The  standard  size for most computer forms is 66 lines per page; 
          thus, /FORM:66 should be specified.  If,  for  example,  you  had 
          paper  that  held 40 lines per page, and you wished to print only 
          the top half of each page, you  could  specify  /FORM:40/PAGE:20. 
          This tells ASM that you want to print 20 lines per page, and that 
          each page  is  40  lines  long.   When  the  /FORM:nn  switch  is 
          specified,  the  assembler  writes  the proper number of carriage 
          return  line-feeds to the listing file instead of  the  form-feed 
          character. 
           
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-59 
    ==============      =======================                  ========== 
 
                        GENERATING THE ASSEMBLER (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    SWITCHES (Cont) 
    =============== 
 
    /LON:ccc 
    -------- 
          The /LON switch is used to override the listing options specified 
          (via the  LON  and  LOF  pseudo  instructions)  in  the  assembly 
          language  code.   The "ccc" switch represents one or more listing 
          options,  discussed  in  the  paragraph   on   the   LON   pseudo 
          instruction.  A listing option selected by the /LON switch cannot 
          be deselected by a LOF pseudo instruction for the program.  Note: 
          LOF is not a switch; it is a pseudo op. 
 
 
    /LOF:ccc 
    -------- 
          The /LOF switch is used to override the listing options specified 
          (via the  LOF  and  LOF  pseudo  instructions)  in  the  assembly 
          language  source  code.   "ccc"  represents  one  or more listing 
          options,  discussed  in  the  paragraph   on   the   LOF   pseudo 
          instruction.   A  listing  option  deselected  by the /LOF switch 
          cannot be selected by a /LON pseudo instruction in the program. 
 
 
    COMMAND LINE EXAMPLES: 
    ====================== 
 
    This  section shows several example assembly command lines with a brief 
    discussion of each.  These lines all show assembly of a sample program, 
    DEMO.ASM. 
 
 
    "*" 'DEMO,DEMO=DEMO<RTN>' 
    ------------------------- 
          This  command  causes the file SY0:DEMO.ASM to be assembled, with 
          the listing file written to  SY0:DEMO.LST  and  the  binary  file 
          written  to SY0:DEMO.ABS.  Note that form-feed characters will be 
          used to separate the pages of the listing file. 
 
           
    "*" 'DEMO.DEMO,TEMP=DEMO,SY2:<RTN>' 
    -----------------------------------        
          This  command  causes the file SY0:DEMO.ASM to be assembled, with 
          the binary file written to SY0:DEMO.ABS.  The listing  file  will 
          be  written  to  file  SY0:DEMO.LST,  and will  include  a cross- 
          reference table.   The  file  SY0:TEMP.TMP  will  be  used  as  a 
          temporary  work  file  for  generating the cross-reference table. 
          Device SY2: will be the first device to be searched for any files 
          given  on  XTEXT  lines in the source file which do not specify a 
          device. 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-60 
    ==============      =======================                  ========== 
 
                        GENERATING THE ASSEMBLER (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    COMMAND LINE EXAMPLES (Cont) 
    ============================ 
 
    "*" 'DEMO.XXX,TT:=DEMO.ASM/FORM:66<RTN>' 
    ---------------------------------------- 
          This  command  causes the file SY0:DEMO.ASM to be assembled, with 
          the listing file written directly to the console terminal device, 
          TT:.  The binary file will be written to file SY0:DEMO.XXX.  This 
          example assumes that the  console  terminal  is  a  Decwriter  II, 
          without  the  form-feed  option.   Thus,  the  /FORM  switch  was 
          specified so the assembler would space the paper correctly. 
 
 
    "*" ',LP:=DEMO/LOF:L<RTN>' 
    -------------------------- 
          This  command  causes the SY0:DEMO.ASM file to be assembled, with 
          the listing file written directly to  the  line  printer,  device 
          LP:.   Since  no /FORM switch was specified, and the /PAGE switch 
          was defaulted to /PAGE:60, the assembler will write pages  of  60 
          lines  (or  less)  to  the  line  printer, separated by form-feed 
          characters.  The user in this case wanted a listing of  just  the 
          errors   in   his   program,  without  listing  all  the  correct 
          statements.  His use of the /LOF:L switch specified that no lines 
          were  to  be  listed.   Since  lines containing errors are always 
          listed on the listing file, the result will be a listing  on  the 
          printer showing only lines with errors. 
 
 
    "*" '=DEMO<RTN>' 
    ---------------- 
          This  final  example  shows  the user assembling the program SY0: 
          DEMO.ASM, and producing no binary or listing files.  This form is 
          useful  to  check  a  program  for  assembly errors since, in the 
          absence of a listing file, all assembly errors are printed on the 
          console.  Note that no binary file will be generated. 
           
 
    ERRORS 
    ====== 
 
    All  errors  detected  by  the  Heath  Assembly  Language assembler are 
    flagged directly on the  listing  in  the  first  three  columns.   One 
    character  is  flagged for each error detected.  If more than one error 
    is detected, the second error character is placed in column 2, and  the 
    third error is placed in column 3. 
       
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-61 
    ==============      =======================                  ========== 
 
                        GENERATING THE ASSEMBLER (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    ERRORS (Cont) 
    ============= 
 
        CHARACTER                 ERROR DESCRIPTION 
        ---------                 ----------------- 
 
        U       An  undefined  symbol.   The symbol name does not match any 
                symbol in the symbol assignment table.  Check for  spelling 
                errors or for a completely undefined symbol. 
 
        R       Illegal register specified.  Two different errors can cause 
                this message.  A non-8080 register may have been specified, 
                or the instruction was not  meaningful  for  the  register, 
                such  as  a  register  pair  instruction  which refers to a 
                single register. 
                 
        D       Label  is  double-defined.   The  symbolic  label  has been 
                defined twice in the source program. 
 
        A       Operand  syntax error.  The operand expression is improper. 
                For example, it may evaluate  to  a  number  >65535,  be  a 
                divide by zero, or be nonexistent. 
 
        V       Value  exceeds  8-bits.   The  result  of  an expression is 
                greater than 255.  This error is not flagged if the op-code 
                called for a 16-bit operand, such as an LXI instruction. 
 
        F       Format  error.   A  pseudo-op  requires a label that is not 
                present in the source code.  For example, an EQU  pseudo-op 
                requires a label.  Or too many characters were specified in 
                a label. 
 
        O       Unrecognized  op-code.   The op-code in this statement does 
                not belong to the 8080 instruction set, nor does it  belong 
                to  the  ASM  pseudo-op  instruction  code  set.  Check for 
                spelling errors  or  for  op-codes  used  from  some  other 
                microprocessor instruction sets. 
                  
        P       Error  generated  by  ERRxx pseudo or reference to a doubly 
                defined label.  Note the ERRxx  pseudos  are  generated  to 
                flag  the  user  when  a  test expression does not evaluate 
                satisfactorily. 
 
    NOTE:  If an assembly generates a great number of errors, it is best to 
    return to the Text Editor, correct as many errors as possible, and then 
    attempt  to reassemble.  The reassembly will frequently flag additional 
    errors, which are then obvious on the second assembly.  If  the  errors 
    are  few,  you  may load the program and debug it using DBUG.  However, 
    this does not result in a correct listing. 
    *********************************************************************** 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-62 
    ==============      =======================                  ========== 
 
                  APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE 
                  ++++++++++++++++++++++++++++++++++++++++++++ 
 
    INTRODUCTION 
    ============ 
 
    The HDOS Operating System offers a powerful and yet simple interface to 
    assembly language programs.  This  section  discusses  the  fundamental 
    system  commands  necessary  to  execute  a  simple  assembly  language 
    program.   The  advanced  features  and  facilities  of  HDOS  will  be 
    discussed in the HDOS System Programmers' Guide, Chapter 13. 
 
    HDOS provides what is called the "environment" for an assembly language 
    program.  It loads the program into memory, sets up the stack,  handles 
    console  and  disk  device  I/O,  and  provides  other services for the 
    program.  In return, a programmer must always remember that his program 
    is not the only one running in the computer -- the HDOS program is also 
    running in the same machine.  A programmer must: 
 
    *   Be careful not to write into memory locations reserved for HDOS.  
 
    *   Be  sure  his program does not destroy the program stack by loading 
        the stack pointer. 
 
    *   Be  sure  his  program  does  not  turn  off  interrupts via the DI 
        instruction (except for very short periods of time). 
 
    Finally,  it  is  important  that  assembly  language  programs use the 
    support and facilities of HDOS,  rather  than  "doing  it  themselves." 
    Using  HDOS whenever possible serves two functions: first, it makes the 
    program much more useful and flexible.  For example,  if  your  program 
    uses  the HDOS console driver rather than communicating directly to the 
    console itself via IN and OUT instructions, your program  automatically 
    takes  advantage  of  the  features  of  the HDOS console system (i.e., 
    CTRL-S, CTRL-O, CTRL-U, RUBOUT,  etc)  without  any  extra  programming 
    effort  from you.  Later, if a new version of HDOS supports new devices 
    and/or new features, your program will automatically be  able  to  take 
    advantage of any new feature without having to be modified. 
 
    The second reason for using HDOS functions is system compatability.  As 
    mentioned  above,  new  releases  of  HDOS  will  be   made   available 
    periodically.   These  new  versions  will  fix known bugs, support new 
    devices, and contain powerful new features.   Programs  which  properly 
    use  HDOS  functions  will be able to run under the new version of HDOS 
    after being reassembled.  Programs that "do it themselves" may fail  to 
    work under new HDOS releases. 
 
    NOTE: The symbol [^] indicates to type a space. 
          The symbol [>] indicates the HDOS system prompt.  
          The symbol [*] indicates the Assembler prompt.          
      
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-63 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont) 
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    WRITING YOUR PROGRAM  
    ==================== 
 
    In order to successfully run your assembly language program under HDOS, 
    you must follow the simple format shown in Figure 1.  Your program must 
    start with the three lines: 
 
        TITLE   "some descriptive title" 
        XTEXT   HDOS 
        ORG     USERFWA 
 
    The  TITLE  statement  causes an appropriate title to be printed on the 
    assembly listing.  The title you use is not important as long as it  is 
    meaningful  to you.  The XTEXT statement prepares the assembler for the 
    HDOS commands you  will  be  including  in  your  program.   These  are 
    discussed later in this appendix.  Finally, the ORG statement tells the 
    assembler to assemble your program into the user memory area. 
 
    You  may  write your program after these three lines; however, the last 
    line in the program must be: 
 
        END     xxx 
 
    where  xxx  is a label in your program.  When you run your program, via 
    the RUN command, execution will begin at the label specified in the END 
    statement. 
 
      +-----------------------------------------------------------------+ 
      |         TITLE   "some meaningful title"                         | 
      |         XTEXT   HDOS                                            | 
      |         ORG     USERFWA                                         | 
      |                                                                 | 
      | XXX     (first line of meaningful code)                         | 
      |         (your program goes here, see Figures 2, 3, and 4        | 
      |         for examples)                                           | 
      |                                                                 | 
      |         END     xxx                                             | 
      +-----------------------------------------------------------------+ 
                                   Figure 1 
 
    ASSEMBLING YOUR PROGRAM 
    ======================= 
    The  first  thing you must do to run an assembly language program is to 
    assemble  it.   This  process  translates  the  source  code   language 
    statements  into  the 8080A binary object codes.  A sample source-coded 
    program, "DEMO.ASM," is shown beginning  on page 11-70.   This  listing 
    should  be  entered  using  an editor.  Once you have this program as a 
    source file, you can then assemble it.  In the HDOS command mode, type: 
     
    ">"'RUN^ASM<RTN>' 
    "*"'DEMO,DEMO=DEMO<RTN>' 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-64 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont) 
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ASSEMBLING YOUR PROGRAM (Cont) 
    ============================== 
 
    This  command  tells  the  assembler that you want to assemble the file 
    SY0:DEMO.ASM,  producing  a  listing  file  called  SY0:DEMO.LST,   and 
    producing  a  binary  file called SY0:DEMO.ABS.  It is this binary file 
    that contains the executable program.  If you have a hard-copy  device, 
    such as a line printer, you can copy the file DEMO.LST onto that device 
    for reference during the remainder of this discussion.  If you  do  not 
    have  a  hardcopy  device,  you  can  refer  to the listing of the file 
    DEMO.ASM at the end of this appendix. 
 
    Note  that  the .ASM, .LST, and .ABS extensions are "defaults" provided 
    by ASM.  The assembler will use any specified  extensions.   Since  ASM 
    makes  use  of HDOS facilities for I/O, ASM is also device independent. 
    For example, if you are assembling a program and want  to  produce  the 
    listing  output  on  your  "AT:" device, you need not write the listing 
    file to the disk, copy it to "AT:" and then delete it.  Instead, type: 
 
       "*"'DEMO,AT:=DEMO<RTN>' 
 
    This will cause the listing to be written directly to the "AT:" device. 
     
 
    EXECUTING YOUR PROGRAM 
    ====================== 
 
    You  must specify the starting address, or entry point, of your program 
    in the END statement.  Thus, in the program DEMO.ASM, the END statement 
    says that execution is to start at the label ENTRY.  When you type: 
 
    ">"'RUN^DEMO<RTN>' 
 
    HDOS  will  load  the program into memory and start executing it at the 
    label ENTRY. 
 
 
    RETURNING TO HDOS 
    ================= 
 
    When  your  program  has  finished executing, it must return control to 
    HDOS so you can continue to use the operating system.  Your program can 
    do an orderly return to HDOS by executing the two instructions: 
 
        XRA     A 
        SCALL   .EXIT 
 
    This will cause control to return to HDOS.  The SCALL .EXIT instruction 
    will be the last one your program will execute. 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-65 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont) 
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    RETURNING TO HDOS (Cont) 
    ======================== 
 
    The  SCALL  is  a  special  HDOS  assembler  operation that generates a 
    special two-byte call to the HDOS Operating System.  The  symbol  .EXIT 
    indicates  the  particular  type  of request you want to make.  In this 
    case, you are telling HDOS that you are done executing. 
 
    Another way to return control to HDOS is to process CTRL-Cs within your 
    program.  In your program initialization, set up CTRL-C  processing  as 
    follows: 
 
               . 
               . 
               . 
           LXI  H,EXIT 
           MVI  A,003 
           SCALL  .CTLC 
               . 
               . 
               . 
 
    The end of your program will have the exit routine: 
 
               . 
               . 
               . 
         EXIT XRA A 
         SCALL .EXIT 
 
    A  CTRL-C  entered while your program is running will cause a return to 
    HDOS. 
 
    If  you  have  not dismounted or reset your system, typing CTRL-Z twice 
    will return you to HDOS immediately.  However, if your  program  has  a 
    bug,  and  cannot respond to either CTRL-C or CTRL-Z, you should reboot 
    the system.  This will restart the  system.   You  can  then  run  your 
    program under DBUG and isolate the problem in a controlled environment. 
     
 
    MEMORY USAGE 
    ============ 
 
    HDOS  uses  memory  locations both below and above your program.  It is 
    important that HDOS should know how  much  of  the  user  memory  area, 
    starting  at  address 042200 that your program will be using.  In order 
    to be as fast as possible, HDOS will use some of  the  RAM  area  (that 
    part  directly  below  the  resident HDOS code) for a work area, if the 
    running user program is not using it.  Thus, if you are  not  going  to 
    use  that RAM, HDOS should be informed so that it can use the area.  If 
    you are going to use that RAM, HDOS should be informed so that it  will 
    not use the same area for itself. 
     



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-66 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont) 
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    MEMORY USAGE (Cont) 
    =================== 
 
    When you type the command: 
 
        ">"'RUN^<fname><RTN>' 
 
    HDOS  automatically  computes  the  size  of  your  program  as  it was 
    assembled.  This means that your program must not write into any memory 
    location  that you did not declare during the assembly, using a DB, DW, 
    or DS statement.  For example, if your program needs a 500-byte  memory 
    area, you should not write your program in the form: 
     
                .        . 
                .        . 
                .        . 
        WORK    EQU     *          500 BYTE WORK AREA STARTS HERE 
                END     ENTRY 
 
                -- Example of how not to write your program -- 
 
 
    and  then  use the 500 bytes starting at the label WORK.  In this case, 
    HDOS would think that your program ended  at  the  label,  WORK.   HDOS 
    would  have  no  way  of  knowing  that you had planned to use 500 more 
    bytes.  Instead, you should code the program as follows: 
 
                .        . 
                .        . 
                .        . 
        WORK    DS      500        500 BYTE WORK AREA 
                END     ENTRY 
 
            -- Example of one correct way to write your program -- 
     
 
    In  this  case,  HDOS will know that you will be using the 500 bytes at 
    WORK because you declared them in the DS statement. 
 
 
    TYPING LINES AND CHARACTERS 
    =========================== 
 
    HDOS  provides two commands for writing to the console terminal.  These 
    are .PRINT and .SCOUT. 
 
    .PRINT 
    ------ 
 
    The .PRINT SCALL is used to print a line of text on the system console. 
    Before you issue the .PRINT SCALL, you must load  the  address  of  the 
    first  byte  of  the  line to be printed in the H and L registers.   
    



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-67 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont) 
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    TYPING LINES AND CHARACTERS (Cont) 
    ================================== 
     
    .PRINT (Cont) 
    ------------- 
 
    For example: 
                LXI     H,LINE 
                SCALL   .PRINT          PRINT THE MESSAGE 
                 .       . 
                 .       . 
        LINE    DB      12Q,'HI THER','E'+200Q 
 
        would cause the message 
        "HI THERE" 
        to be printed on the system console 
 
    You  have  probably  noticed that the DB statement in the above example 
    contains more than just the character string 'HI THERE'.  The first  of 
    these  additions  is  the  12Q.   This tells the assembler to start the 
    message with the ASCII character 012 OCTAL.  This  is  the  ASCII  "New 
    Line"  character.   Instead of using the ASCII Carriage Return and Line 
    Feed characters, HDOS uses the "New Line" character.  (NOTE:  The  "New 
    Line"  has  the  same  octal code as the Line Feed; since HDOS does not 
    allow Line Feed characters, there is no  confusion.)   The  "New  Line" 
    character  causes  a  new line to be started on the output device.  The 
    rationale behind the use of "New Line"  instead of Carriage Return-Line 
    Feed  is  beyond  the scope of this manual.  Suffice it to say that the 
    use of "New Line" gives a device-independent way to cause a new line to 
    be started.  The Carriage Return character should not be used; the Line 
    Feed character will be interpreted as a  "New  Line,"  since  both  are 
    represented by 12Q. 
 
    The  other  item to note about the DB statement is the expression "'E'+ 
    200Q".  The .PRINT command prints the characters whose  address  is  in 
    the  H  and  L  registers  until  it prints a character with the parity 
    (200Q) bit set.  This character is the last one printed.  Thus, in  the 
    example the expression "'E'+200Q" was used to set the high-order bit on 
    the last 'E' in the message so HDOS would stop typing at that point. 
 
 
    .SCOUT 
    ------ 
 
    Use  the  .SCOUT to type a single character on the console device.  The 
    character in the A register is printed on the  console  terminal.   For 
    example: 
 
                MVI     A,'X' 
                SCALL   .SCOUT             PRINT THE CHARACTER 'X' 
 
    The high-order bit (parity bit) is ignored by .SCOUT. 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-68 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont) 
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    READING FROM THE CONSOLE 
    ======================== 
 
    HDOS provides the .SCIN command for reading characters from the console 
    terminal  and the one command  .CONSL  to  control  character  echoing, 
    backspace, and erase-line handling. 
 
 
    .SCIN 
    ----- 
 
    The  .SCIN  command is used to read a single character from the console 
    device.  If the 8080 "carry" flag is set after the  SCALL  instruction, 
    it  means  that  no character has been typed yet.  If the carry flag is 
    clear, then  a character has been read and is in the  A  register.   It 
    does  not matter if the carry flag is set or clear when you execute the 
    SCALL .SCIN.  For example: 
 
    READ        SCALL   .SCIN           READ A CHARACTER, IF ANY 
                JC      READ            NO CHARACTER ENTERED, YET 
                STA     CHAR            STORE CHARACTER READ IN MEMORY 
 
 
    .CONSL 
    ------ 
 
    The .CONSL command is used to set the mode of console input.  There are 
    two modes of input: line mode, and character mode. 
     
    When you are inputting in line mode, HDOS saves up the typed characters 
    until you type a <RTN>.   This  is  done  so  HDOS  can  handle  RUBOUT 
    (character delete) and CTRL-U (line delete) functions.  If HDOS were to 
    give you the characters one by one as they were typed, it  wouldn't  be 
    able  to  'take  them away again' if CTRL-U were typed.  By saving them 
    all up until you press <RTN>, HDOS can handle any DELETEs  and  CTRL-Us 
    that  are  typed.  For example, if you were to type the four keys Y, E, 
    S, and <RTN> while your program was executing the example shown  above, 
    it  would  not receive any characters until you pressed the <RTN>.  The 
    next four .SCIN commands would each return with one of the  characters. 
    The  <RTN>  key  gives  the 012Q, "New Line" character code.  Thus, the 
    four values read when you type YES <RTN) are 131Q (Y), 105Q  (E),  123Q 
    (S), and 012Q (RTN). 
 
    Line  mode  is  very  useful  when  you  wish  to input a line from the 
    console, since HDOS provides the DELETE and CTRL-U  functions  for  you 
    automatically.    For   programs  that  need  to  read  each  character 
    immediately after it is typed, there is 'character mode'.  Inputting in 
    "Character  Mode"  causes  the  typed  character  to  be passed to your 
    program immediately.  If the user types RUBOUT or  DELETE,  the  RUBOUT 
    code  (177Q)  is passed to your program.  If the user types CTRL-U, the 
    CTRL-U code (025Q) is passed to your program.  "Character Mode" is more 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-69 
    ==============      =======================                  ========== 
 
              APPENDIX 11-A: - ASSEMBLY LANGUAGE INTERFACE (Cont)   
              +++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    READING FROM THE CONSOLE (Cont) 
    =============================== 
 
    .CONSL (Cont) 
    ------------- 
 
    flexible  than  "Line Mode," but it requires your program to handle the 
    RUBOUT and CTRL-U keys. 
     
    The  .CONSL  command  also  allows you to turn character echoing on and 
    off.  If echoing is turned on, each time the user strikes  a character, 
    it is typed on the console automatically by HDOS.  If echoing is turned 
    off, the character is not typed  on  the  console.   If  you  wish  the 
    character  to  be  visible,  your  program must type it itself, via the 
    .SCOUT command. 
     
    To use the .CONSL command, code the following lines: 
 
                XRA     A 
                MVI     B,xxx           "xxx" value discussed below 
                MVI     C,201Q 
                SCALL   .CONSL 
 
    where "xxx" is 
 
                000Q FOR LINE MODE WITH ECHO 
                001Q FOR CHARACTER MODE WITH ECHO 
                200Q FOR LINE MODE WITHOUT ECHO 
                201Q FOR CHARACTER MODE WITHOUT ECHO 
 
    The  default mode of HDOS console input is "line mode, with echo".  You 
    only need to use the SCALL .CONSL command if you wish some  other  mode 
    of operation.  You can change modes of operation as often as you like. 
     
      +---------------------------------------------------------------+ 
      |                              NOTE                             | 
      |  The HDOS system must be configured to accept tabs in order   | 
      |  to run a demonstration program.                              | 
      |                                                               | 
      |  For details, see the SET command in Chapter Three, page      | 
      |  3-19 of this HDOS manual.                                    | 
      |                                                               | 
      +---------------------------------------------------------------+ 
    ************************************************************************ 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-70 
==============      ======================                       ========== 
 
                  APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING 
                  +++++++++++++++++++++++++++++++++++++++++++ 
 
[1] SAMPLE LISTING 1: 
===================== 
 
042.200             00002        XTEXT   HDOS 
                    00020        ORG     USERFWA 
                    00021 
                    00023 ***    DEMO.ASM - HEATH HDOS ASSEMBLY LANGUAGE 
                    00024 * 
                    00025 *      DEMO IS A SHORT AND SIMPLE PROGRAM USED 
                    00026 *      TO DEMONSTRATE THE HDOS ASSEMBLER AND 
                    00027 *      THE HDOS OPERATING SYSTEM 
                    00028 * 
                    00029 *      THIS PROGRAM SIMPLY PRINTS TWO CODED 
                    00030 *      LINES ON THE SYSTEM CONSOLE TERMINAL. 
                    00031 
042.200 041 221 042 00032  ENTRY LXI      H,MESA  (HL)=ADDRESS OF 1ST MSG 
042.203 377 003     00033        SCALL    .PRINT  PRINT FIRS MESSAGE 
O42.205 041 250 042 00034        LXI      H,MESB  (HL)=ADDRESS OF 2ND MSG 
042.210 377 003     00035        SCALL    .PRINT  PRINT 2ND MESSAGE 
                    00036 
                    00037 *      SEND A BELL TO THE TERMINAL 
                    00038 
042.212 076 007     00039        MVI      A,07Q   (A)=ASCII BELL 
042.214 377 002     00040        SCALL    .SCOUT  RING TERMINAL'S BELL 
                    00041 
                    00042 *      RETURN CONTROL TO HDOS OPERATING SYSTEM 
                    00043 
042.216             00044        XRA      A       EXIT TO OPERATING SYSTEM  
042.217 377 000     00045        SCALL    .EXIT 
                    00046 
                    00047 
                    00048 *      MESSAGES FOR .PRINT SCAL'S 
                    00049 
042.221 012 110 111 00050 MESA   DB   12Q,'HI THERE,SPORTS FANS','!'+200Q 
                    00051        LON  G LIST THE BYTES OF THE NEXT MESSAGE 
042.250 012 131 117 00052 MESB   DB   12Q,'YOUR SYSTEM WORKS FINE','!'+200Q 
        125 122 040 
        123 131 123 
        124 105 115 
        040 127 117 
        122 113 123 
        040 106 111 
        116 105 241 
                    00053 
 
                    00054        END  ENTRY    START EXECUTING AT 'ENTRY' 
                                               LABEL 
 
00054 Statements Assembled 
32420 Bytes Free 
No Errors Detected 
 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-71 
==============      ======================                       ========== 
 
               APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
[1] SAMPLE LISTING 1: (Cont) 
============================ 
 
SYMBOL TABLE 
 .CONSL  000006    .EXIT   000000    .PRINT  000003    .SCIN  000001 
 .SCOUT  000002    ENTRY   042200    MESA    042221    MESB   042250 
 STACK   042200    USERFWA 042200 
 
 
CROSS REFERENCE TABLE 
 
 .CONSL  000006   14E    
 .EXIT   000000   10E   45 
 .PRINT  000003   13E   33   35 
 .SCIN   000001   11E 
 .SCOUT  000002   12E   40 
 ENTRY   042200   32L   54 
 MESA    042221   32    50L 
 MESB    042250   34    52L 
 STACK   042200   18E 
 
 USERFWA 042200   19E   20 
 
39566 Bytes Free 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-72 
==============      ======================                       ========== 
 
               APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++++ 
                             
[2] SAMPLE LISTING 2: 
=====================  
 
042.200             00002       XTEXT  HDOS 
042.200             00020       ORG    USERFWA 
                    00021 
                    00023 
                    00024 ***   DEMO2.ASM-CONSOLE INPUT DEMO, IN LINE MODE 
                    00025 *       
                    00026 *     THIS IS A SIMPLE DEMONSTRATION PROGRAM  
                    00027 *     THAT INPUTS LINES FROM THE CONSOLE,   
                    00028 *     AND TYPES THEM BACK AGAIN. 
                    00029 * 
                    00030 *     IF THE LAST LINE YOU ENTERED CONTAINED A  
                    00031 *     ('.') THEN DEMO2 EXITS TO HDOS AFTER 
                    00032 *     TYPING THE LINE. 
                    00033 
                    00034 
                    00035 ***   TO RUN THIS PROGRAM, TYPE THE FOLLOWING: 
                    00036 *     (DO NOT TYPE COMMENTS IN PARENTHESIS) 
                    00037 * 
                    00038 *     >RUN ASM 
                    00037 *     *DEMO2,TT:=DEMO2  (WRITES LISTING  
                    00038 *                        TO CONSOLE) 
                    00039 *     >RUN DEMO2 
                    00040 *     HI, I'M DEMO2!    (DEMO2 TYPES THIS) 
                    00041 *     ABCD              (YOU TYPE THIS) 
                    00042 *     ABCD              (DEMO2 TYPES THIS) 
                    00043 *     IS ANYONE THERE?  (YOU TYPE THIS) 
                    00044 *     IS ANYONE THERE?  (DEMO2 TYPES THIS) 
                    00045 *     BYE BYE.          (YOU TYPE THIS) 
                    00046 *     BYE BYE.          (DEMO2 TYPES THIS) 
                    00047 *     >                 (DEMO2 EXITS TO HDOS) 
042.200 041 236 042 00048 ENTRY LXI    H,DCMOA     EXECUTION STARTS HERE 
042.203 377 003     00049       SCALL 
                    00050 
                    00051 *     LOOP ECHOING LINES 
                    00052 
042.205 377 001     00053 ECHO  SCALL  .SCIN 
042.207 332 205 042 00054       JC     ECHO    NO CHARACTER YET 
042.212 376 056     00055       CPI    '.' 
042.214 302 222 042 00056       JNE    ECHO1   NOT PERIOD CHARACTER 
042.217 062 256 042 00057       STA    ENDFLAG MAKE ENDFLAG NON-ZERO 
                    00058                      (A '.', IN FACT) 
042.222 377 002     00059 ECHO1 SCALL  .SCOUT  TYPE CHARACTER BACK 
042.224 072 256 042 00060       LDA    ENDFLAG 
042.227 247         00061       ANA    A 
042.230 312 205 042 00062       JZ     ECHO    STILL MORE TO GO 
                    00063 
                    00064 *     HAVE SEEN '.' WILL RETURN TO HDOS 
 
 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-73 
==============      ======================                       ========== 
 
               APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
[2] SAMPLE LISTING 2: (Cont) 
============================ 
 
                    00065 
042.233             00066       XRA    A 
042.234 377 000     00067       SCALL  .EXIT  RETURN TO HDOS 
                    00068 
042.236 012 110 111 00069 DCMOA DB     12Q.'HI,I'M DEMO2!',212Q 
042.256 000         00070 ENDFLAG DB   0      <>0 IF TO EXIT 
                    00071 
042.257 000         00072       END    ENTRY 
 
 
00072 Statements Assembled 
32401 Bytes Free 
No Errors Detected 
 
 
SYMBOL TABLE 
 
.CONSL  000006   .EXIT  000000   .PRINT  000003   .SCIN   000001 
.SCOUT  000002   DEMOA  042236   ECHO    042205   ECHO1   042222 
ENDFLAG 042256   ENTRY  042200   STACK   042200   USERFWA 042200 
 
 
DEMO2.ASM -- CONSOLE READ DEMO, LINE MODE       HEATH XREF #104.06.00 
CROSS REFERENCE TABLE                           22-SEP-80  PAGE 4 
 
.CONSL    000006     14E      
.EXIT     000000     10E     67 
.PRINT    000003     13E     50 
.SCIN     000001     11E     54 
.SCOUT    000002     12E     59 
DEMOA     042236     49      69L 
ECHO      042205     54L     55     62 
ECHO1     042222     57      59L 
ENDFLAG   042256     58      60     70L 
ENTRY     042200     49L     72 
STACK     042200     18E 
USERFWA   042200     19E     20 
 
32513 Bytes Free 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-74 
==============      ======================                       ========== 
 
               APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
NOTES ON SAMPLE 2: 
================== 
 
Note  that  although  this  program DEMO2.ASM appears to be written to echo 
each character after it is typed, actually it echoes each  line  after  the 
RETURN  has  been  typed.   This is because the program reads characters in 
line mode.  HDOS holds the characters until you press the RETURN  key,  and 
then  supplies  them  to  the DEMO2 program.  Thus, each line typed to this 
program appears twice: once when HDOS echoes it as it is being  typed,  and 
once when DEMO2.ASM types it. 
 
 
 
NOTES ON SAMPLE 3: 
================== 
 
Note  that  the  program  DEMO3.ASM  is identical to DEMO2.ASM, except that 
this program inputs in character mode, rather than line mode.  This  causes 
a  big  difference in the response the program makes when you type input to 
it.  DEMO3.ASM echoes each character immediately after it is  typed.   This 
causes  each  character  to  be printed twice on the screen: once when HDOS 
echoes it, and once when DEMO3.ASM types it.  As an exercise,  modify  this 
program to disable the automatic echoing which is done by HDOS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-75 
==============      ======================                       ========== 
 
               APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
[3] SAMPLE LISTING 3:  
===================== 
 
 
042.200             00002       XTEXT  HDOS 
042.200             00020       ORG    USERFWA 
                    00021 
                    00023 
                    00024 ***   DEMO2.ASM-CONSOLE INPUT DEMO, 
                    00025 *     IN CHARACTER MODE. 
                    00026 *       
                    00027 *     THIS IS A SIMPLE DEMONSTRATION PROGRAM  
                    00028 *     THAT INPUTS CHARACTERS FROM THE       
                    00029 *     THE CONSOLE, AND TYPES THEM BACK AGAIN. 
                    00030 * 
                    00031 *     IF THE LAST CHARACTER YOU ENTERED CONTAINED    
                    00032 *     A ('.') THEN DEMO2 EXITS TO HDOS AFTER 
                    00033 *     TYPING THE LINE. 
                    00034 
                    00035 
                    00036 ***   TO RUN THIS PROGRAM, TYPE THE FOLLOWING: 
                    00037 *     (DO NOT TYPE COMMENTS IN PARENTHESIS) 
                    00038 * 
                    00039 *     >RUN ASM 
                    00040 *     *DEMO3,TT:=DEMO3  (WRITES LISTING  
                    00041 *                        TO CONSOLE) 
                    00042 *     >RUN DEMO3 
                    00043 *     HI, I'M DEMO3!    (DEMO3 TYPES THIS) 
                    00044 *     AABBCCDD  (YOU TYPE ABCD, DEMO3 ECHOS IT) 
                    00045 *     XXYY..    (YOU TYPE 'XY.',DEMO3 ECHOS IT)  
                    00046 *     >                 (DEMO3 EXITS TO HDOS) 
                    00047 *     
042.200 041 245 042 00048 ENTRY LXI    H,DEMOA     EXECUTION STARTS HERE 
042.203 377 003     00049       SCALL  .PRINT      PRINT 'HI!' MESSAGE 
                    00050 
                    00051 *     SETUP CHARACTER MODE.  SINCE HDOS WILL ECHO 
                    00052 *     THE CHARACTERS, AND THEN DEMO3 WILL TYPE 
                    00053 *     THEM.  CHARACTERS WILL BE DOUBLED ON THE 
                    00054 *     SCREEN AS THEY ARE TYPED. 
                    00055 
042.205 257         00056       XRA    A 
042.206 006 001     00057       MVI    B,0001Q  CHARACTER MODE WITH ECHO 
042.210 016 201     00058       MVI    C,201Q 
042.212 377 006     00059       SCALL  .CONSL 
                    00060        
                    00061 *     LOOP ECHOING LINES 
                    00062 
042.214 377 001     00063 ECHO  SCALL  .SCIN 
042.216 332 214 042 00064       JC     ECHO     NO CHARACTER YET 
042.221 376 056     00065       CPI    '.' 
042.223 302 231 042 00066       JNE    ECHO1    NOT PERIOD CHARACTER 
042.226 062 265 042 00067       STA    ENDFLAG  MAKE ENDFLAG NON-ZERO 
 



CHAPTER ELEVEN      HDOS ASSEMBLY LANGUAGE                       PAGE 11-76 
==============      ======================                       ========== 
 
 
               APPENDIX 11-B: - SAMPLE SOURCE CODE LISTING (Cont) 
               ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
[3] SAMPLE LISTING 3: (Cont) 
============================ 
 
                    00068                       (A '.', IN FACT) 
042.231 377 002     00069 ECHO1 SCALL  .SCOUT   TYPE CHARACTER BACK 
042.233 072 265 042 00070       LDA    ENDFLAG 
042.236 247         00071       ANA    A 
042.237 312 214 042 00072       JZ     ECHO     STILL MORE TO GO 
                    00073 *     I HAVE SEEN '.'.  WILL RETURN TO HDOS 
                    00074 
042.242 257         00075       XRA    A 
042.243 377 000     00076       SCALL  .EXIT    RETURN TO HDOS 
                    00077 
042.245 012 110 111 00078 DEMOA DD     12Q,'HI, I'M DEMO3!',212Q 
042.265 000         00079 ENDFLAG DB   0        <>0 IF TO EXIT 
                    00080 
042.266 000         00081       END    ENTRY 
 
 
00072 Statements Assembled 
32401 Bytes Free 
No Errors Detected 
 
 
SYMBOL TABLE 
 
.CONSL  000006   .EXIT  000000   .PRINT  000003   .SCIN   000001 
.SCOUT  000002   DEMOA  042245   ECHO    042214   ECHO1   042231 
ENDFLAG 042265   ENTRY  042200   STACK   042200   USERFWA 042200 
 
 
DEMO3.ASM        
CROSS REFERENCE TABLE                            
 
.CONSL    000006     14E     55 
.EXIT     000000     10E     72 
.PRINT    000003     13E     46 
.SCIN     000001     11E     59 
.SCOUT    000002     12E     64 
DEMOA     042245     45      74L 
ECHO      042214     59L     60     67 
ECHO1     042231     62      64L 
ENDFLAG   042265     63      65     75L 
ENTRY     042200     45L     77 
STACK     042200     18E 
USERFWA   042200     19E     20 
 
39508 Bytes Free 
******************************************************************************* 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-77 
    ==============      =======================                  ========== 
 
                   APPENDIX 11-C: - SUPPLEMENTAL REFERENCES 
                   ++++++++++++++++++++++++++++++++++++++++ 
 
    For supplemental information on  Heath Assembly  Language, refer to the 
    following  articles  in  REMark  Magazine,  the  official  Heath/Zenith 
    Publication. 
 
    [1] REMark Issue 15, March 1981, Page 4 
    --------------------------------------- 
    "A KISS for Assembly Programming - Article 1" - by Bob Ellerton. 
    3.5 pages.  Reviews Assembly Language techniques and presents some neat 
    tricks to help the beginner get started. 
 
    [2] REMark Issue 16, April 1981, Page 3 
    --------------------------------------- 
    "A KISS for Assembly Programming - Article 2" - by Bob Ellerton. 
    2.25 pages.  A review of EDIT, the HDOS Line Editor, and how it applies 
    to writing Assembly Language programs. 
 
    [3] REMark Issue 17, May 1981, Page 4 
    ------------------------------------- 
    "A KISS for Assembly Programming - Article 3" - by Bob Ellerton. 
    3 pages.  Further refines the art of programming in assembly language. 
 
    [4] REMark Issue 18, June 1981, Page 4 
    -------------------------------------- 
    "A KISS for Assembly Programming - Article 4" - by Bob Ellerton. 
    3.3  pages.   Outlines  techniques for programming in assembly language 
    for those who use cassette tapes. 
 
    [5] REMark Issue 38, March 1983, Page 23 
    ---------------------------------------- 
    "ASM FOR THE NOVICE," - by Richard A. Martin.  3 Pages. 
    Defines  ASM  as  a  "low level" language, a way to organize and create 
    "object code" by listing source code in a  specific  way  so  that  the 
    computer understands directly.  Gives examples. 
 
    [6] REMark Issue 39, April 1983, Page 35 
    ---------------------------------------- 
    "GETTING  STARTED  WITH  ASSEMBLY  LANGUAGE," - by Patrick Swayne.  3.5 
    pages.  Presents basic concepts and techniques for writing  ASM  source 
    code. 
     
    [7] REMark Issue 43, August 1983, Page 37 
    ----------------------------------------- 
    "PROCESSING  H-19/H89  SPECIAL FUNCTION KEYS WITH ASM," - by William R. 
    Rousseau, MD.  3.0  pages.   Tells  how  to  implement  the  terminal's 
    special function keys with ASM. 
     
    [8] REMark Issue 44, September 1983, Page 21 
    -------------------------------------------- 
    "GETTING STARTED WITH ASSEMBLY LANGUAGE," - by Patrick Swayne.  1 page. 
    Tips on guidelines for programming console I/O. 
     
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-78 
    ==============      =======================                  ========== 
 
                APPENDIX 11-C: - SUPPLEMENTAL REFERENCES (Cont) 
                +++++++++++++++++++++++++++++++++++++++++++++++ 
 
    [9] REMark Issue 46, November 1983, Page 57 
    ------------------------------------------- 
    "MORE  ASSEMBLY  LANGUAGE  PROGRAMMING - HDOS," by P.  John Hagan.  8.5 
    pages.  Tells how  to  manipulate  files  and  how  to  format  output. 
    Provides sample listing as a teaching tool. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-79 
    ==============      =======================                  ========== 
 
                                     INDEX 
                                     +++++ 
 
    Addressing Modes, 11-10 
    Arithmetic Instructions, 11-8 
    Assembler Directives, 11-45 
    Assembler Operations, 11-56 
 
    Branch Instructions, 11-9 
 
    Character Set, 11-2 
    Character Strings, 11-8 
    Command Line Examples, 11-59 
    Comment Field, 11-5 
    Condition Flags, 11-11 
    Conditional Assembly, 11-47 
    Conventions, 11-2 
 
    Data Transfer Instructions, 11-8, 11-16 
    Define Byte (DB), 11-45 
    Define Label (EQU), 11-48 
    Define Space (DS), 11-46 
    Define Word, (DW) 11-47 
    Description Format, 11-16 
    Direct, 11-10, 11-11 
    Dollar Sign [$], 11-3 
    Doubly Defined Label, 11-60, 11-61 
 
    EDIT, 11-2, 11-60 
    Editor, Text, 11-2, 11-60 
    EJECT, 11-52 
    ERRxx, 11-54 
    EQU, 11-8, 11-48 
    ELSE, 11-47 
    END, 11-48 
    END PROGRAM, 11-48 
    ENDIF, 11-48 
    Errors, 11-60, 11-61 
    Expressions, 11-5 
 
    Format Control, 11-5 
 
    I/O Instructions, 11-43 
    IF, 11-47 
    Illegal Register, 11-61 
    Immediate, 11-11 
    Instructions and Data Formats, 11-9 
    Integers, 11-6 
 
    Label Field, 11-3 
    Least Significant Bit (LSB), 11-9 
    Letters, Alphabetical, 11-3 
    Listing Control, 11-52 
    Logical Instructions, 11-9 
    LOF, 11-54 
                 



    CHAPTER ELEVEN      HEATH ASSEMBLY LANGUAGE                  PAGE 11-80 
    ==============      =======================                  ========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    LON, 11-53 
 
    Machine Control Instructions, 11-40 
    Most Significant Bit (MSB), 11-9 
 
    NOREF, 11-54 
    Numerals, 11-3 
 
    Opcode Field, 11-3 
    OPCODES (8080), 11-8 
       Arithmetic Group, 11-22 
       Branch Group, 11-36 
       Data Transfer Group, 11-16 
       Logical Group, 11-29 
       Machine Group, 11-43 
    Operating the Assembler, 11-56 
    Operand Field, 11-4. 11-5 
    Operator Precedence, 11-6 
    Operators, 11-5, 11-6 
    ORG, 11-50 
    Origin Statement, 11-50 
    Origin Symbol [*], 11-8 
    Overflow Error, 11-7 
 
    Period [.], 11-3 
    Pound Symbol [#], 11-3, 11-7 
    Pseudo Opcodes, 11-45 
 
    Register, 11-10 
    Register Indirect, 11-10, 11-11 
 
    Set, 11-50 
    Set Statement, 11-50 
    Space, 11-53 
    Stack Instructions, 11-9 
    Statements, 11-3 
    STL, 11-52 
    Strings, 11-8 
    Symbolic Programs, 11-2 
    Symbols, 11-7 
    Syntax Error, 11-61 
 
    Text Editor, 11-2, 11-61 
    Title, 11-52 
    Tokens, 11-6 
 
    Undefined Symbol, 11-61 
    Unrecognized Opcode, 11-61 
    Using the Assembler, 11-56 
 
    XTEXT, 11-51 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                  VERSION 3.0 
 
 
 
                                  CHAPTER 12 
 
 
                            EXTENDED BENTON HARBOR 
                                     BASIC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-i 
    ==============      ============================              ========= 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                  VERSION 3.0 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection. 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4, 5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  Indeed, HDOS is still alive and well! 
     
    Chapter  12,  Benton Harbor BASIC, was modified slightly for use in the 
    HDOS 3.02 environment.  This chapter explains all the features of BASIC  
    and tells how to use it. 
 
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548,  #6 West  Branch Mobile Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-1 
    ==============      ============================              ========= 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
         INTRODUCTION ..................................... 12-3 
           Conventions .................................... 12-3 
           Manual Scope ................................... 12-3 
           Hardware Requirements .......................... 12-3 
             Running BASIC ................................ 12-4 
 
         BASIC ARITHMETIC ................................. 12-4 
           Data Types ..................................... 12-4 
             Numeric ...................................... 12-4 
             Boolean ...................................... 12-6 
             String ....................................... 12-6 
           Variables ...................................... 12-6 
           Subscripted Variables .......................... 12-7 
           Expressions .................................... 12-9 
           Arithmetic Operators ........................... 12-9 
           Relational Operators .......................... 12-13 
           Boolean Operators ............................. 12-15 
 
         STRING MANIPULATION ............................. 12-16 
           String Variables .............................. 12-16 
           String Operators .............................. 12-17 
 
         THE COMMAND MODE ................................ 12-18 
           Using the Command Mode for Statement Execution. 12-18 
 
         BASIC STATEMENTS ................................ 12-21 
           Line Numbers .................................. 12-21 
           Statement Types ............................... 12-22 
           Command Mode Statements ....................... 12-23 
           Statements Valid in the Command/Program Mode .. 12-29 
           Program Mode Statements ....................... 12-60 
 
         PREDEFINED FUNCTIONS ............................ 12-65 
           Introduction .................................. 12-65 
           Arithmetic and Special Features Functions ..... 12-65 
           String Functions .............................. 12-75 
 
         GENERAL TEXT RULES .............................. 12-78 
 
         ERRORS .......................................... 12-80 
           Recovering from Errors ........................ 12-80 
           Error Messages ................................ 12-81 
 
         ERROR MESSAGES, Table 12-1 ...................... 12-82 
 
        
        
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-2 
    ==============      ============================              ========= 
 
 
                           TABLE OF CONTENTS (Cont) 
                           ++++++++++++++++++++++++ 
 
         APPENDIX 12-A:                                           
           Summary of Benton Harbor BASIC ................ 12-85 
           Numeric Data .................................. 12-85 
           Boolean Data .................................. 12-85 
           String Data ................................... 12-85 
           Variables ..................................... 12-85 
           Subscripted Variables ......................... 12-85 
           Arithmetic Operators .......................... 12-86 
           Relational Operators .......................... 12-86 
           Boolean Operators ............................. 12-86 
           String Variables .............................. 12-86 
           String Operators .............................. 12-87 
           The Command Mode .............................. 12-87 
           Line Numbers .................................. 12-87 
           Multiple Statements on One Line ............... 12-87 
           Command Mode Statements ....................... 12-87 
           Command and Program Mode Statements ........... 12-88 
           Program Mode Statements ....................... 12-92 
           Predefined Functions .......................... 12-92 
           Alphabetical Listing of 
             Functions and Statements .................... 12-95 
 
         APPENDIX 12-B: 
           ASCII Codes ................................... 12-98 
 
         APPENDIX 12-C:                                            
           Supplemental References ...................... 12-100 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-3 
    ==============      ============================              ========= 
 
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    Extended  Benton  Harbor  BASIC  (Extended  BASIC)  is a conversational 
    programming language which is an adaptation of Dartmouth BASIC.  (BASIC 
    is a registered trademark of the Trustees of Dartmouth College.) 
 
    BASIC  is  an  acronym  for Beginner's All Purpose Symbolic Instruction 
    Code.   It  uses  simple  English  statements  and  familiar  algebraic 
    equations  to perform an operation or a series of operations to solve a 
    problem.  Extended BASIC is an interpretive language, compact enough to 
    run  in  a  Heath  computer with minimal memory, yet powerful enough to 
    satisfy most problem-solving requirements.  The interpretive  structure 
    of  BASIC affords excellent facilities for the detection and correction 
    of  programming  errors.   It  uses  advanced  techniques  to   perform 
    intricate manipulations and to express problems more efficiently. 
       
 
    CONVENTIONS 
    =========== 
 
    Within  this  manual,  the  up-arrow  symbol  [^]  will  NOT be used to 
    indicate  a  required  space,  in  order  to  prevent  confusion   with 
    'exponentiation.' 
 
    Statements made by the computer will be set off by quotation marks ["], 
    unless the particular situation is obvious.  Similiarily, responses  by 
    the  user will be set off by apostrophe marks ['].  
                                                                            
    Benton  Harbor BASIC is  referred to  three ways in the  manual: Benton 
    Harbor  BASIC, B. H. BASIC, and  BASIC.  All  three  forms refer to the 
    Heath version of BASIC. 
 
 
    MANUAL SCOPE 
    ============ 
 
    BASIC  runs  on  an H8/H19, H89, or Z90 Computer System, and requires a 
    minimum of 24k bytes of random access memory. 
 
    This  manual  is  written for the user who is already familiar with the 
    BASIC  programming  language.    It   also   describes   the   extended 
    implementation  of  Dartmouth  BASIC and, in so doing, provides a brief 
    summary of the language.  However, this manual is not  intended  as  an 
    instruction  manual  for  learning BASIC.  If you are not familiar with 
    BASIC, we suggest that you obtain  the  Heathkit  Continuing  Education 
    course  entitled "BASIC Programming," Model EC-1100, or the equivalent, 
    before attempting to start programming with BASIC. 
 
     
    RUNNING BASIC 
    ------------- 
 
    In order to run Extended BASIC,  first  copy  the  file "BASIC.ABS" (42 
    sectors) from your software distribution disk onto the system disk that 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-4 
    ==============      ============================              ========= 
 
                              INTRODUCTION (Cont) 
                              +++++++++++++++++++ 
 
    RUNNING BASIC (Cont) 
    ==================== 
       
    you  plan  to  use.   If desired, you may use the HDOS 3.02 SYSCMD copy 
    command to place the 42-sector BASIC.ABS on your working disk.  If  you 
    plan  to  use your printer, it is necessary to load your printer driver 
    first.  Loading LP: is done in the following manner: 
 
    'Load LP:<RTN>'. 
      
    Once BASIC.ABS is present on disk, you can run BASIC by typing: 
     
    ">"'RUN DVn:BASIC<RTN>'  or simply:   ">"'DVn:BASIC<RTN>' 
 
    "DVn:" is the device name (SY0:, SY1:, SY2:, SY3:,  DK0:,  DK1:,  DK2:) 
    that  contains  the file, BASIC.ABS.  If you do not type a device name, 
    HDOS assumes the file is on SY0:.  For example: 
 
    ">"'RUN BASIC<RTN>' 
    "EXTENDED BENTON HARBOR BASIC #110.00.00" 
 
    BASIC uses the asterisk [*] as its prompt character. 
 
    Note  that  the  part  number  that  your computer system prints on the 
    screen may be different.  However, some part number will be displayed. 
    *********************************************************************** 
 
                               BASIC ARITHMETIC 
                               ++++++++++++++++ 
 
    DATA TYPES 
    ========== 
 
    BASIC supports three different data types: 
 
        1. Numeric data. 
        2. Boolean data. 
        3. String data. 
 
 
    NUMERIC DATA 
    ------------ 
 
    BASIC  accepts  real  and  integer  numbers.   A real number contains a 
    decimal point.  BASIC assumes a decimal point AFTER integer data.   Any 
    number  can  be  used  in mathematical expression without regard to its 
    type.  Real numbers must be in  the  approximate  range  of  10^-38  to 
    10^+37.   In  this expression, both the negative 38 and the positive 37 
    represent exponents.  Integer numbers must lie in the  range  of  0  to 
    65535.   All  numbers  used  in  BASIC  are  internally  represented in 
    floating point, which allows  approximately  6.9  digits  of  accuracy. 
    Numbers may be either negative or positive. 
     



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-5 
    ==============      ============================              ========= 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    NUMERIC DATA (Cont) 
    ------------------- 
 
    In  addition  to  integer  and  real  numbers, BASIC recognizes a third 
    format.  This format, called exponential notation, expresses  a  number 
    as  a  decimal  number raised to the power of 10.  The exponential form 
    is: 
 
                                  XXE(+/-)NN 
 
    where E represents the algebraic statement "times ten to the power of;" 
    XX  represents  up  to  a  six-digit  integer  or  real  number;  (+/-) 
    represents  plus  or  minus, and NN represents an integer from 0 to 38. 
    Thus, the number is read as "XX times 10 to the plus or minus power  of 
    NN." 
 
    Numeric  data  in  all three forms may be used in the "Immediate Mode," 
    "Program Mode", in data statements, or in response to  READ  and  INPUT 
    statements. 
 
    Unless  otherwise  specified,  all  the numbers including exponents are 
    presumed to be positive. 
 
    The  results  of  BASIC  computations are printed as decimal numbers if 
    they lie in the range of 0.1 to 999999.  [NOTE: This  may  be  changed. 
    See  "CNTRL  1,"  page 12-34.]  If  the results do not fall within this 
    range, the exponential format is used.  BASIC automatically  suppresses 
    all  leading and trailing zeroes in real and integer numbers.  When the 
    output is in exponential format, it is in the form: 
 
                            (+/-) X.XXXXXE (+/-) NN 
 
    The  following  are  examples  of  typical inputs and the corresponding 
    output.   Note  the  dropping  off  of  leading  and  trailing  zeroes, 
    truncation  to  six  places  of  accuracy,  conversion  to  exponential 
    notation when necessary,  and  conversion  to  decimal  notation  where 
    permitted. 
 
    INPUT          OUTPUT 
    NUMBER         NUMBER               COMMENTS 
    ------         ------               -------- 
    0.1            .1                   Leading zero dropped 
    .0079          7.90000^-03          <.1 converts to exponential 
    0022           22                   leading zeroes dropped 
    22.0200        22.02                trailing zeroes dropped 
    999999         999999               format maintained 
    1000000        1.00000^+06          converted to exponential 
    100000007      1.00000^+08          truncated to 6 places 
    -10.1E+2       -1010                converted to decimal format 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-6 
    ==============      ============================              ========= 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    BOOLEAN DATA 
    ------------ 
 
    Boolean  values  are a subclass of numeric values.  Values representing 
    the positive integers from 0-65,535 (2 16-1) [In the  term  "16-1"  the 
    "16"  is  the  base number, and the "-1" represents an exponent] may be 
    used as Boolean data.  When using numeric data as Boolean  values,  the 
    numeric   data   represents   the  equivalent  16-bit  binary  numbers. 
    Fractional parts of  numeric  data  used  with  Boolean  operators  are 
    discarded.  If the numeric value with the fractional part does not fall 
    into the range of 0-65,535, an illegal number error is generated. 
 
 
    STRING DATA 
    ----------- 
 
    Extended  BASIC  handles  data  in  a  character  string  format.  Data 
    elements of this type are made up of a string of ASCII characters up to 
    255  characters  in  length.   Extended  BASIC  provides  operators and 
    functions to manipulate string data.   Any  printable  ASCII  character 
    (with the exception of the quotation mark itself) may appear in another 
    Extended BASIC string.  In addition to the printable ASCII  characters, 
    the line feed and bell characters are also permitted.  A string may not 
    be typed on more than one line.  A carriage return is  rejected  as  an 
    illegal string character. 
 
 
    VARIABLES 
    ========= 
 
    A  BASIC  variable  is  an  algebraic  symbol  representing  a  number. 
    Variable naming adheres  to  the  Dartmouth  specification.   That  is, 
    variable  names  consist  of  one  alphabetic  character  which  may be 
    followed by one digit (zero to nine).   The  following  is  a  list  of 
    acceptable  and unacceptable variables and the reason why each variable 
    is not acceptable. 
                                         
 
    ACCEPTABLE    UNACCEPTABLE          REASON FOR 
    VARIABLES     VARIABLES             UNACCEPTABILITY 
    ----------    ------------          ---------------  
        C             2C                A digit cannot begin a variable. 
        A5            AF                A second character in a variable 
                                          must be a number. 
        D             3                 A single number is not an  
                                          acceptable variable. 
        L2            $2                The first character of a variable 
                                          must be a letter [A thru Z]. 
 
    Subscripted   variables,   string  variables,  and  subscripted  string 
    variables are permitted.  See "Subscripted Variables,"  page  12-7  and 
    "String Manipulation" on page 12-16. 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-7 
    ==============      ============================              ========= 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    VARIABLES (Cont) 
    ================ 
 
    A value is assigned to a variable when you indicate the value in a LET, 
    READ, or INPUT statement.  These operations are discussed in  "LET"  on 
    page 12-46,  "PRINT"  on page 12-51, and "INPUT AND LINE INPUT" on page 
    12-62. 
 
    The  value assigned to a variable changes each time a statement equates 
    the variable to a new value.  The RUN command  sets  all  variables  to 
    zero  (0).  Therefore, it is only necessary to assign an exact value to 
    a variable when an initial value other than zero is required. 
 
 
    SUBSCRIPTED VARIABLES 
    ===================== 
 
    In addition to the variables described above, BASIC permits subscripted 
    variables.  Subscripted variables are of the form: 
 
        An (N1, . . . . . , N8), 
 
    where  A  is  the variable letter, n is a number (optional) 0-9, and N1 
    thru N8 are the integer dimensions of the variable.  [In the expression 
    N1,  .   .   .   .   .   ,  N8,  the  numbers 1 thru 8 are subscripts.] 
    Subscripted variables provide the ability to manipulate lists,  tables, 
    matrices,  or any set of variables.  Variables are allowed one to eight 
    subscripts. 
 
    The use of subscripts permits you to create multi-dimensional arrays of 
    numeric  and  string  variables.   It  is  important  to  note  that  a 
    dimensioned  variable  is distinguished from a scaler value of the same 
    name.  For example, all four of the following expressions are  distinct 
    variables: 
 
                              A, A(N), A$, A$,(N) 
 
    When  referencing a subscripted variable, each element in the subscript 
    list may consist of an arbitrarily complex expression  so  long  as  it 
    evaluates  to  a  numeric  value  within  the  allowable  range for the 
    indicated dimension.  Thus, the subscripted variable, A(5,5), would  be 
    dimensioned as: 
 
        X = A(2,3)                is legal 
        X = A(2+2, VAL("4.0"))    is legal, as it is equivalent to A(4,4) 
        X = A(2, "4.0")           is not legal, as ("4.0" is a string) 
 
    The   following   are   graphic  illustrations  of  simple  subscripted 
    variables.  In these particular examples,  a  simple  variable  (A)  is 
    followed  by  one  or  two  integer  expressions  in  parentheses.  For 
    example: 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-8 
    ==============      ============================              ========= 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    SUBSCRIPTED VARIABLES (Cont) 
    ============================ 
 
        A(I) 
 
    where I may assume the value of 0 to 5, allows reference to each of the 
    six elements: A(0), A(1),  A(2),  A(3),  A(4),  and  A(5).   A  graphic 
    representation  of  this  6-element,  single-dimension  array  is shown 
    below.  Each box represents a memory location reserved for the value of 
    the  variable  of  the  indicated  name.   Often  the  entire  array is 
    referred to as A(. 
 
                               +------------+ 
                               |    A(0)    | 
                               +------------+ 
                               |    A(1)    | 
                               +------------+ 
                               |    A(2)    | 
                               +------------+ 
                               |    A(3)    | 
                               +------------+ 
                               |    A(4)    | 
                               +------------+ 
                               |    A(5)    | 
                               +------------+ 
 
    NOTE:  Subscripted  variables  begin  at zero.  Therefore, the previous 
    example 0 (zero) to 5 defines six elements. 
 
    A  two-dimensional array B(I,J) allows referral to each of the elements 
    B(0,0), B(0,1), B(0-2),...., B(0-J),....., B(I-J). 
     
    This is graphically illustrated as follows, for B(3,4). 
 
 
         |<-------------------------- J ------------------------------>| 
      -- +----------+-----------+------------+------------+------------+ 
     /:\ |  B(0.0)  |  B(0,1)   |  B(0,2)    |   B(0,3)   |   B(0,4)   | 
      :  +----------+-----------+------------+------------+------------+ 
         |  B(1,0)  |  B(1,1)   |  B(1,2)    |   B(1,3)   |   B(1,4)   | 
      I  +----------+-----------+------------+------------+------------+ 
         |  B(2.0)  |  B(2,1)   |  B(2,2)    |   B(2,3)   |   B(2,4)   | 
      :  +----------+-----------+------------+------------+------------+ 
     \:/ |  B(3,0)  |  B(3,1)   |  B(3,2)    |   B(3,3)   |   B(3,4    | 
      -- +----------+-----------+------------+------------+------------+ 
 
    NOTE: A variable cannot be dimensioned twice in the same program unless 
    you first clear it with the CLEAR statement. 
     
    BASIC does not presume any dimension.  Therefore, the  DIMension  (DIM) 
    statement  must be used to define the maximum number of elements in any 
    array.  It is described in "DIM (DIMENSION)" on page 12-35. 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC              PAGE 12-9 
    ==============      ============================              ========= 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    EXPRESSIONS 
    =========== 
 
    An  expression  is  a  group  of  symbols  to  be  evaluated  by BASIC. 
    Expressions are composed of numeric data,  Boolean data,  string  data, 
    variables, or  functions in an expression.  These are alone or combined 
    by arithmetic, relational, or Boolean operators. 
     
    The following examples show some expressions BASIC recognizes: 
 
    ARITHMETIC        BOOLEAN           STRING  
    EXPRESSIONS       EXPRESSIONS       EXPRESSIONS       DESCRIPTION 
    -----------       -----------       -----------       ----------- 
       1.02               255              "YES"          Data 
       1.02 + 16       255 OR 003       "YES" + "NO"      Combined 
       A < B                            "YES" < "NO"      Relational 
 
 
    A  major  feature  of  Heath's  Extended  Benton  Harbor  BASIC  is its 
    extensive use of expressions in situations when many other BASICs  only 
    permit  variables or numbers.  This feature permits you to perform very 
    sophisticated operations within a particular command or  function.   It 
    is  important  to  note  that  not  all  expressions can be used in all 
    statements.  The  explanations  describing  the  individual  statements 
    detail any limitations. 
 
 
    ARITHMETIC OPERATORS 
    ==================== 
 
    BASIC  performs exponentiation, multiplication, division, addition, and 
    subtraction.  BASIC also supports two unary operators:  [ -  and  NOT]. 
    The  asterisk  [*] is used to signify multiplication  and the slash [/] 
    is used to indicate division.  Exponentiation is indicated by  the  up- 
    arrow [^]. 
 
    THE PRIORITY OF ARITHMETIC OPERATORS 
    ------------------------------------ 
 
    When multiple operations are to be performed in a single expression, an 
    order of priority is observed.  The following list shows the arithmetic 
    operators  in  order  of descending precedence.  Operators appearing on 
    the same line are of equal precedence. 
 
       OPERATOR                 DESCRIPTION 
       --------                 ----------- 
        -(Unary)                negation 
        ^                       exponentiation 
        *  /                    multiplication   division 
        +  -                    addition   subtraction 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-10 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    THE PRIORITY OF ARITHMETIC OPERATORS (Cont) 
    ------------------------------------------- 
 
    Parentheses  are  used  to  change  the  precedence  of  any arithmetic 
    operations, as they are in common  algebra.   Parentheses  receive  top 
    priority.   Any  expression  within  parentheses is evaluated before an 
    expression without parentheses.  The innermost  leftmost  parenthetical 
    expression has the greatest priority. 
 
 
    UNARY OPERATORS 
    --------------- 
 
    BASIC  supports  two  unary  operators: - and NOT.  These operators are 
    referred to as unary  because  they  require  only  one  operand.   For 
    example: 
 
                                    A = -2 
                                   C = NOT D 
 
    The  unary operator (-) performs arithmetic negation.  The NOT operator 
    performs Boolean negation.  See page 12-16 for details. 
 
 
    EXPONENTIATION 
    -------------- 
 
    Exponentiation  [^]  is  used  to  raise  numeric or variable data to a 
    power.  For example: 
 
                      A = B ^ is equivalent to A = B * B. 
 
    NOTE:  The operand must not be negative.  The exponent may be negative. 
    A negative operand generates a syntax error.  For greatest  efficiency, 
    B ^ 2 should be written as B*B*B.  All other powers should use the ^. 
 
 
    MULTIPLICATION AND DIVISION 
    --------------------------- 
 
    BASIC uses the asterisk [*] and the slash [/] as symbols to perform the 
    algebra operations of multiplication and division, respectively.   Both 
    multiplication and division require numeric data as operands. 
     
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-11 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    MULTIPLICATION AND DIVISION (Cont) 
    ---------------------------------- 
 
    "*"'PRINT 2*6<RTN>' 
    "12" 
 
    "*"'PRINT 2/3<RTN>' 
    ".666667" 
 
    "*"'PRINT 6/3*2<RTN>' 
    "4" 
 
    "*" 
 
    NOTE:  This last expression evaluates to 4, not 1; because * and / have 
    equal precedence and, therefore, the  leftmost  operator  is  evaluated 
    first. 
 
 
    ADDITION AND SUBTRACTION 
    ------------------------ 
 
    The  plus  sign  (+) and the minus sign (-) perform arithmetic addition 
    and subtraction.  In addition, the plus operator  (+)  performs  string 
    concatenation if both operands are string data.  The following examples 
    use the plus and minus operators: 
     
    "*"'PRINT 3<RTN>' 
    "3" 
 
    "*"'PRINT 3+5<RTN>' 
    "8" 
 
    "*"'PRINT 10-3<RTN>' 
    "7" 
 
    "*"'PRINT "HEATH" + " " + "COMPUTER"<RTN>' 
    "HEATH COMPUTER" 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-12 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    SUMMARY 
    ------- 
 
    In  any  given  expression, BASIC performs arithmetic operations in the 
    following order: 
 
    [1]  Parentheses  have  top priority.  Any expression in parentheses is 
         evaluated prior to a nonparenthetical expression. 
 
    [2] Without parentheses, the order of priority is: 
        (A) Unary minus and NOT (equal priority). 
        (B) Exponentiation (proceeds from left to right). 
        (C) Multiplication and division (equal priority, proceeds from left 
            to right). 
        (D) Addition and subtraction (equal priority, proceeds from left to 
            right). 
 
    [3] If the rules in either [1] or [2] do not clearly designate the order 
        of  priority,  the  evaluation of  expression  proceeds from left to  
        right. 
 
    The following expression illustrates these principles:   
 
                                   2 ^ 3 ^ 2 
 
    The expression is evaluated from left to right: 
 
    [1] 2 ^ 3 = 8 (leftmost exponentiation has highest priority). 
    [2] 8 ^ 2 = 64 (answer) 
 
    The expression 12/6*4 is evaluated from left to right, since 
    multiplication and division are of equal priority: 
 
    [1] 12/6 = 2 (division is the leftmost operator). 
    [2] 2*4 = 8  (answer) 
 
    The expression 6+4*3 ^ 2 evaluates as: 
 
    [1] 3 ^ 2 = 9 (exponentiation has highest priority). 
    [2] 9*4 = 36  (multiplication has the second highest priority) 
    [3] 36+6 = 42 (addition has the lowest priority; answer) 
 
    Parentheses   may   be   nested,   (inclosed   by  additional  sets  of 
    parentheses).  The expression in the innermost set  of  parentheses  is 
    evaluated  first.   The next innermost left-justified is second, and so 
    on, until all parenthetical expressions are evaluated.  
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-13 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    SUMMARY (Cont) 
    -------------- 
 
    For example: 
 
        6 * ((2 ^ 3+4)/3) 
 
    Evaluates as: 
 
    [1] 2 ^ 3 = 8 (exponentiation in parentheses has highest priority). 
    [2] 8+4 = 12 (addition in parentheses has next highest priority). 
    [3] 12/3 = 4 (next innermost parentheses are evaluated). 
    [4] 4*6 = 24 (multiplication outside of parentheses has lowest 
                    priority). 
 
    Parentheses  prevent  confusion  or  doubt  when you are evaluating the 
    expression.  For example, the two expressions: 
 
        D*E ^ 2/4+E/C*A+2 
        ((D*(E+2))/4+((E/C)*(A+2)) 
 
    are  executed  identically.   However,  the  second  is  much easier to 
    understand. 
 
    Blanks  should  be  used  in  a similar manner, as BASIC ignores blanks 
    (except when they are a part of a string inclosed in quotation  marks). 
 
    The two statements: 
 
        10 LET B = 3 * 2 + 1 
        10 LET B=3*2+1 
 
    are  identical.   The  blanks  in the first statement make it easier to 
    read. 
 
 
    RELATIONAL OPERATORS 
    ==================== 
 
    Relational  operators  compare  two variables or expressions.  They are 
    generally used with an IF THEN statement.  The result of  a  comparison 
    by  the  relational  operators  is  either a true or false.  A false is 
    represented by a zero,  and a true is represented  by  65535  (2^16-1), 
    where  the  expression 16-1 is an exponent.  The tip-off is the ^ mark. 
    This indicates an exponent. 
 
    NOTE:  These values are chosen so when they are used as Boolean values, 
    false is all zeroes and true is all ones. 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-14 
    ==============      ============================             ========== 
 
                             BASIC ARITHMETIC (Cont) 
                             +++++++++++++++++++++++ 
 
    RELATIONAL OPERATORS (Cont) 
    =========================== 
 
    The following table lists relational operators as used in BASIC: 
 
    ALGEBRAIC   BASIC 
     SYMBOL     SYMBOL   EXAMPLE       MEANING 
    ---------   ------   -------       ------- 
       =          =        A=B         A is equal to B. 
       <          <        A<B         A is less than B. 
       <*         <=       A<=B        A is less than or equal to B. 
       >          >        A>B         A is greater than B. 
       >          >=       A>=B        A is greater than or equal to B. 
       #          <>       A<>B        A is not equal to B. 
 
    NOTES:  Under the "ALGEBRAIC SYMBOL" column, two symbols are impossible 
    to represent on the screen using the H89.  Therefore, the  symbol  "<*" 
    is  really a "<" symbol with a "bar" that parallels the lower branch of 
    the arrow.  Similiarily, the "#" is not really a "#"  symbol,  but  one 
    that has two horizontal slashes but only one vertical slash. 
 
    The  symbols  =<, =>, >< are not accepted, and BASIC generates a syntax 
    error if they are used. 
 
    The following examples show the results of using relational operators: 
 
    "*"'PRINT 3<4<RTN>'         (true) 
    "65535" 
 
    "*"'PRINT 4<3<RTN>'         (false) 
    "0" 
 
    Benton Harbor BASIC differs from most other implementations of BASIC in 
    the use of the relational operator.  When you are using BASIC, you  may 
    use the relational operators in any expression.  When the expression is 
    evaluated, the appropriate numeric answer (0 or 65535) will be used  as 
    the answer to that expression. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-15 
    ==============      ============================             ========== 
 
                              BASIC ARITHMETIC (Cont) 
                              +++++++++++++++++++++++ 
 
    BOOLEAN OPERATORS 
    ================= 
 
    OR 
    -- 
 
    The operator OR performs a Boolean OR on the last two integer operands. 
    The integer operands (which must lie in the range of 0  to  65535)  are 
    converted to 16-bit binary numbers.  The Boolean (logical) 16-bit OR is 
    applied,  and  the  result  is  returned  to  the  equivalent   integer 
    representation.   NOTE:  As  the Boolean value chosen to represent true 
    (65535) and false (0), the OR  operator  implements  a  standard  truth 
    table OR function.  For example: 
 
          BASIC STATEMENT:            TRUTH TABLE 
          ----------------            ----------- 
    "*"'PRINT 132 OR 255<RTN>'     00000000 10000100    132 
    "255"                          00000000 11111111    255 
                                   ----------------- 
                                   00000000 11111111 
 
    and 
 
    "*"'PRINT (3>2) OR (4>9)<RTN>' 
    "65535" 
 
 
    AND 
    --- 
 
    The  AND  operator  performs a Boolean (logical) AND on the two integer 
    operands.  These integer operands must lie in the range of 0 to  65535. 
    The  integer operands are converted into 16-bit binary numbers, and the 
    logical AND is performed.  The result is  returned  to  the  equivalent 
    integer  representation.   NOTE: The AND operator implements a standard 
    AND truth table on the values true (65535) and false (0).  For example: 
     
 
         BASIC STATEMENT:             TRUTH TABLE 
         ----------------             ----------- 
    "*"'PRINT 132 AND 255<RTN>'    00000000 10000100   132 
    "132"                          00000000 11111111   255 
    "*"                            ----------------- 
                                   00000000 10000100 
 
    and 
 
    "*"'PRINT (3>2) AND (9>7)<RTN>' 
    "65535" 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-16 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            ======================= 
 
    BOOLEAN OPERATORS (Cont) 
    ======================== 
 
    NOT 
    --- 
 
    The NOT operator performs Boolean negation.  That is, the numeric value 
    of the variable is converted into a 16-bit Boolean data value; each BIT 
    is  inverted, and the 16-bit binary number is restored to numeric data. 
    For example: 
 
      BASIC STATEMENT:                    TRUTH TABLE 
      ----------------                    ----------- 
    "*"'PRINT NOT O<RTN>'             0=00000000 00000000   and 
    "65535"                       65535=11111111 11111111 
    "*"        
            
 
    *********************************************************************** 
 
                              STRING MANIPULATION 
                              +++++++++++++++++++ 
 
    Extended   Benton  Harbor  BASIC  is  capable  of  manipulating  string 
    information.  A string is a sequence of characters treated as a  single 
    unit  of  an  expression.  It can be composed of alphanumeric and other 
    printing characters.  An alphanumeric string contains letters, numbers, 
    blanks, or any combination of these characters.  A character string may 
    not exceed 255 characters.  The blank,  bell,  formfeed,  and  TAB  are 
    considered to be printing characters. 
 
 
    STRING VARIABLES 
    ================ 
 
    The  dollar  sign  ($)  following  a  variable  name indicates a string 
    variable.  For example: 
 
        B$ 
                and 
        L6$ 
 
    are  string variables.  A string variable (B$) is used in the following 
    example: 
 
    "*"'B$ = "HI": PRINT B$<RTN>' 
    "HI" 
 
    NOTE: The string variable B$ is separate and distinct from the variable 
    B.  
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-17 
    ==============      ============================             ========== 
 
                          STRING MANIPULATION (Cont) 
                          ++++++++++++++++++++++++++ 
 
    STRING VARIABLES (Cont) 
    ======================= 
 
    Any  array  name followed by the $ character notes that the dimensioned 
    variable is a string.  For example: 
 
        L$(n)      A2$(n)       (single-dimensioned string variables.) 
        D$(m,n)    H1$(m,n)     (multiple-dimensioned string variables.) 
 
    The numbers in parentheses indicate the location within the array.  See 
    "Subscripted Variables," page 12-7. 
 
    The  same  variable  may  be used as a numeric variable and as a string 
    variable in one program.  For example,  each  of  the  following  is  a 
    different variable: 
 
        B          B(n)  
        B$         B$(m,n) 
 
    The  following  are  legal  because they are double declarations of the 
    same variable: 
 
        A$(n)      A$(n,m) 
 
    String  arrays are defined with a dimension (DIM) statement in the same 
    way that numerical arrays are defined. 
 
 
    STRING OPERATORS 
    ================ 
 
    Extended  B. H. BASIC  provides  you  with  the  ability  to manipulate 
    strings.   The  string  manipulation  operators  are  plus   [+]    for 
    concatenation  and the relational operators. 
 
 
    CONCATENATION 
    ------------- 
 
    Concatenation  connects  one  string to another without any intervening 
    characters.  This is specified by using the plus [+]  symbol  and  only 
    works with strings.  The maximum length of a concatenated string is 255 
    characters.  For example: 
 
    "*"'PRINT "THE HEATH" + "COMPUTER"<RTN>' 
    "THE HEATH COMPUTER" 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-18 
    ==============      ============================             ========== 
 
                          STRING MANIPULATION (Cont) 
                          ++++++++++++++++++++++++++ 
 
    RELATIONAL OPERATORS FOR STRINGS 
    -------------------------------- 
 
    Relational  operators,  when  applied to strings, indicate alphabetical 
    sequence.  The relational comparison is done on the basis of the  ASCII 
    value associated with each character on a character-by-character basis, 
    using the ASCII collating sequence.  A null character (indicating  that 
    the  string is exhausted) is considered to head the collating sequence. 
    For example: 
 
    "*"'PRINT "ABC" < "DEF"<RTN>' 
    "65536"                     (The relation shown is true.) 
 
    "*"'PRINT "ABC" >"ABCD"<RTN>' 
    "0"                         (The relation shown is false. "ABC" is  
                                   less than "ABCD".) 
 
    NOTE:  In  any string comparison, trailing blanks are not ignored.  For 
    example: 
 
    "*"'PRINT "CDE" = "CDE " <RTN>' 
    "0"                         (The equality is false.) 
 
 
    The  following  table  indicates how relational operators are used with 
    string variables in Extended BASIC: 
 
    +----------+----------+-----------------------------------------------+  
    | OPERATOR | EXAMPLE  |                MEANING                        | 
    +----------+----------+-----------------------------------------------+ 
    |    =     | A$ = B$  | String A$ and B$ are alphabetically equal.    | 
    |    <     | A$ < B$  | String A$ is alphabetically less than B$.     | 
    |    >     | A$ > B$  | String A$ is alphabetically greater than B$.  | 
    |    < =   | A$< = B$ | String A$ is equal to or less than B$.        | 
    |    > =   | A$ >= B$ | String A$ is equal to or greater than B$.     | 
    |    <>    | A$ <> B$ | String A$ and B$ are not alphabetically equal.| 
    +----------+----------+-----------------------------------------------+ 
    *********************************************************************** 
 
 
                               THE COMMAND MODE 
                               ++++++++++++++++ 
 
    USING THE COMMAND MODE FOR STATEMENT EXECUTION 
    ============================================== 
 
    You may solve a problem in BASIC by using a complete program, or by use 
    of the command mode.  Command mode makes BASIC  an  extremely  powerful 
    calculator. 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-19 
    ==============      ============================             ========== 
 
                            THE COMMAND MODE (Cont) 
                            +++++++++++++++++++++++ 
 
    Lines of program material entered for later execution are identified by 
    line numbers.  BASIC  identifies  those  lines  entered  for  immediate 
    execution  by  the  absence  of  the  line  number.   That  is  to say, 
    statements that begin with line  numbers  are  stored,  and  statements 
    without line numbers are executed immediately when a <RTN> is received. 
    For example: 
     
    "*"'10 PRINT' '"THIS IS A COMPUTER"<RTN>' 
 
    is  not  executed when it is entered at the console terminal.  However, 
    the statement: 
 
    "*"'PRINT "THIS IS THE HEATH COMPUTER"<RTN>' 
 
    After the RETURN key is typed, is immediately executed as: 
 
    "THIS IS THE HEATH COMPUTER" 
 
 
    The   command   mode  of  operation  is  useful  in  performing  simple 
    calculations which do not justify the writing of a complete program. 
 
    For  example,  in order to facilitate program de-bugging, you may place 
    STOP statements liberally throughout a program. 
 
    If you use STOP in this manner, an error message will be printed.  This 
    is  a normal response and not a programming error on your  part.   Once 
    BASIC  encounters a STOP statement, the program halts.  You can examine 
    and change data values using the command mode.  The statement: 
 
    'CONTINUE<RTN>' 
 
    is used to continue the execution of the program.  You can also use the 
    GOSUB and IF commands.  Values  assigned  to  variables  remain  intact 
    using  this technique.  A SCRATCH, CLEAR, or another RUN command resets 
    these values. 
 
    The  ability  to  place  multiple  statements  on  a  single line is an 
    advantage in the command mode.  For example: 
 
    "*"'B = 2:PRINT B:PRINT B + 1<RTN>' 
    "2" 
    "3" 
    "*" 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-20 
    ==============      ============================             ========== 
 
                            THE COMMAND MODE (Cont) 
                            +++++++++++++++++++++++ 
 
    USING THE COMMAND MODE FOR STATEMENT EXECUTION (Cont) 
    ===================================================== 
 
    Program loops are allowed in the command mode.  For example, a table of 
    squares can be produced as follows: 
 
    "*"'FOR A = 1 TO 10:PRINT A,A * A:NEXT A<RTN>' 
    "1               1" 
    "2               4" 
    "3               9" 
    "4              16" 
    "5              25" 
    "6              36" 
    "7              49" 
    "8              64" 
    "9              81" 
    "10            100" 
 
    "*" 
 
    Some  statements  cannot  be  used  in  the  command  mode.   The INPUT 
    statement, for example, is not available in the command mode,  and  its 
    use  results  in  the "Illegal Usage" error message.  There are certain 
    command functions in the command mode which make no sense when used  in 
    the command mode.  Statements available in the command mode are covered 
    in "Command Mode Statements" on page 12-23, and  "Statements  Valid  in 
    the Command or Program Mode" on page 12-29. 
    *********************************************************************** 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-21 
    ==============      ============================             ========== 
 
                               BASIC STATEMENTS 
                               ++++++++++++++++ 
 
    A  program is composed of one or more lines or "statements" instructing 
    BASIC to solve a problem.  Each program line begins with a line  number 
    identifying  the line and its statement.  The line number indicates the 
    desired order of statement execution.  Each statement  starts  with  an 
    English   word  specifying  the  operation  to  be  performed.   Single 
    statements are terminated with the RETURN key.  Multiple statements are 
    separated  by  a  colon  [:],  with  the last statement terminated by a 
    <RTN> ( a non-printing character).  A D12TA statement  cannot  share  a 
    line with other statements.  (See page 12-55 "Read and Data Statements" 
    for details.) 
     
 
    LINE NUMBERS 
    ============ 
 
    An  integer number begins each line in a BASIC program.  BASIC executes 
    the program statements in numerical sequence, regardless of  the  input 
    order.  Statement  numbers must lie in the range of 1 to 65,534.  It is 
    good programming practice to number lines in increments of 5 or  10  to 
    allow for insertion of forgotten or additional statements. 
 
    The  length of a BASIC statement must not exceed one line.  There is no 
    method to  continue  a  statement  to  the  following  line.   However, 
    multiple  statements  may  be  written  on  a  single  line.   In  this 
    situation, each statement is separated by a colon.  For example: 
 
    '10 PRINT "VALUES",A,A+1' ---- is a single line print statement, while: 
    '10 LET A=12: PRINT A,A+1,A+2' --- is a line containing two statements, 
 
    "LET" and "PRINT." 
 
    Virtually  all  statements can be used anywhere in a multiple statement 
    line.  There are, however, a few exceptions.  They  are  noted  in  the 
    discussion of each statement.  NOTE: Only the first statement on a line 
    can have a line number.  Program control cannot  be  transferred  to  a 
    statement within a line, but only at the beginning of a line. 
 
    Each  time you type a statement with a line number, BASIC performs some 
    simple syntactical checks before inserting the line into your  program. 
    BASIC  checks  to  see  if  all the keywords are spelled correctly, and 
    translates them to upper case.  It makes sure that all  function  calls 
    are  immediately  followed  by  an  open  parenthesis "(".  BASIC makes 
    several other checks of the line to check for simple syntax errors.  If 
    the line is determined to be incorrect, the message: 
 
                                 SYNTAX ERROR 
 
    will be displayed, and the line will not be inserted into your program. 
    Note that this preliminary syntax check will not  detect  all  possible 
    errors;  BASIC may accept the line when you type it, and then detect an 
    error later when you execute your program. 
     
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-22 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    STATEMENT TYPES 
    =============== 
 
    Benton  Harbor  BASIC  supports  three  different  types of statements. 
    First, there are statements valid only  in  the  command  mode.   These 
    statements  are  used  for  loading programs, erasing memory, and other 
    such  functions  directing  BASIC's  activities.   Second,  there   are 
    statements  valid  as  both commands or within a program.  Third, there 
    are statements valid only within a program.  These statements  may  not 
    be  used  in  the  command  mode.  Most statements fall into the second 
    category.  This means that they can appear within a program or be typed 
    directly in the command mode and be immediately executed. 
 
 
    As  noted  earlier,  some  statements  valid  in  both modes may not be 
    meaningful in both modes. 
 
    BASIC is designed to allow maximum versatility in its structure.  Thus, 
    almost everywhere that BASIC requires  a  number  or  a  string,  BASIC 
    allows  a numeric or a string expression.  For example, you could cause 
    the SIN of 3 to be printed by typing: 
 
    "*"'PRINT SIN(6/2)<RTN>' 
 
    The  following three sections are organized as command mode statements, 
    command and program mode statements, and program mode statements.  They 
    can be found, respectively in: "Command Mode Statements" on page 12-23, 
    "Statements Valid in the Command or Program Mode" on  page  12-29,  and 
    "Program Mode Statements," on page 12-61. 
 
    To  simplify  some  practical  descriptions in these sections and those 
    following, the notations below are used to describe valid expressions: 
 
    [1]  "iexp" indicates an integer expression, an expression lying in the 
    range of 0 to 65535.  The fractional part of any integer expression  is 
    discarded when the integer is formed. 
 
    [2]  "nexp"  indicates  a  numeric expression.  This may be in integer, 
    decimal, or exponential expression with up to 6 decimal places. 
 
    [3]  "sexp"  indicates  a  string  expression.   String expressions are 
    limited to a maximum of 255 printing ASCII characters. 
 
    [4] "linnum" indicates a line number.  This must be an unsigned decimal 
    number  or the expression LNO (iexp).  See the discussion  of  the  LNO 
    function for details. 
 
    [5]  "sep" indicates a separator.  Separators such as the comma and the 
    semicolon are used to delineate certain portions of BASIC statements. 
 
    [6]  "[]" brackets indicate optional portions of a statement, depending 
    on the exact function desired. 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-23 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    STATEMENT TYPES (Cont) 
    ====================== 
 
    [7]  "var"  indicates  a  variable.   This  may  be a numeric or string 
    variable, depending upon the example. 
 
    [8]  "name" indicates a string used to identify a date, a program, or a 
    language record. 
 
    [9]  "fname"  indicates an HDOS file descriptor (filename).  A filename 
    descriptor  may include a  device  specification  and  a  filename  and 
    extension.   The  device specification and extension may be omitted, in 
    which case BASIC will supply a default. 
 
 
    COMMAND MODE STATEMENTS 
    ======================= 
 
    The  command  mode  statements  cannot  be  used within a program.  For 
    example, the RUN statement cannot be used within a program to  make  it 
    self-starting.   Any  attempt  to  incorporate  one of these statements 
    within a program generates an "Illegal Usage" error message. 
 
 
    BUILD 
    ----- 
 
    This  statement  is  used to insert or replace many program lines.  The 
    form of the BUILD statement is: 
 
    "*"'BUILD iexp1, iexp2<RTN>'  (where iexp1 = Starting line number of  
                                   build sequence.) 
                                  (where iexp2 = Increment by nn lines) 
 
    When  BUILD is executed, the initial line number iexp 1 is displayed on 
    the terminal.  Any text entered after the new line number is  displayed 
    becomes  the  new line, replacing any pre-existing line.  Once the line 
    is completed by a carriage return, the next line number  is  displayed. 
    NOTE:  If a null entry is given (a carriage return typed directly after 
    the line number is displayed), the line whose number  is  displayed  is 
    eliminated if it existed. 
 
    BUILD is illustrated in the following example.  CTRL-C terminates BUILD. 
 
    "*"'BUILD 100, 10<RTN>' 
    "*"'100 PRINT "LINE 100"<RTN>' 
    "*"'110 PRINT "LINE 110"<RTN>' 
    "*"'120 PRINT "LINE 120"<RTN>' 
    "*"'130 CTRL-C'                (CTRL-C is typed here) 
    "*"'LIST<RTN>' 
    "100 PRINT "LINE 100"' 
    "110 PRINT "LINE 110"' 
    "120 PRINT "LINE 120"' 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-24 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    BUILD (Cont) 
    ------------ 
 
    BASIC  performs  a preliminary syntax check on lines entered via BUILD. 
    Should an error be detected, BUILD will give  an  error  message.   For 
    example: 
 
    "*"'BUILD 10,10<RTN>' 
    "*"'10 PRINT "LINE 10"<RTN>' 
    "*"'20 PRANT "LINE 20"<RTN>'        (Note the error) 
    "SYNTAX ERROR" 
    "*"'20 PRINT "LINE 20"<RTN>'        (Reenter line 20) 
    "*"'30' 
 
 
    BYE 
    --- 
 
    The  BYE  command is used to terminate BASIC and return to HDOS command 
    mode.  BYE will not save your program, close  your  files,  or  in  any 
    other  way  clean up for you.  If you want to save the program you have 
    written, use SAVE or REPLACE before using BYE.  BYE will ask you if you 
    are sure before terminating.  For example: 
     
    "*"'BYE<RTN>' 
    "SURE?"'YES<RTN>' 
 
 
    CONTINUE 
    -------- 
 
    CONTINUE  begins or resumes the execution of a BASIC program.  CONTINUE 
    has the unique feature of not affecting any existing  variable  values, 
    nor  does  it affect the GOSUB or FOR stack.  CONTINUE is normally used 
    to resume execution after an error in the program  or  after  a  CTRL-C 
    stops  the  program.   CONTINUE  may  be  used  to enter a program at a 
    specific line (in conjunction with a GOTO).  CONTINUE  is  unlike  RUN, 
    which  resets  all  variables,  stacks,  etc.  The form of the CONTINUE 
    statement is: 
 
    "*"'CONTINUE<RTN>' 
 
    In  the  following  example,  CONTINUE starts the program at a specific 
    line number. 
 
    "*"'GOTO 100<RTN>' 
    "*"'CONTINUE<RTN>'          (Start execution at line 100) 
 
    CONTINUE  is  also  useful  for  entering  a program with a variable or 
    variables set at particular values.  For example: 
    
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-25 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    CONTINUE (Cont) 
    --------------- 
 
    "*"'A = 23.5<RTN>'          (Program continues execution at Line 230 
    "*"'GOTO 230<RTN)'          with variable A set to the value of 23.5. 
    "*"'CONTINUE<RTN>'          regardless of previous program effects  
                                 on A.) 
 
 
    DELETE 
    ------ 
 
    The DELETE statement is used to remove several lines from the BASIC 
    source code.  The form of the DELETE statement is: 
 
    "*"'DELETE iexp1, iexp2<RTN>' 
 
    The lines between and including iexp1 and iexp2 are deleted. 
 
    A  syntax  error  is  flagged  if  "iexp1"  is  greater  than  "iexp2." 
    Normally  DELETE is used to eliminate a certain number  of  lines  from 
    text.   The  SCRATCH  command  is used to eliminate all text.  A RETURN 
    typed  directly  after  a  line  number  eliminates  that  line.   This 
    technique is used to eliminate a single line. 
 
 
    LIST 
    ---- 
 
    This command lists the program on the console terminal for reviewing, 
    editing, etc.  The form of the LIST command is:  
 
    "*"'LIST [LINNUM1], [LINNUM2]<RTN>' 
 
    Line  numbers are indicated by the optional integer expressions.  If no 
    line numbers are specified, the entire program is listed.  If a  single 
    line number (iexp1) is specified, BASIC lists that line.  You can use a 
    CTRL-O or CTRL-C to abort the  listing.   If  both  the  optional  line 
    numbers  are  specified, separated by a comma [,], all lines within the 
    range of iexp1 to iexp2 are listed.  You can abort a listing  by  using 
    the control characters.  The following example show how to use LIST: 
 
    "*"'LET A=5:LET B=6' 
    "*"'PRINT A, B,A+B' 
    "*"'LET C=A/B' 
    "*"'PRINT C' 
    "*"'END' 
 
    'RUN<RTN>' 
 
    "5    6   11    .833333" 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-26 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    LIST (Cont) 
    ----------- 
 
    "*"'END AT LINE 50' 
 
    "*"'LIST<RTN>' 
 
    "10 LET A=5:LET B=6" 
    "20 PRINT A,B,A+B" 
    "30 LET C=A/B" 
    "40 PRINT C" 
    "50 END" 
    "*"'LIST 20<RTN>' 
         
    "*"'20 PRINT A,B,A+B' 
    "*"'LIST 20,40<RTN>' 
 
    "20 PRINT A,B,A+B" 
    "30 LET C=A/B" 
    "40 PRINT C" 
    "*" 
 
 
    OLD 
    --- 
 
    The  OLD  command  is used to read some preexisting program into BASIC. 
    OLD performs a SCRATCH command, destroying the previous program  before 
    reading in the new one.  The format for the OLD command is: 
 
    "*"'OLD "fname"<RTN>' 
 
    where  "fname"  is the filename of the program to be loaded.  Note that 
    "fname" must be inclosed in quotation marks [" "].  If no  device  code 
    is  specified, BASIC assumed SY0:.  If no extension is specified, BASIC 
    assumes .BAS.  For example: 
 
    "*"'OLD "DEMO"<RTN>' 
                                   
    "*"'OLD "SY1:STARTREK.GAM"<RTN>' 
                                     
 
    If you want to load a new program without disturbing your variables and 
    their values, use the CHAIN command. 
 
    BASIC  performs a preliminary syntax check on lines read in via the OLD 
    command, just as it would for lines you type yourself on  the  console. 
    Should the OLD command detect any such syntax errors in the lines being 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-27 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    OLD (Cont) 
    ---------- 
 
    read, it will insert the characters *ERR* at the spot in the line where 
    the error was detected.  This should never occur with programs you have 
    entered  and  modified  with  BASIC,  since BASIC will not let you type 
    lines with such errors.  However, such errors could occur if you used a 
    text editor such as 'EDIT' to modify or create a BASIC program. 
     
    You  can detect such occurrences by listing the program and looking for 
    the *ERR* symbol.  Executing a line with the *ERR* symbol  in  it  will 
    generate a syntax error. 
 
 
    REPLACE 
    ------- 
 
    The REPLACE command enables you to replace a file that has previously 
    been stored on the disk.  The syntax for the REPLACE command is: 
 
    "*"'REPLACE "FNAME"<RTN>' 
 
    The  default  device is SY0:; the default extension is .BAS.  Note that 
    you can use the REPLACE command to obtain a printed copy of  a  program 
    that is currently in memory.  For example, if you had a configured line 
    printer, the command: 
 
    "*"'REPLACE"LP:"<RTN>' 
 
    would  cause  BASIC  to  write  the  source for the program to the line 
    printer, thus giving you a hard-copy listing.  The SAVE command  cannot 
    be  used to obtain hard-copy listings in this way, since SAVE opens the 
    file specified for read to see if it  already  exists.   If  you  typed 
    'SAVE  "LP:,"'  BASIC  would print an error message, since the file LP: 
    exists. 
 
 
    RUN 
    --- 
 
    A  prepared  program  may  be  executed  using  the RUN statement.  The 
    program is executed starting at the  lowest  numbered  statement.   All 
    variables and stacks are cleared (set to zero) before program execution 
    starts. 
 
    The form of the RUN statement is: 
 
    "*"'RUN<RTN>' 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-28 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    RUN (Cont) 
    ---------- 
 
    After  program  completion, BASIC prompts the user with an asterisk [*] 
    in the left margin, indicating that it is ready for additional  command 
    statements.   If the program should contain errors, an error message is 
    printed that indicates the error and the  line  number  containing  the 
 
    error,  and program execution is terminated.  Again, a prompt is given. 
    The program must now be edited to  correct the error  and  then  rerun. 
    This  process  is  continued  until  the  program runs properly without 
    producing  any  error  messages.   See  "Errors"  (page 12-80)  for   a 
    discussion  of  error  messages.   Occasionally,  a program contains an 
    error  that  causes  it  to enter an unending  loop.   In this case the 
    program  never terminates.  The user may gain control of the program by 
    typing CTRL-C.  This aborts the program  and  returns  control  to  the 
    user.   Storage  is  not  altered  in  this  process.  CONTINUE resumes 
    program  execution.   RUN  clears  the  storage  and  restarts  program 
    execution. 
 
 
    SAVE 
    ---- 
 
    The  SAVE command is used to save a BASIC program as an HDOS file.  The 
    file can then be listed or copied onto different devices, edited  by  a 
    text  editor,  and  reread  by  BASIC  (via the OLD command).  The SAVE 
    command is the normal method of saving a program that you might want to 
    use again.  The format of the SAVE command is: 
 
    "*"'SAVE "FNAME"<RTN>' 
 
    where  "FNAME"  is  the  name of the file which is to be written.  Note 
    that "FNAME" must be inclosed  in  quotes  ["  "].   If  no  device  is 
    specified,  BASIC  assumes  SY0:.   If  no extension is supplied, BASIC 
    assumes .BAS.  NOTE: The FNAME must not already exist on the  specified 
    device.   BASIC  will  not  allow  you  to replace a file with the SAVE 
    command.  This is done so you will not accidentally use the  same  name 
    for two programs and inadvertently destroy one of them.  If you wish to 
    store an updated version of a program, you can delete the  old  version 
    via UNSAVE, or you can use the REPLACE command.  For example: 
     
    "*"'SAVE "SY1:INCOMTX"<RTN>'       (NOTE: Example for multiple drives.) 
    "*"'LIST 10<RTN>' 
    "*"'00010 PRINT "HI THRER"'        (note the error) 
    "*"'10 PRINT "HI THERE"<RTN>'      (error corrected) 
    "*"'SAVE "SY1:INCOMTX"<RTN>'       (attempt to replace program) 
 
    "! ERROR - FILE ALREADY EXISTS" 
    "*"'REPLACE "SY1:INCOMTX"<RTN>'     (replace program) 
    "*" 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-29 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    SCRATCH 
    ------- 
 
    SCRATCH  clears  all current storage areas used by BASIC.  This deletes 
    any commands, programs, data, strings, or symbols currently  stored  by 
    BASIC. 
 
    SCRATCH  should be used for entering a new program from the keyboard to 
    insure that old program lines are not mixed with new program lines.  It 
    also  assures  a  clear  symbol table.  The form of the SCRATCH command 
    statement is: 
 
    "*"'SCRATCH<RTN>' 
 
    Before  destroying stored information, the user is asked "SURE?"  A "Y" 
    reply causes SCRATCH to proceed.  Any other response  cancels  SCRATCH. 
    For example: 
 
    "*"'SCRATCH<RTN>'          (SCRATCH statement entered) 
       "SURE?"'Y<RTN>'         (BASIC query.  Response is Y (Yes)) 
    "*"                        (BASIC is ready for a new entry) 
 
 
    STATEMENTS VALID IN THE COMMAND OR PROGRAM MODE 
    =============================================== 
 
    You  may  use  the  statements in this section in either the command or 
    program mode.  A few of them have only subtle uses in one mode  or  the 
    other.  Because they may be used in both modes, they are listed in this 
    section. 
 
 
    CHAIN 
    ----- 
 
    The  CHAIN  command  is  used  to  start the execution of another BASIC 
    program.  The format of the CHAIN command is: 
 
    "*"'CHAIN sexp<RTN>' 
 
        or 
 
    "*"'CHAIN sexp,linnum<RTN>' 
 
    where  "sexp"  is  a  string  expression containing the filename of the 
    program to be executed.  If no device is specified, BASIC assumes SY0:. 
    If no extension is specified, BASIC assumes .BAS. 
 
    The  CHAIN  command  causes the current program text to be deleted, the 
    new program(s) to be read in, and the execution to begin.   If  a  line 
    number  is  specified,  execution begins at that line number.  Note the 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-30 
    ==============      ============================             ========== 
 
                            BASIC ARITHMETIC (Cont) 
                            +++++++++++++++++++++++ 
 
    CHAIN (Cont) 
    ------------ 
 
    GOSUB and FOR loop tables are cleared by the CHAIN process, but no data 
    values  (numeric  and  string variables and arrays) are affected by the 
    CHAIN.  However, the data pointer is reset  to  the  top  of  the  data 
    statements. 
 
    You  can  use  the  CHAIN command in the command mode as a quick way to 
    load and execute a program.  For example: 
 
    "*"'CHAIN "DEMO"<RTN>' 
 
    "HI, I'M A BASIC DEMO PROGRAM:" 
                    (etc) 
   
    You  can  use  the  CHAIN  command  in  the  execution  mode to start a 
    different program executing, while maintaining any open files and  data 
    values.  Thus, a program that is too large to fit in memory all at once 
    can be written in several sections, with each section chaining  to  the 
    next  one  when ready.  As an example, assume we have written a payroll 
    maintenance program that is too large to all  fit  into  memory.   This 
    program  can  perform 5 different functions upon the payroll file.  One 
    of these functions may be "add an employee," another one "print monthly 
    checks,"  and so  forth.   Because the entire program will not fit into 
    memory at one time, we have split it into five pieces,  each  of  which 
    performs  one  of  the  five functions.  A section of the program might 
    look like: 
 
    "*"'00020 DIM A$(4)' 
    "*"'00030 A$(0)="SY1:PAYROLL1.BAS"' 
 
    "*"'00040 A$(1)="SY1:PAYROLL2.BAS"' 
    . 
    . 
    . 
 
    "*"'02000 INPUT "WHAT FUNCTION (1-5)",F' 
    "*"'02010 CHAIN A$(F-1)' 
 
    This  program  inputs  a  number  from  the  operator, indicating which 
    function is to  be  performed,  and  then  CHAINs  to  the  appropriate 
    program.   The  value  of  A$ and the values of all other variables are 
    preserved during the CHAIN.  In this  example  the  individual  service 
    programs CHAIN back to the master program with a statement: 
 
    "*"'CHAIN "PAYROLL",2000<RTN>' 
 
    so  the  PAYROLL  program  does  not  start  over at the beginning, but 
    instead starts at line 2000. 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-31 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    CLEAR 
    ----- 
 
    CLEAR  sets  the contents of all variables, arrays, string buffers, and 
    stacks to zero.  The program itself is not affected.   The  command  is 
    generally used before a program is rerun to insure a fresh start if the 
    program is started with a command other than  RUN.   The  form  of  the 
    CLEAR statement is: 
 
         CLEAR  
         CLEAR varname  
 
    All  variables,  arrays,  string  buffers,  etc.,  are cleared before a 
    program is executed by  RUN.   Therefore,  a  clear  statement  is  not 
    required.   However, a program  terminated prior to execution by a STOP 
    command or an error does not set these variables, etc, to  zero.   They 
    are  left with the last value assigned.  If the variable name (varname) 
    is specified, the CLEAR command clears the named  variable,  array,  or 
    DEF  FN  (user  defined  function).  Note that the memory space used by 
    string variables and arrays is not freed when CLEAR  varname  is  used. 
    String  values  should  be  set  to  null  (for  example: A$="") before 
    clearing, so the string space can be recovered. 
 
    For example:  
 
    "*"'CLEAR A<RTN>'           (Clears variable A) 
    "*"'CLEAR A$<RTN>'          (Clears the string variable A$) 
    "*"'CLEAR A(<RTN>'          (Clears the dimensioned variable A( ) 
 
    If  a  section of the program is to be rerun after appropriate editing, 
    the variables, arrays, dimensions, etc., should be reinitialized.   You 
    can accomplish this by using the CLEAR statement in the command mode. 
 
 
    CLOSE 
    ----- 
 
    The CLOSE statement is used to close an HDOS file.  To read or write to 
    a file, three things must be done in sequence: 
 
        1. The file must be opened (see OPEN). 
        2. The I/O is performed (via "INPUT #chan" or "PRINT #chan"). 
        3. The file must be closed. 
 
    The format of the CLOSE statement is: 
 
    "*"'CLOSE #chan1<RTN>' 
    "*"'CLOSE #chan1, . . . ,#chann<RTN>' 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-32 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    CLOSE (Cont) 
    ------------ 
 
    where  "#chan"  is  the channel number assigned to the file when it was 
    opened.  The CLOSE command performs three tasks: 
 
         1.   If  the  file was OPENed for writing, the new file is entered 
    into the disk's directory.  If the file is not closed, it, and all  the 
    information written to it, is lost! 
 
         2.  The  BASIC channel  number is freed so a different file may be 
    OPENed on that channel. 
     
         3.  If there are no open channels with numbers higher than the one 
    being closed, the buffer space in the FILE table (see the FREE command) 
    is  freed  up.   That  is,  if channels 1 and 2 are open, and you close 
    channel 1, then no FILE table space is freed.   When  you  later  close 
    channel  2,  then  the  FILE  table  space for both channels 1 and 2 is 
    freed. 
     
    If  your program blows up without closing its channels, you may want to 
    type CLEAR to discard the partially written files.  If you want to save 
    any partial files, use CLOSE in command mode to close the files. 
     
    If  the  channel  number(s)  listed  in the CLOSE command have not been 
    opened or have already been closed, they are ignored. 
     
 
    CNTRL 
    ----- 
 
    CNTRL is a multi-purpose command used to set various options and flags. 
    The form of the CNTRL statement is: 
     
    "*"'CNTRL iexp1, iexp2<RTN>' 
 
    where, as usual, iexp1 and iexp2 signify integer expressions. 
 
    The various CNTRL options are as follows: 
 
 
                      iexp1    iexp2 
 
        CNTRL           0,      nnn 
        CNTRL           1,       n 
        CNTRL           2,       n 
        CNTRL           3,       n 
        CNTRL           4,       n 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-33 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    CNTRL 0 (ZERO) 
    -------------- 
 
    The  CNTRL  0,  nnn  command  sets up a GOSUB routine to process CTRL-B 
    characters.  The line number of the routine is  specified  as  "iexp2." 
    When  a CTRL-B is entered on the keyboard, program control is passed to 
    the specified statement (beginning at  the  line  iexp2)  via  a  GOSUB 
    linkage, after the statement being executed is completed.  For example: 
     
    "*"'00010 CNTRL 0,500' 
    "*"'00020 FOR A=1 TO 9' 
    "*"'00030 PRINT A,A*A,A*A*A' 
    "*"'00040 NEXT A' 
    "*"'00050 END' 
    "*"'00500 PRINT "THAT TICKLES"' 
    "*"'00510 RETURN' 
    "*"'RUN<RTN>' 
 
        "1            1          1" 
        <CTRL-B> "2        4          8" 
 
    "THAT TICKLES" 
        "3            9          27" 
        "4          16<CTRL-B>       64" 
    "THAT TICKLES" 
        "5          25           125 
         6          36           216" 
 
        <CTRL-B>THAT TICKLES 
        "7          49  <CTRL-B> 343" 
    "THAT TICKLES" 
 
        "2          64           512  
         9          81           729" 
    "*"'END AT LINE 50' 
    "*" 
 
    During  the execution of the program containing these three statements, 
    a CTRL-B from the keyboard  momentarily  interrupts  execution  of  the 
    program.   The  program  completes the line in progress and then enters 
    the subroutine at line 500, printing the string: 
 
    "THAT TICKLES" 
         
    It then moves to the next statement, a RETURN.  This causes the program 
    to continue with normal program execution.  NOTE: The CNTRL 0, nnn must 
    be executed before it is operational. 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-34 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    CNTRL 1 
    ------- 
 
    The  CNTRL  1, n command sets the number of digits permitted before the 
    exponential notation is used.  Normal mode N = 6.  For example: 
 
    "*"'CNTRL 1,2<RTN>'    (Numbers >/ 100 are to be in exponential form) 
 
    "*"'PRINT 101<RTN>' 
    "1.01000E+02" 
 
 
    CNTRL 2   [Applies only to the H8 Computer.] 
    ------- 
 
    The  CNTRL  2, n command  controls the H8 front panel LED display mode. 
    The control functions are: 
     
    "*"'CNTRL 2,0<RTN>'  (Turn display off (Normal Mode).) 
 
    "*"'CNTRL 2,1<RTN>'  (Turn display on without update.  (For writing 
                         into a display see the example under "The Segment 
                         Function," SEG (narg) on page 12-72.) 
 
    "*"'CNTRL 2,2<RTN>'  Turn display on with update (to monitor a register 
                        or memory location). 
    
    NOTE: The CNTRL 2, n command has no effect on an H89, since there is no 
    front panel LED display on this model. 
 
 
    CNTRL 3 
    ------- 
 
    The  CNTRL 3, n  command  controls  the size of a  print zone.  This is 
    normally 14.  However, CNTRL 3, n can change the number of spaces in  a 
    print zone. 
     
    "*"'CNTRL 3,5<RTN>' 
    "*"'PRINT 1,2,3,4,3,2,1,0<RTN>' 
           "1    2    3    4    3    2    1    0" 
 
 
    CNTRL 4 
    ------- 
 
    NOTE:  CNTRL  4  applies  only  to  HDOS  version 2.0 and below.  It is 
    included in this  manual  to  provide  continuity  concerning  programs 
    written for HDOS version 2.0 and earlier versions. 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-35 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    CNTRL 4 (Cont) 
    -------------- 
 
    The  CNTRL  4  command  is  used to control the HDOS Operating System's 
    overlay handling.   Part  of  the  HDOS  2.0  system  does  not  reside 
    permanently  in  RAM,  but  is  kept  on  the disk in SY0:.  When it is 
    needed, it is read into memory temporarily.  The programs that comprise 
    these temporary disk files are called "overlays." 
 
    The statement: 
 
    "*"'CTRL 4,1<RTN>' 
 
    will  cause  these HDOS overlays to remain in memory permanently.  This 
    will greatly speed up the execution of  the  RUN,  SAVE,  UNSAVE,  OLD, 
    REPLACE, OPEN, and CLOSE statements, at the cost of about 2.5k bytes of 
    free RAM. 
     
    Executing the statement: 
 
    "*"'CNTRL 4.0<RTN>' 
 
    restores  HDOS to its normal mode, and allows BASIC to make use of that 
    2.5k bytes of RAM.  When you first run BASIC, it starts up in the CNTRL 
    4, 0  mode.   Users with  sufficient free space will find a significant 
    speed increase by using the CNTRL 4,1 command. 
     
    NOTE:  The CNTRL 4,n command cannot be executed as a program statement. 
    If you want to "lock" the overlays in memory, do  so  before  executing 
    the program.  Good programming practice dictates that you do a CNTRL 4, 
    n command prior to putting the program into memory. 
     
    NOTE:  CNTRL 4 applies only to versions of HDOS over 2.0 and earlier. 
       
     
 
    DIM (DIMENSION) 
    --------------- 
 
    The  DIMENSION  statement  explicitly defines the maximum dimensions of 
    array variables.  A single dimension array is often called a  "vector." 
    The form of the DIMENSION statement is: 
     
    "*"'DIM varname (iexp1, . . . ,iexpn), varname2 ( . . . )<RTN>' 
 
    The   expressions  "iexp1"  through  "iexpn"  are  integer  expressions 
    specifying the bounds of  each  dimension.   Dimensions  are  0  to  to 
    "expn."  So, for example, the statement: 
     
    "*"'DIM A(5,5)<RTN>' 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-36 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    DIM (DIMENSION) (Cont) 
    ---------------------- 
 
    reserves  an  array  6x6  or 36 values.  If the dimensioned variable is 
    numeric, the values are preset to zero.  If the dimensioned variable is 
    a string, all the values are preset to a null string. 
 
    You  may  declare  several  variables  in  one  DIMENSION  statement by 
    separating them with commas.  For example: 
     
    "*"'DIM A6(3,2), B(5,5), C3(10,10)<RTN>' 
 
    dimensions the following arrays: 
 
      VARIABLE                  SIZE 
 
         A6             4 by 3       12 elements 
         B              6 by 6       36 elements 
         C3            11 by 11     121 elements 
 
    You  can  place  a DIMENSION statement anywhere in a multiple statement 
    line, and it can appear anywhere in the program.  However, an array can 
    only  be dimensioned once in a program unless it is cleared.  DIMENSION 
    statements must be executed before the first reference  to  the  array, 
    although good programming practices place all DIMENSION statements in a 
    group among the first statements of a program.  This allows them to  be 
    easily  identified  and changed if alterations are required later.  The 
    following example demonstrates the use of the DIMENSION statement  with 
    subscripted variables and a two-level FOR statement: 
     
    "*"'LIST<RTN>' 
 
    "*"'10 REM DIMENSION DEMO PROGRAM' 
    "*"'20 DIM A(5,10)' 
    "*"'30 FOR B=0 TO 5' 
    "*"'40 LET A(B,0)=B' 
    "*"'50 FOR C=0 TO 10' 
    "*"'60 LET A(0,C)=C' 
    "*"'70 PRINT A(B,C);' 
    "*"'80 NEXT C:PRINT ;NEXT B' 
    "*"'90 END' 
 
    "*"'RUN<RTN>' 
         0  1  2  3  4  5  6  7  8  9  10 
         1  0  0  0  0  0  0  0  0  0  0 
         2  0  0  0  0  0  0  0  0  0  0 
         3  0  0  0  0  0  0  0  0  0  0 
         4  0  0  0  0  0  0  0  0  0  0 
         5  0  0  0  0  0  0  0  0  0  0 
 
    "END AT LINE 90" 
    "*" 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-37 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    FOR AND NEXT 
    ------------ 
 
    FOR and NEXT statements define the beginning and end of a program loop. 
    A program loop is a set of repeated instructions.  Each time  they  are 
    repeated,  they  modify  a  variable  in some way until a predetermined 
    condition is reached, causing the program to exit from the  loop.   The 
    FOR NEXT statement is of the form: 
 
    "*"'FOR var = nexp1 to nexp2 [STEP nexp3]' 
    "*"'NEXT var' 
 
    When  BASIC encounters the FOR statement, the expressions nexp1, nexp2, 
    and nexp3 (if present) are evaluated.  The  variable  "var"  may  be  a 
    scaler  numeric  variable,  or it may be an element of a numeric array. 
    It is assigned a value of "nexp1."  For example: 
     
    "*"'FOR A=2 TO 20 STEP 2:PRINT A;:NEXT A<RTN>' 
        "2  4  6  8  10  12  14  16  18  20" 
    "*" 
 
    causes the program to execute as long as A is less than or equal to 20. 
    Each time the program passes  through  the  loop,  the  variable  A  is 
    incremented by 2 (the STEP number).  Therefore, this loop is executed a 
    total of 10 times.  When incremented to 22, program control  passes  to 
    the  line  following the associated NEXT statement.  It is important to 
    note that the initial value used for the variable is the value assigned 
    to  the  variable  expression  when  it entered the FOR-NEXT loop.  For 
    example: 
     
    "*"'A=10:FOR A=2 TO 20 STEP 2:PRINT A;:NEXT A<RTN>' 
        "2  4  6  8  10  12  14  16  18  20" 
    "*" 
 
    Prior  to  the  execution,  the variable A is assigned the value of 10. 
    The program passes through the loop 10 times.  A is reset to 2 and then 
    increments from 2 to 20. 
     
    If  "nexp2">/0,  and  the  initial  value  of  var>/  "nexp2," the loop 
    terminates.  For example, the program: 
 
    "*"'LIST<RTN>' 
 
    "10 FOR J=2 TO 18 STEP 4" 
    "20 J=18" 
    "30 PRINT J;:NEXT J" 
    "40 END" 
 
 
 
 
 
 



 
    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-38 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    FOR AND NEXT (Cont) 
    ------------------- 
 
    "*"'RUN<RTN>" 
    "18" 
    "END AT LINE 40" 
    "*" 
 
    is  only  executed  once,  since  the value of J = 18 is reached on the 
    first pass, satisfying the termination condition. 
 
 
    A loop created by the statement: 
 
    "*"'FOR A=20 TO 2 STEP 2:PRINT A;:NEXT A<RTN>' 
 
    "20" 
    "*" 
 
    is executed only once, as the initial value exceeds the terminal value. 
    However, it this example is modified to read: 
     
    "*"'FOR A=20 TO 2 STEP -2:PRINT A;:NEXT A<RTN>' 
    "20  18  16  14  12  10  8  6  4  2" 
    "*" 
 
    The negative step allows a normal operation. 
 
    In  summary,  for  positive STEP values, the loop is executed until the 
    variable (var) is greater than the final assigned value  (nexp2).   For 
    negative  STEP values, the loop is executed until the variable (var) is 
    less than the final assigned value  (nexp2).   If  the  loop  does  not 
    terminate,  execution is transferred to the statement following the FOR 
    statement.  Therefore, a series of statements may be executed using the 
    incremented  value  of  the  variable.  If the loop does not terminate, 
    execution is transferred to the statement following NEXT. 
     
    The expressions in the FOR statement can be any acceptable BASIC numeric 
    expression. 
 
    If  the  STEP  expression  and  the  word STEP are omitted from the FOR 
    statement, a step of +1 is the default value.  Since +1 is an extremely 
    common  STEP  value,  the  STEP  portion of the statement is frequently 
    omitted.  For example: 
     
    "*"'FOR A=2 TO 10:PRINT A;:NEXT A<RTN>' 
         "2  3  4  5  6  7  8  9  10" 
    "*" 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-39 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    FOR AND NEXT (Cont) 
    ------------------- 
 
    Nesting  is a technique frequently used in programming.  It consists of 
    placing one or more loops completely inside another loop.  The field or 
    operating  range  of  the loop (the lines from the FOR statement to the 
    corresponding NEXT statement) must not cross the field of another loop. 
    The  following  two examples show legal and illegal nesting of FOR NEXT 
    loops: 
     
                LEGAL NESTING                  ILLEGAL NESTING 
                -------------                  --------------- 
                                Two-Level Nesting 
                                ----------------- 
     LOOP A :--- FOR A=1 TO 50            LOOP A   :----- FOR A=1 TO 100 
     FIELD->:                             FIELD--->: 
            : :- FOR B=1 TO 10                     : :--- FOR B=1 TO 10 
     LOOP B : :                                    : : 
     FIELD--->:_ NEXT B                            :-:--- NEXT A 
            :                             LOOP B     : 
     LOOP C : :- FOR C=1 TO 20            FIELD----->: 
     FIELD--->:                                      : 
            : :_ NEXT C                              :--- NEXT B 
            : 
            :--- NEXT A 
 
                              Three-Level Nesting 
                              ------------------- 
     LOOP A  :-------- FOR A=1 TO 10      LOOP A  :-------- FOR A=1 TO 3 
     FIELD-->:                            FIELD-->: 
             :  :----- FOR B=1 TO 5               :  ------ FOR B=1 TO 10 
     LOOP B  :  :                         LOOP B  :  : 
     FIELD----->:                         FIELD----->: 
             :  :  :-- FOR C=1 TO 30              :  :  --- FOR C=1 TO 5 
     LOOP C  :  :  :                      LOOP C  :  :  : 
     FIELD-------->:                      FIELD-------->: 
             :  :  :-- NEXT C                     :  :  : 
             :  :                                 :  :  :__ NEXT C 
             :  :                                 :  : 
             :  :   :- FOR D=1 TO 40              :  :  :-- FOR D=1 TO 30 
     LOOP D  :  :   :                     LOOP D  :  :  : 
     FIELD--------->:                     FIELD-------->: 
             :  :   :_ NEXT D                     :  :  : 
             :  :                                 :  :  :__ NEXT D 
             :  :----- NEXT B                     :  : 
             :                                    :__:_____ NEXT A 
             :-------- NEXT A                        : 
                                                     :_____ NEXT B 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-40 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    FOR AND NEXT (Cont) 
    ------------------- 
 
    Note  that  both columns of nesting illustrations shown on the previous 
    page are shown  in  two-level  and  three-level  forms.   However,  the 
    right-hand  columns  are  not truly nesting, but a crossover of FOR and 
    NEXT loops, and therefore  illegal.   Also  note  that  each  of  these 
    examples uses the implied STEP value of +1. 
 
    The depth of nesting depends upon the amount of memory space available. 
 
    It  is  possible  to  exit  from  a  FOR NEXT loop without reaching the 
    variable termination value.  This  can  be  done  using  a  conditional 
    transfer,  such  as  an IF statement within the loop.  However, control 
    can only be transferred into a loop if the loop is  left  during  prior 
    program execution without being completed.  This insures the assignment 
    of values to the TERMINATION and STEP variables.   Both  FOR  and  NEXT 
    statements can appear anywhere on a multiple statement line. 
 
    The  NEXT  statement does not require the variable.  If the variable is 
    not given, BASIC will NEXT the innermost FOR loop. 
 
 
    FREE 
    ---- 
 
    The  FREE statement displays the amount of memory used by BASIC and any 
    program material.  It also displays the  total  amount  of  free  space 
    left,  which is dependent upon the amount of memory in the computer and 
    the program size.  This command is particularly valuable when  you  are 
    gauging  the  size  of  the  program's  data structure and establishing 
    limits on a DIMENSION command.  The FREE  command  also  indicates  the 
    cause of memory overflow errors.  The form of the FREE statement is: 
 
    "*"'FREE<RTN>' 
 
    The form of the printout is: 
 
        TEXT = nnnn     (Bytes used by program text) 
        SYMB = nnnn     (Bytes used by variables and arrays) 
        FORL = nnnn     (Bytes used by FOR loops) 
        GSUB = nnnn     (Bytes used by GOSUBS) 
        WORK = nnnn     (Bytes used by expression and  
                           function evaluation) 
        STRN = nnnn     (Bytes used by strings) 
        TSTR = nnnn     (Bytes used by temporary strings) 
        FILE = nnnn     (Bytes used by file buffers) 
        FREE = nnnn     (Total number of free bytes) 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-41 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    FREE (Cont) 
    ----------- 
 
    For example, in running the program: 
 
    "*"'10 GOSUB 10<RTN>' 
 
    BASIC  soon  returns a memory overflow error.  Executing FREE shows the 
    user a very large GOSUB table.  This, and the statement provided in the 
    error message, enables one to determine the program is in a GOSUB loop. 
     
    "*"'FREE<RTN>' 
    -------------- 
      "TEXT = 9 
       SYMB = 0 
       FORL = 0 
       GSUB = 0 
       WORK = 0 
       STRN = 0 
       TSTR = 0 
       FILE = 0 
       FREE = 34320" 
    "*"'10 GOSUB 10<RTN>' 
    --------------------- 
    "*"'RUN<RTN>' 
    ------------- 
 
    "! ERROR - Out of RAM Space At Line 10" 
    "*"'FREE<RTN>' 
     -------------- 
      "TEXT = 9 
       SYMB = 0 
       FORL = 0 
       GSUB = 32928 
       WORK = 0 
       STRN = 0 
       TSTR = 0 
       FILE = 0 
       FREE = 1392" 
    "*" 
 
    Note  that  the  file  table  never contains less than 283 bytes when a 
    channel is open.   The  file  table  contains  the  disk  file  buffers 
    necessary  to  read  and  write  files.  The 283 bytes are required for 
    BASIC's internal buffer, which it uses for such commands as OLD,  SAVE, 
    and REPLACE. 
     
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-42 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    FREE (Cont) 
    ----------- 
 
    You  can  compute  the  amount of space used by the FILE table with the 
    formula: 
 
        bytes = N * 256 
 
    where  N  is  the  number of the highest-numbered channel that is open. 
    Thus, when your program opens files, it should open them on the  lowest 
    numbered  channel  first.   If  you  open a file on channel 3, space is 
    reserved for the buffers for channels 1 and 2, even if they  are  never 
    opened. 
     
 
    FREEZE 
    ------ 
 
    The  FREEZE  command  is  used to store BASIC, your program, and all of 
    your program's variables on any  mounted  disk.   The  format  for  the 
    command is: 
     
    "*"'FREEZE "FNAME"<RTN>' 
 
    where  "FNAME" is the filename under which the "frozen" program will be 
    stored.  If  no  device  is  specified,  BASIC  assumes  SY0:.   If  no 
    extension is specified, BASIC assumes .BAF (for BASIC Frozen). 
     
    The  FREEZE  command allows you to suspend work temporarily; perhaps to 
    power-down overnight or to allow some more important work to interrupt. 
    This  command  is  not  intended  as  a  general-purpose,  program-save 
    command.  The SAVE and REPLACE commands are provided for normal program 
    saving.   The  file created by the FREEZE command is in absolute binary 
    format, and cannot be displayed or edited.   Its  sole  use  is  to  be 
    unfrozen with the UNFREEZE command. 
     
    The  file  is  quite  large  because  it  contains  all  of  the  BASIC 
    interpreter in addition to your program and variables.  Frozen programs 
    are  non-transferrable, meaning  they  cannot be  unfrozen by different 
    versions of BASIC than the one they were frozen with. 
     
    NOTE: All files must be closed before a program is saved via FREEZE. 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-43 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    GOSUB AND RETURN 
    ---------------- 
 
    A  subroutine  is  a  section  of  a  program performing some operation 
    required one or  more  times  during  program  execution.   Complicated 
    operations  on  a  volume of data, mathematical evaluations too complex 
    for user-defined functions, or a previously  written  routine  are  all 
    examples of processes best performed by a subroutine. 
     
    More  than  one  subroutine  is  allowed  in  a  single  program.  Good 
    programming practices dictate that subroutines  should  be  placed  one 
    after  another  at  the  end of the program in line number sequence.  A 
    useful  practice  is  to  assign  distinctive  line  number  groups  to 
    subroutines. 
     
    For  example,  a  main  program uses line numbers through 300.  The 400 
    block is assigned to subroutine #1, and the 500 block  is  assigned  to 
    subroutine   #2.    Thus,  any  errors,  program  modifications,  etc., 
    involving the subroutine are easily identified. 
     
    Subroutines are normally placed at the end of a program, but before the 
    data statements, if any. 
 
    Program  execution  begins  and  continues  until  a GOSUB statement is 
    encountered.  The form of the GOSUB statement is: 
 
    "*"'GOSUB LINNUM<RTN>' 
 
    where  LINNUM  is  the line number of the first line in the subroutine. 
    Once GOSUB is executed, program control transfers to the first line  of 
    the subroutine, and the subroutine is executed. For example: 
     
    "*"'60 GOSUB 500<RTN>' 
 
    In  this  example,  control  (the  sequence  of  program  execution) is 
    transferred  to line 500 in the program after line 60 is executed.  The 
    first  line  in  the  subroutine  may often be a remark to identify the 
    subroutine, or it may be any executable statement. 
     
    Once  program control is transferred to a subroutine, program execution 
    continues in the normal line-by-line manner until a RETURN statement is 
    encountered.  The RETURN statement is of the form: 
     
    "*"'RETURN<RTN>' 
 
    RETURN  causes the program control to return to the statement following 
    the original GOSUB statement.  A subroutine must always  be  terminated 
    by a RETURN. 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-44 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    GOSUB AND RETURN (Cont) 
    ----------------------- 
 
    Before  BASIC  transfers  control  to a subroutine, the next sequential 
    statement to be processed  after the  GOSUB  statement  is   internally 
    recorded.  The  RETURN  statement  draws on this  stored information to 
    restart normal program execution.  Using this technique,  BASIC  always 
    knows  where  to transfer control, no matter how many times subroutines 
    are called. 
 
    Subroutines  can  be nested in the same manner that FOR NEXT statements 
    can be nested.  That is, one subroutine can  call  another  subroutine, 
    and,  if  necessary,  that subroutine may call a third subroutine, etc. 
    If, during execution  of  the  subroutine,  a  RETURN  is  encountered, 
    control  is  returned  to  the  line  following  the  GOSUB calling the 
    subroutine.  Therefore, a subroutine can call another subroutine,  even 
    itself.  Subroutines can be entered at any point and can have more than 
    one RETURN.  Multiple RETURN statements  are  often  necessary  when  a 
    subroutine  contains conditional statements imbedded in it, which cause 
    different subroutine completions dependent on the program data. 
 
    It  is  possible  to  transfer  to  the beginning or to any part of the 
    subroutine.  Multiple entry points and returns make the GOSUB statement 
    an extremely versatile tool. 
 
    BASIC  permits  unlimited GOSUB nesting.  However, nesting uses memory, 
    and excessive nesting depth will cause an overflow. 
 
 
    GOTO 
    ---- 
 
    The GOTO statement provides unconditional transfer of program execution 
    to another line in the program.  The GOTO statement is of the form: 
 
 
    "*"'GOTO LINNUM<RTN>' 
 
    When  this statement is executed, program control transfers to the line 
    number specified by LINNUM.  For example: 
   
    "*"'10 LET A=1' 
    "*"'20 GOTO 40' 
    "*"'30 LET A=2' 
    "*"'40 PRINT A' 
    "*"'50 END' 
    "*"'RUN<RTN>' 
         -------- 
    "1" 
    "END AT LINE 50" 
    "*" 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-45 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    GOTO (Cont) 
    =========== 
 
    Program lines in this example are executed in the following order: 
 
    10, 20, 40, 50     
 
    Line  30  is  never  executed  because  the  GOTO  statement in line 20 
    unconditionally transfers control to line 40.  After the  unconditional 
    transfer takes place, normal sequential execution resumes at line 40. 
 
 
    IF THEN (IF GOTO) 
    ----------------- 
 
    The  IF  THEN  (IF GOTO) conditionally transfers program execution from 
    the normal consecutive order  of  program  lines,  depending  upon  the 
    results of a relation test.  The forms of the IF statement are: 
 
 
                      |THEN| 
        IF expression <    > LINNUM<RTN>  or 
                      |GOTO| 
 
        IF expression THEN statement<RTN> 
 
    The  expression  frequently  consists  of two variables combined by the 
    relational operators described in "Relational Operators"  (page 12-13). 
    In  the  first  form,  if the result of the expression is true, control 
    passes to the specified line number  (LINNUM).   
 
    In  the  second form, control passes to the statement following THEN on 
    the remainder of the line.  If the result of the expression  is  false, 
    control  passes  to  the next line.  The following examples show use of 
    the IF THEN statement. 
 
    "*"10 READ A' 
    "*"'20 B=10' 
    "*"'30 IF A=B THEN 50' 
    "*"'40 PRINT "A< >B",A:END' 
    "*"'50 PRINT "A=B",A' 
    "*"'60 DATA 10,5,20' 
    "*"'70 END' 
    "*"'RUN<RTN>' 
                    
    "A=B  10" 
 
    "END AT LINE 70" 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-46 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    IF THEN (IF GOTO) Cont) 
    ----------------------- 
 
    "*"'CONTINUE<RTN>' 
 
                        
    "A< >B  5" 
 
    "END AT LINE 40" 
 
    "*"'CONTINUE<RTN>' 
                         
    "A< >B  20" 
 
    "END AT LINE 40" 
 
    "*" 
 
    NOTE:  The  expression  can  be an arbitrarily complex expression.  For 
    example: 
 
        IF (A<3) AND NOT (B>C) THEN 33 
 
 
    LET 
    --- 
 
    The  LET statement assigns a value to a specific variable.  The form of 
    the LET statement is: 
 
        LET var = nexp         or 
        LET var$ = sexp 
 
    The  variable  "var" may be a numeric or a string variable "var$."  The 
    expression may be either an arithmetic "nexp" or  a  string  expression 
    "sexp."   However,  all  items in a statement must be either numeric or 
    string.  
 
    They  cannot  be  mixed.   If  they are mixed, a type conflict error is 
    flagged.  NOTE: Unlike standard BASIC,  multiple  assignments  are  not 
    permitted. 
 
        LET A=B=3<RTN> 
 
    causes  A to be set to 65,535 (true) if B89e is equal to 3, or causes A 
    to be set to 0 (false) if B is not equal to 3.  It does not cause  both 
    A and B to be set to 3. 
 
    You may omit the keyword LET if you prefer.  For example, the following 
    two statements produce identical results: 
      
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-47 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    "*"'10 LET A = 6'     
 
    or 
 
    "*"'10 A = 6' 
 
 
    The  LET statement is often referred to as an assignment statement.  In 
    this context, the meaning of the equal (=) symbol should be  understood 
    as  it is used in BASIC.  In ordinary algebra, the formula Y = Y + 1 is 
    meaningless.  However, in BASIC, the  equal  sign  denotes  replacement 
    rather  than  equality.  Thus, the formula "Y = Y + 1" is translated as 
    "add 1 to the current value of Y  and  store  the  new  result  at  the 
    location indicated by the variable Y." 
 
    Any values previously assigned to Y are combined with 1.  An expression 
    such as D=B + C instructs BASIC to  add  the  values  assigned  to  the 
    variables  B  and  C  and  store  the  resultant  value at the location 
    indicated by the variable D.  The variable D is not evaluated in  terms 
    of  previously  assigned  values,  but  only  in  terms  of  B  and  C. 
    Therefore, if previous assignments gave D a different value, the  prior 
    value is lost when this statement is executed. 
 
 
    LOCK 
    ---- 
 
    The LOCK statement protects your program by preventing execution of the 
    following command mode statements: 
 
        BUILD           CLEAR           SCRATCH 
         
        BYE             DELETE          UNFREEZE 
 
        CHAIN           RUN 
 
    It  also prevents the entry or deletion of program text.  Variables can 
    be changed, but not deleted.  The form of the LOCK statement is: 
 
    "*"'LOCK<RTN>' 
 
    A lock error (LOCK) is generated if you attempt to enter a "locked out" 
    command mode statement, such as RUN.  Use the UNLOCK statement to abort 
    the LOCK mode. 
 
 
    ON. . . GOSUB 
    ------------- 
 
    The  ON. . .  GOSUB  statement allows you to program a completed GOSUB. 
    When you use the ON. . .  GOSUB statement, use a RETURN at the  end  of 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-48 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    ON. . . GOSUB (Cont) 
    -------------------- 
 
    the subroutine to return program control to the statement following the 
    ON ... GOSUB statement.  The form of the ON ... GOSUB statement is: 
     
    "*"'ON iexpi GOSUB LINNUM1, ......., LINNUMn<RTN>' 
 
    When  it  is processing an ON ...  GOSUB statement, BASIC evaluates the 
    expression "iexp1" and uses the result as  an  index  to  the  list  of 
    statement  numbers  LINNUM1 through LINNUMn.  If the expression "iexp1" 
    evaluates  to  1,  for  example,  control  is  passed  to  line  number 
    "LINNUM1."   If  the  expression  "iexp1"  evaluates to 3, for example, 
    control is passed to line number "LINNUM3."  If the expression  "iexp1" 
    evaluates  to  0,  or  to an index greater than the number of statement 
    numbers listed, control is passed to the next program statement. 
 
 
    ON ... GOTO 
    ----------- 
 
    The  ON ...  GOTO statement allows you to perform a computer GOTO.  The 
    form of the ON ...  GOTO statement is: 
 
    "*"'ON iexpi GOTO LINNUM1, . . . . , LINNUMn<RTN>' 
 
 
    When  it  is  processing an ON ...  GOTO statement, BASIC evaluates the 
    expression "iexp1" and uses the result as  an  index  to  the  list  of 
    statement  numbers  LINNUM1 through LINNUMn.  If the expression "iexp1" 
    evaluates to 1, for example, control is passed to the line number given 
    by the expression "LINNUM1."  If the expression "iexp1" evaluates to 3, 
    for example, control is passed to line number given by  the  expression 
    "LINNUM3."   If  the  expression  "iexp1" evaluates to 0 or to an index 
    greater than the number of statement numbers listed, control is  passed 
    on the the next program statement. 
     
 
    OPEN 
    ---- 
 
    The OPEN command is used to open HDOS files so that they can be read or 
    written from BASIC.  The format of the OPEN command is: 
 
    "*"'OPEN sexp FOR READ AS FILE #iexp <RTN>'          or 
    "*"'OPEN sexp FOR WRITE AS FILE #iexp <RTN>' 
 
    The first form is used to open files for reading via the INPUT command. 
    The second form is used  to  open  files  for  writing  via  the  PRINT 
    command.  "sexp" is a string value that contains the HDOS filename.  If 
    no device is  specified,  BASIC  assumes  SY0:.   If  no  extension  is 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-49 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    OPEN (Cont) 
    ----------- 
 
    specified,  BASIC  assumes .DAT.  Any legal device may be used.  "iexp" 
    represents the channel number that is  to  be  assigned  to  the  file. 
    BASIC  has  five channels: 1 through 5.  This means that you can have a 
    maximum of five files open at one time.  You can close a file and  then 
    reuse  its  channel for some other file.  After the OPEN statement, the 
    only way to refer to the file is by its channel number; the filename is 
    no longer needed.  For example: 
                   
        OPEN "TEAP" FOR WRITE AS FILE #3 
        OPEN "SA1:RALPH.WRK" FOR READ AS FILE #1 
        OPEN A$ FOR WRITE AS FILE #1 
        OPEN "TT:" FOR WRITE AS FILE #2 
 
 
    To print or output to the "alternate terminal" device: 
 
    "*"'00010 OPEN "AT:" FOR WRITE AS FILE #1' 
    "*"'00020 FOR I=1 TO 10' 
    "*"'00030 PRINT #1,I,SQR(I)' 
    "*"'00040 NEXT I' 
    "*"'00050 CLOSE #1' 
    "*"'00060 STOP' 
    "*"'00070 END' 
 
 
    NOTES:  
 
         1.   Although  five channels are available, 1, 2, 3, 4, and 5, you 
    should  use the lowest-numbered channel available when opening  a  file 
    in order to minimize the amount of memory space required.  See the FREE 
    command discussion (page 12-40) for more information. 
     
         2.   Although  files  may be opened to any legal device, including 
    the console terminal (device TT:), you should use the regular INPUT and 
    PRINT  statements  for  communicating  with  the  console.   Due to the 
    requirements of HDOS device I/O, BASIC saves up the data you write to a 
    file  via  PRINT until there are 256 bytes of data, and then writes the 
    256 bytes all in one group. 
 
    Likewise,  when reading, BASIC reads ahead a 256-byte block of data and 
    then supplies it as needed to the INPUT #chan statements.  Thus, if you 
    write  to the console via a channel opened on the device TT:, the lines 
    will not appear on the screen when you PRINT them, but when  BASIC  has 
    accumulated 256 bytes worth (or when the file is closed). 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-50 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    OUT 
    --- 
 
    The  OUT  statement is used to output binary numbers to an output port. 
    The form of the OUT statement is: 
 
    "*"'OUT iexp1, iexp2<RTN>' 
 
    The  expression "iexp1" is used as the port address, and "iexp2" is the 
    value to be placed at that port.  Both  iexp1  and  iexp2  are  decimal 
    numbers.   The  low-order  8-bits  generated  by the decimal numbers in 
    iexp1 or iexp2 are used.  If you wish to write iexp1 and iexp2 in octal 
    notation  for  ease  in conversion to the actual binary values, write a 
    subroutine or function to perform octal-to-decimal conversion. 
 
 
    PAUSE 
    ----- 
 
    The  PAUSE  statement  causes  BASIC to delay before executing the next 
    statement.  The form of the pause statement is: 
     
        PAUSE [iexp] 
 
    If  the  optional  expression iexp is omitted, PAUSE suspends execution 
    until you type a carriage return.  If the expression iexp  is  present, 
    PAUSE delays 2* iexp milliseconds, and then allows execution to resume. 
    The maximum value for iexp is 30,000, allowing a maximum delay of about 
    60 seconds. 
     
    The  PAUSE  statement  is particularly useful when you are viewing long 
    outputs on a CRT display.  You can insert a PAUSE at appropriate points 
    in  the program, allowing you to view the information on the CRT before 
    the information scrolls off the screen. 
     



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-51 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    STATEMENTS VALID IN THE COMMAND OR PROGRAM MODE (Cont) 
    ====================================================== 
 
    POKE 
    ---- 
 
    ----------------------------------------------------------------------- 
    CAUTION *** **** *** CAUTION *** ***** *** CAUTION *** **** *** CAUTION 
    ----------------------------------------------------------------------- 
    Prevent possible damage to the computer operating system! 
 
    The  POKE  function  gives  an experienced BASIC user direct control of 
    virtually all of the features of the computer.  However, subtle  misuse 
    of  POKE  can interfere with the operating system and cause it to cease 
    correct functioning.  Therefore, CAUTION in using POKE is advised. 
     
    ****   ***   ***   ***   ***   ***   ***   ***   ***   ***   ***   **** 
    ----------------------------------------------------------------------- 
 
    The  POKE  statement  is  used  to place a value in a particular memory 
    location.  The form of the POKE statement is: 
 
        POKE Location, Value 
 
    The  "Location" is a decimal integer in the range of 0 to 65,535.  This 
    references any individual byte of a memory location.   The  "Value"  is 
    also  an  integer  expression  lying in the range of 0 to 255.  You can 
    examine the contents of a memory location by using the  PEEK  function, 
    described on Page 12-69. 
     
     
    PRINT 
    ----- 
 
    The  PRINT  statement is used to output data to the console terminal or 
    to an HDOS file.  The form of the PRINT statement is: 
     
        PRINT [nexp1,sep1, . . . . .[,nexpn, sepn]]     or 
        PRINT #chan, [nexp1, . . . . . . [,nexpn,sepn]] 
 
    The  first  form  shown  is  for writing text and values to the console 
    terminal.  The second form is for writing values and text  to  an  HDOS 
    file.   'chan'  is  the  channel  number of a file which must have been 
    previously opened for WRITE.  See the discussion of the OPEN and  CLOSE 
    command  for more information.  Except for the destination of the data, 
    both forms of the command are otherwise identical. 
     
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-52 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    PRINT (Cont) 
    ------------ 
 
    The  expression  and  separators  contained  within  the  brackets  are 
    optional.  When used without these optional expressions and separators, 
    the simple 
     
        PRINT           or 
        PRINT #CHAN  
 
    statement outputs a blank line. 
 
 
    PRINT: Printing Variables 
    ------------------------- 
 
    The  PRINT  statement  can  be  used  to  evaluate  expressions  and to 
    simultaneously print their results, or to simply print the results of a 
    previously   evaluated   expression  or  evaluations.   Any  expression 
    contained in the PRINT statement is  evaluated  before  the  result  is 
    printed.  For example: 
 
    "*"'10 A=4;B=6;C=5+A' 
    "*"'20 PRINT' 
    "*"'30 PRINT A+B+C' 
    "*"'40 END' 
    "*"'RUN<RTN>' 
 
    "19"  
 
    "END AT LINE 40" 
 
    "*" 
 
    All  numbers are printed with a preceding and following blank.  You can 
    use PRINT statements anywhere in a multiple-statement line.  NOTE:  The 
    terminal  performs a carriage-return/line-feed at the end of each PRINT 
    statement, unless you use the separators described in "Use of the Comma      
    [,] and Semicolon [;], page 6-53.  Thus, in the  previous  example, the 
    first PRINT statement  outputs  a  carriage-return/line-feed,  and  the 
    second   PRINT   statement   outputs  the  number  19,  followed  by  a 
    carriage-return/line-feed. 
     
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-53 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    PRINT: Printing Strings 
    ----------------------- 
 
    The  PRINT  statement  can  be  used  to  print  a message (a string of 
    characters).  The string may be alone, or it may be used together  with 
    the  evaluation  and  printing  of  a  numeric value.  Characters to be 
    printed are designated by inclosing them in quotation marks  ["].   For 
    example: 
     
    "*"'10 PRINT "THIS IS A HEATH COMPUTER"' 
    "*"'RUN<RTN>' 
 
    "THIS IS A HEATH COMPUTER" 
 
    "END AT LINE 65535" 
    "*" 
 
    The  string  contained in a PRINT statement may be used to document the 
    variable being printed.  For example: 
         
    "*"'10 LET A=5;LET B=10' 
    "*"'20 PRINT "A + B",A+B' 
    "*"'30 END' 
    "*"'RUN<RTN>' 
 
    "A + B          15" 
 
    "END AT LINE 30" 
    "*" 
 
    When  a  character  string  is printed, only the characters between the 
    quotes appear.  No leading or trailing blanks are added,  as  they  are 
    when  a  numeric  value is printed.  Leading and trailing blanks can be 
    added within the quotation marks. 
 
 
    PRINT: Use of the comma [,] and semicolon [;] 
    --------------------------------------------- 
 
    The  console  terminal  is normally initialized with 80 columns divided 
    into  five  zones.   (See  CNTRL  3,  n  for  exception.)   Each  zone, 
    therefore,  consists  of  14  spaces.   When an expression in the PRINT 
    statement is followed by a comma, the next value to be printed  appears 
    in the next available print zone.  For example: 
     
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-54 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    PRINT: Use of the comma [,] and semicolon [;] (Cont) 
    ---------------------------------------------------- 
 
    "*"'10 A=5,55555:B=2' 
    "*"'20 PRINT A,B,A+B,A*B,A-B,B-A' 
    "*"'30 END' 
    "*"'RUN<RTN>' 
                         
    "   5.55554        2            7.55554       11.1111       3.55554" 
    "    -3.55554" 
 
    "END AT LINE 30" 
    "*" 
 
    NOTE:  The  sixth element in the PRINT list is the first entry on a new 
    line, as the five print zones of a 72-character line were used. 
     
    Using  two  commas together in a PRINT statement causes a print zone to 
    be skipped.  For example: 
     
    "*"'10 A=5,55555;B=2'  
    "*"'20 PRINT A,B,A+B,,A*B,A-B,B-A' 
    "*"'30 END' 
    "*"'RUN<RTN>' 
                 
       "5.55554         2            7.55554                      11.1111" 
       "2.55554         -3.55554" 
 
    "END AT LINE 30" 
    "*" 
 
    If  the last expression in a PRINT statement is followed by a comma, no 
    carriage-return/line-feed is given when the last variable  is  printed. 
    The next value printed (by a later PRINT) statement appears in the next 
    available print zone.  For example: 
     
    "*"'10 LET A=1:LET B=2:LET C=3' 
    "*"'20 PRINT A,' 
    "*"'30 PRINT B' 
    "*"'40 PRINT C' 
    "*"'50 END' 
    "*"'RUN<RTN>' 
     
    "1              2" 
    "3" 
 
    "END AT LINE 50" 
    "*" 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-55 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    PRINT: Use of the Comma [,] and Semicolon [;] (Cont) 
    ---------------------------------------------------- 
 
    At  certain times, it is desirable to use more than the designated five 
    print zones.  If such tighter packing of the numeric values is desired, 
    a  semicolon  is  inserted in place of the comma.  A semicolon does not 
    move the next output to the next PRINT zone, but simply prints the next 
    variable, including its leading and trailing blanks.  For example: 
     
    "*"'10 LET A=1:LET B=2;LET C=3' 
    "*"'20 PRINT A;B;C' 
    "*"'30 PRINT A+1;B+1' 
    "*"'40 PRINT C+1' 
    "*"'50 END' 
    "*"'RUN<RTN>' 
     
    "1  2  3" 
 
    "   2  3" 
 
    "      4" 
 
    "END AT LINE 50" 
    "*" 
 
    NOTE:  If  either  a  comma  or a semicolon is the final character of a 
    PRINT statement, no final carriage-return/line-feed is printed. 
     
 
    READ AND DATA 
    ------------- 
 
    The READ and DATA statements are used in conjunction with each other to 
    enter data into an executing program.   One  statement  is  never  used 
    without the other.  The form of the statements is: 
     
        READ var1, . . . , varn 
        READ val1, . . . , valn 
 
    The  READ  statement assigns the values listed in the DATA statement to 
    the specified variables var1 through varn.  The items in  the  variable 
    list  may  be  simple variable names, arrays, or string variable names. 
    Each one is separated by a comma.  For example: 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-56 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    READ AND DATA (Cont) 
    ==================== 
 
    "*"'05 DIM A (2,3)'                                                 
    "*"'10 READ C,B$,A (1,2)'                                  
    "*"'20 DATA 12,THIS IS SIX,56' 
    "*"'30 PRINT C,B$,A (1,2)' 
    "*"'RUN<RTN>' 
      
    "12           THIS IS SIX 56"                              
                                                                           
    "END AT LINE 65535" 
    "*" 
 
    Because  data  must  be read before it can be used in the program, READ 
    statements generally occur in the beginning of  a  program.   You  may, 
    however,  place a READ statement anywhere in a multiple-statement line. 
    The type of value  in  the  DATA  statement  must  match  the  type  of 
 
    corresponding  variable in the READ statement.  When the DATA statement 
    has been exhausted, BASIC finds the next sequential DATA  statement  in 
    the  program.   NOTE:  BASIC does not automatically go to the next DATA 
    statement for every READ statement.  Therefore, one DATA statement  may 
    supply  values  for  several  READ  statements  if  the  DATA statement 
    contains more expressions than the READ statement has variables. 
 
    The  data  values  in a DATA statement must be separated by commas.  If 
    the value is to be read into a numeric variable or array, it must be  a 
    number.  If the value is to be read into a string variable or array, no 
    specific format is required.  If the value  is  inclosed  in  quotation 
    marks  ["],  the quoted characters are assigned to the string variable. 
    If the variable is not inclosed in quotes, BASIC  uses  the  characters 
    until  a comma or the end of the line is reached.  Thus, if you wish to 
    read a comma as part of the  value,  you  MUST  inclose  the  value  in 
    quotes. 
     
    You may not include a quote character in the value.  For example: 
 
    "*"'10 READ A$,B$,C$' 
    "*"'20 PRINT A$,B$,C$' 
    "*"'30 DATA HI THERE, "HI, THERE", YES' 
    "*"'RUN<RTN>' 
     
    "HI THERE          HI, THERE       YES" 
 
    A field in the DATA statement may be left null by means of two adjacent 
    commas.  This causes the associated variable to retain the  old  value. 
    For example: 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-57 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    READ AND DATA (Cont) 
    -------------------- 
 
    "*"'10 A=1:B=1:C=1' 
    "*"'20 READ A,B,C' 
    "*"'30 PRINT A,B,C' 
    "*"'40 DATA 3,4' 
    "*"'50 END' 
    "*"'RUN<RTN>' 
     
    "3          1          4" 
 
 
    "END AT LINE 50" 
    "*" 
 
    If a DATA statement appears on a line, it must be the only statement on 
    that line.  DATA statements may not follow any other statement  on  the 
    line.  Other statements should not follow DATA statements. 
     
    DATA  statements  do not have to be executed to be used.  That is, they 
    may be the last statement in a program, and be used by a READ statement 
    executed earlier in the program.  However, if DATA statements appear in 
    a program in such a place that they are executed (there are  executable 
    statements  beyond the DATA statement), the executed DATA statement has 
    no effect.  Therefore, the location of DATA statements is arbitrary, as 
    long  as  the values contained within the DATA statements appear in the 
    correct order.  However, good programming practice  dictates  that  all 
    DATA  statements occur near the end of the program.  This makes it easy 
    for the programmer to modify the DATA statements if necessary. 
     
    If  a  value  contained  in  a DATA statement is incorrect, the illegal 
    character error message is printed.   All  subsequent  READ  statements 
    also  cause  the  message.   If  there is no data available in the data 
    table for the READ statement to use,  the  no  data  error  message  is 
    printed on the screen. 
     
    If  the  number of values in the data list exceed those required by the 
    program READ statements, they are ignored, and thus not used. 
     
 
    REM (REMARK) 
    ------------ 
 
    The  REMARK statement lets you insert notes, messages, and other useful 
    information within your program in such a form that it is not executed. 
    The  contents  of the REMARK statement may give such information as the 
    name and purpose of the program, how  the  program  may  be  used,  how 
    certain  portions  of  the  program  work,  etc.   Although  the REMARK 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-58 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    REM (REMARK) (Cont) 
    ------------------- 
 
    statement  inserts  comments  into  the   program   without   affecting 
    execution, it does use memory which may be needed in exceptionally long 
    programs. 
     
    REMARK  statements  must  be preceded by a line number when used in the 
    program.  They may be used anywhere in a multiple statement line.   The 
    message  itself can contain any printing character on the keyboard, and 
    can include blanks.  BASIC ignores anything on  a  line  following  the 
    letters REM. 
     
 
    RESTORE 
    ------- 
 
    The  RESTORE statement causes the program to reuse data starting at the 
    first DATA statement.  It resets the  DATA  statement  pointer  to  the 
    beginning of the program.  The RESTORE statement is of the form: 
     
        RESTORE 
 
    For example: 
 
    "*"'10 READ A,B,C' 
    "*"'20 PRINT A,B,C' 
    "*"'30 RESTORE' 
    "*"'40 READ D,E,F' 
    "*"'50 PRINT D,E,F' 
    "*"'60 DATA 1,2,3,4,5,6,7,8' 
    "*"'70 END' 
    "*"'RUN<RTN>' 
     
    "1          2          3" 
    "1          2          3" 
 
    "END AT LINE 70" 
    "*" 
 
    This  program  does  not  utilize  the  last  five elements of the DATA 
    statement.  The RESTORE command resets the DATA statement  pointer  and 
    the  READ  D,E.F  statement uses the first three data elements, as does 
    the initial READ statement. 
     
    The CLEAR command includes the RESTORE function. 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-59 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    STEP 
    ---- 
 
    The STEP command permits you to step through a program a single line or 
    a few lines at a time.  The form of the STEP command is: 
 
     
        STEP iexp<RTN> 
 
    where  the  integer expression iexp indicates the number of lines to be 
    executed before stopping.  Execution of the desired lines is  indicated 
    by  the  prompt  NXT=nnnn,  where  nnnn  is  the next line number to be 
    executed.  A STEP 2 is required to execute the first program line.  All 
    future single-line executions require a STEP or STEP 1.  For example: 
     
    "*"'10 READ A,B,C' 
    "*"'20 PRINT A,B,C' 
    "*"'30 RESTORE' 
    "*"'40 READ D,E,F' 
    "*"'50 PRINT D,E,F' 
    "*"'60 DATA 1,2,3,4,5,6,7,8' 
    "*"'70 END' 
 
    "*"'CLEAR<RTN>' 
     
    "*"'STEP 3<RTN>' 
    "1          2          3" 
    "NXT= 30" 
 
    "*"'STEP<RTN>' 
    "NXT= 40" 
 
    "*"'STEP<RTN>' 
    "NXT= 50" 
 
    "*"'STEP<RTN>' 
    "1          2          3" 
    "NXT= 60" 
 
    "*"'STEP 2<RTN>' 
 
    "END AT LINE 70" 
    "*" 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-60 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    UNFREEZE 
    -------- 
 
    The  UNFREEZE command is used to restore a program that has been frozen 
    with  the  FREEZE  command.   (See  "FREEZE"  on  page 12-42  for  more 
    information.)  The format of the UNFREEZE command is: 
 
        UNFREEZE "fname"<RTN> 
 
    where "fname" is the name of the previously frozen file.  If no device 
    is specified, BASIC assumes SY0:.  If no extension is specified, BASIC 
    assumes .BAF.   
 
 
    UNLOCK 
    ------ 
 
    The  UNLOCK  statement aborts the LOCK mode and restores the use of all 
    command mode statements.  The form of the UNLOCK statement is: 
     
        *UNLOCK<RTN> 
 
 
    UNSAVE 
    ------ 
 
    The  UNSAVE command is used to delete programs and files from the disk. 
    The form of the UNSAVE command is: 
     
        UNSAVE "fname"<RTN> 
 
    where  "fname"  is the name of the file to be deleted.  If no device is 
    specified, BASIC assumes SY0:.  If no  extension  is  specified,  BASIC 
    assumes  .BAS.  Unless the file on the disk is write-protected, you can 
    use UNSAVE to delete any  file:  a  BASIC  program,  a  data  file,  or 
    anything else. 
     
 
    PROGRAM MODE STATEMENTS 
    ======================= 
 
    PROGRAM  MODE statements are valid only when utilized within a program. 
    If they are entered in the  command  mode,  an  illegal  use  error  is 
    flagged. 
     
     
    DATA 
    ---- 
 
    The  DATA  statement  discussed  in  "READ  and DATA" (page 12-55) is a 
    program-only statement, although it is used in conjunction with a  READ 
    statement, which may be used in either the command or program mode. 
     



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-61 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    DEF FN 
    ------ 
 
    The  DEF  FN statement defines single-line program functions created by 
    the user.  The form of the DEF FN statement is: 
     
        DEF FN varname (arg1 [,arg2, . . . , argn]) = expr 
 
    The  variable name (varname) must be a legal string or numeric variable 
    name, and  cannot  be  previously  dimensioned.   However,  it  may  be 
    previously  defined.   The  latest  definition  takes  precedence.  The 
    argument list "(arg1 [,arg2, .  .  .   ,arg3])"  must  be  supplied  to 
    indicate   a  function.   NOTE:  The  arguments  are  real,  not  dummy 
    variables, and do change as evaluation proceeds. 
     
    "*"'10 REM DEFINE A SQUARE FUNCTION' 
    "*"'20 DEF FN S1(I) = I * I' 
    "*"'30 PRINT FN S1(3), I,FN S1(5),I' 
    "*"'40 END' 
          
    "*"'RUN<RTN>' 
     
    "9          3           25           5" 
 
    "END AT LINE 40" 
 
    "*" 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-62 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    END 
    --- 
 
    The END statement causes control to return to the command mode.  An END 
    statement  message  is  typed,  giving  the  line  number  of  the  END 
    statement.   END  also causes the "next statement" pointer to be set to 
    the beginning of the program so a CONTINUE  resumes  execution  at  the 
    beginning of the program. 
     
    An  END  statement may appear anywhere in the program, as many times as 
    desired.  If a program does not contain an END statement, it "runs  off 
    the  end."  In this case BASIC generates a pseudo end statement of line 
    65,535. 
     
 
    INPUT AND LINE INPUT 
    -------------------- 
 
    The  INPUT  and  LINE INPUT statements are used when data is to be read 
    from the console terminal, or from an HDOS file.  The form of the INPUT 
    statement is: 
     
        INPUT prompt;var1, . . . . . , varn               or 
        INPUT #chan, prompt;var1, . . . . . , varn 
 
    The  #chan specification (shown in the second example) is optional, and 
    if present specifies the channel number of the file  (which  must  have 
    been  previously OPENed for INPUT) to be read from.  An INPUT statement 
    with a file channel number specified works just like  a  regular  INPUT 
    statement,  except  that  a  line is read from the file rather than the 
    console.  Values are read from the line in exactly the same way as they 
    would  be  from a line typed at the keyboard.  If necessary, BASIC will 
    read more lines from the file to  satisfy  the  INPUT  statement.   Any 
    unused values on the line are discarded. 
     
    If  the  first element following the INPUT statement is a string, INPUT 
    assumes it is a prompt and types the string  instead  of  the  question 
    mark [?].  If you do not want a prompt string but the first variable is 
    a string variable, a leading semicolon is required.  For example: 
     
        INPUT ;S3$(2) 
 
    tells  BASIC  that  the  data  read  from the console terminal is to be 
    placed in the third element of the  string  array  S3$.   Note  that  a 
    prompt is meaningless when inputting from HDOS files. 
     
    The  data  line  input  from  the console or read from the HDOS file is 
    identical in format to the DATA statement except that the DATA  keyword 
    is  omitted.   
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-63 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    INPUT AND LINE INPUT (Cont) 
    --------------------------- 
 
    String  values  need  not be inclosed in quotes unless they contain the 
    comma [,] character.  Multiple data values on the  same  line  must  be 
    separated by commas. 
     
    As  in  the DATA statement, null fields (two commas in a row) cause the 
    variable to retain its previous value.  If the user  response  (or  the 
    line  read  if  you  are  inputting  from an HDOS file) does not supply 
    sufficient data to complete the INPUT statement, another "?"  prompt is 
    issued (if you are inputting from the console) and another line is read 
    from the console or the data file.  CAUTION: If  you  supply  too  much 
    data  or  there  is  too  much  on  a line read from a file, it will be 
    ignored.  The next INPUT statement issues a fresh read to the  terminal 
    or file. 
     
    When there are several values to be entered via the INPUT statement, it 
    is helpful to print a message explaining the  data  needed,  using  the 
    prompt string.  For example: 
     
    "*"'10 INPUT "THE TIME IS?";T' 
 
    When this line of the program is executed, BASIC prints: 
 
    "THE TIME IS?" 
 
    and then waits for a response. 
 
    The  LINE INPUT statement is used to input one line of string data from 
    the console terminal and assign it to a string variable.  Its  form  is 
    identical  to  the INPUT form, except that the supplied line is read in 
    its entirety into the string variable,  regardless  of  commas  [,]  or 
    quotation marks ["].  For example: 
     
         LINE INPUT "YES OR NO?";A$             or 
         LINE INPUT #2,;A$ 
 
    Note  that the channel number in the second example is must be followed 
    by a comma; the  following  semicolon tells BASIC that  A$ is a variable 
    name, not a prompt. 
     
    LINE  INPUT,  unlike  READ  and  INPUT,  allows  you  to  read a string 
    containing a quote ["] character.  Note that  you  should  NOT  inclose 
    your  reply  in  quotes,  since  these  will be accepted as part of the 
    string. 
     
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-64 
    ==============      ============================             ========== 
 
                            BASIC STATEMENTS (Cont) 
                            +++++++++++++++++++++++ 
 
    STOP 
    ---- 
 
    The STOP statement causes BASIC to enter the command mode.  The message 
    stating the line number of  the  STOP  is  printed.   The  "next  line" 
    pointer  is  left  after  the  STOP  statement, so a CONTINUE statement 
    causes execution to resume on  the  line  immediately  after  the  STOP 
    statement.  The STOP statement is of the form: 
     
        STOP 
 
    The  STOP statement can occur several times throughout a single program 
    with conditional jumps determining the actual end of the program.   The 
    following  example uses the STOP statement to examine a variable during 
    execution. 
     
    "*"'10 A=1;B=2;C=3' 
    "*"'20 PRINT A,B,C' 
    "*"'30 END' 
 
    "*"'RUN<RTN>' 
    "1          2          3" 
    "END AT LINE 30" 
 
    "*"'15STOP<RTN>' 
 
    "*"'RUN<RTN>' 
     
    "*"'STOP AT LINE15' 
    "*"'PRINT A<RTN>' 
     
    "1"                      
    "*"'*15<RTN>'               (STOP deleted) 
 
    "*"'RUN<RTN>' 
    "1          2          3" 
 
    "END AT LINE 30" 
    "*" 
    *********************************************************************** 
 
 
 
 
 
   
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-65 
    ==============      ============================             ========== 
 
                             PREDEFINED FUNCTIONS 
                             ++++++++++++++++++++ 
 
    INTRODUCTION 
    ============ 
 
    There  are  31  predefined  functions in B. H. BASIC.  These  functions 
    perform  standard  mathematical  operations  such  as   square   roots, 
    logarithms,  string manipulations, and special features.  Each function 
    has an abbreviated three-or-four-letter name, followed by  an  argument 
    in  parentheses.   As  these functions are predefined, they may be used 
    throughout a program when required.  Predefined functions  use  numeric 
    expressions  (nexp), integer expressions (iexp), and string expressions 
    (sexp). 
     
    The  abbreviation  (narg)  is  used  to  indicate a numeric argument, a 
    decimal number lying in the approximate  range  of  10^-38  to  10^+37. 
    Certain functions do not permit the argument to assume this wide range, 
    as indicated in the function description.  [Note: The term 10-38  means 
    10 with a negative exponent of 38.  Also the term 10+37 means 10 with a 
    positive exponent of 37.] 
     
    The  predefined  functions may be used in either the command or program 
    mode. 
     
 
    ARITHMETIC AND SPECIAL FEATURE FUNCTIONS 
    ======================================== 
 
    THE ABSOLUTE VALUE FUNCTION, ABS(nexp) 
    -------------------------------------- 
 
    The  ABSOLUTE  VALUE function gives the absolute value of the argument. 
    The absolute value is the positive portion of the  numeric  expression. 
    For example: 
     
    "*"'PRINT ABS(-5.5)<RTN>' 
                                
    "5.5"                            or 
 
    "*"'PRINT ABS(SIN(3.5))<RTN>' 
                                   
    ".350783" 
 
    "*" 
 
    NOTE: The sine of 3.5 radians is -.350783. 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-66 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE ARC TANGENT FUNCTION, ATN(nexp) 
    ----------------------------------- 
 
    The  ARC TANGENT function returns the arc tangent of the argument.  For 
    example: 
     
    "*"'PRINT ATN(1/1)*57.296;"DEGREES"<RTN>' 
                                                
    "45.0001 DEGREES" 
 
    "*"'*PRINT 4*ATN(1)<RTN>' 
                                
    "3.14159" 
 
    "*"                                 NOTE: Pi = 3.14159 
    ....................................................................... 
 
    THE CHARACTER INPUT FUNCTION, CIN(chan) 
    --------------------------------------- 
 
    The  CIN  function  is  used to read a character from any open file, or 
    from the console terminal  (if  chan=0).   If  the  value  returned  is 
    positive,  then  it  is  the  next byte read from the file, or the next 
    character read from the console (if chan=0).  If the value returned  is 
    negative, then an end-of-file has been detected on the file, or no line 
    has yet been entered on the console (if chan=0).  For example: 
     
    "*"'*PRINT CIN(0)<RTN>' 
                             
    "-1" 
 
    "*" 
    ....................................................................... 
 
    THE COSINE FUNCTION, COS(nexp) 
    ------------------------------ 
 
    The COSINE function returns the COSINE of the argument (nexp) expressed 
    in radians.  For example: 
     
    "*"'*PRINT COS(60/57.296)<RTN>' 
                                    
    ".500003" 
 
    "*" 
    ....................................................................... 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-67 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE EXPONENTIAL FUNCTION, EXP(nexp) 
    ----------------------------------- 
 
    The  EXPONENTIAL  function returns the value e nexp.  If "nexp" exceeds 
    88, an overflow is flagged, as the result exceeds 10^+38.  If "nexp" is 
    less than -88, an overflow error occurs.  An example of the exponential 
    function is: 
     
    "*"'*PRINT EXP(1),EXP(2),EXP(COS(60/57.296))<RTN> 
                                                        
    "2.71828          7.38905          1.64873" 
      
    [Note:  The  terms  "e nexp"  mean that "e" has an  exponent of "nexp." 
    Also the number "10" has an exponent of  "38."   This  relationship  is 
    impossible to illustrate with the H89 Computer without requiring a note 
    of explanation.] 
    ....................................................................... 
     
    THE INTEGER FUNCTION, INT(narg) 
    ------------------------------- 
 
    The  INTEGER  function returns the value of the greatest integer value, 
    not greater than "narg."  If the argument is  a  negative  number,  the 
    INTEGER  function  returns the negative number with the same or smaller 
    absolute value.  For example: 
     
    "*"'PRINT INT (38.55)' 
                            
    "38" 
 
 
    "*"'PRINT INT (-3.3)' 
                            
    "-3" 
 
    "*" 
    ....................................................................... 
 
    THE LINE NUMBER FUNCTION, LNO(iexp) 
    ----------------------------------- 
 
    BASIC  statements  that refer to line numbers (such as GOTO, GOSUB, and 
    so forth) do not allow the line number to be  expressed  as  a  numeric 
    expression.   The  LNO  function  is  provided  to  convert  an integer 
    expression into a line number. For example: 
     
        GOTO 20<RTN> 
                                and 
        GOTO LNO(2*10)<RTN> 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-68 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE LINE NUMBER FUNCTION, LNO (iexp) (Cont) 
    ------------------------------------------- 
 
    Both cause a jump to statement number 20.  You can use the LNO function 
    anywhere a line  number  is  required;  it  provides  a  very  powerful 
    "computed  GOTO"  facility.   A  program can compute the line number it 
    wishes to jump to (or call, via GOSUB) by using the LNO function.  Some 
    more examples: 
     
        GOSUB LNO(2*Y+100) 
 
        ON I GOTO 20,30,LNO(I),LNO(I*2) 
 
        IF (A=B) THEN GOTO LNO(A) 
    ....................................................................... 
 
    THE LOGARITHM FUNCTION, LOG(nexp) 
    -------------------------------- 
 
    The  LOGARITHM  function returns the natural logarithm (LOG to the base 
    e) of the argument.  You can find the Logarithms of a number N  in  any 
    other base by using the formula: 
     
        LOGa N = LOGeN/LOGe a       
 
    Where "a" is a subscript representing the desired base, and "e" is also 
    a subscript.  The last "a" is shown on the main line.  Most  frequently 
    "a" is 10 when you are converting to common logarithms.  For example: 
     
    "*"'*PRINT "A POWER RATIO OF 2 IS";10*(LOG(2)/LOG(10));"DECIBELS"<RTN>' 
                                                                            
    "A POWER RATIO OF 2 IS 3.0103 DECIBELS" 
 
    "*" 
    ....................................................................... 
      
    THE MAXIMUM FUNCTION, MAX (nexpi, . . . , nexpn) 
    ------------------------------------------------ 
 
    The  MAXIMUM  function returns the maximum value of all the expressions 
    which are arguments of the function.  For example: 
 
    "*"'LET A=1' 
    "*"'20 PRINT MAX(COS(A),SIN(A)/COS(A))' 
    "*"'30 END' 
    "*"'RUN<RTN>' 
                   
    "*" 
 
    The  expression  containing the maximum value is the expression for the 
    tangent of 1 radian, 1.55741. 
    ....................................................................... 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-69 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE MINUMUM FUNCTION, MIN(nexpi, . . . ,nexpn) 
    ---------------------------------------------- 
 
    The  MINIMUM  function  returns  the  lowest  value  of all expressions 
    contained in the argument.  For example: 
 
    "*"'PRINT MIN(1,2,3,4, . . . ,5)<RTN> 
                                           
    ".5" 
    "*" 
 
    ....................................................................... 
 
    THE PAD FUNCTION, PAD(0)  [Applies only to the H8 Computer.] 
    ------------------------------------------------------------ 
 
    The  PAD  function  returns  the  value of the keypad pressed on the H8 
    front panel. For example: 
     
    "*"'PRINT PAD(0)<RTN>' 
                            
    "6"                              (The #6 key was pressed.) 
 
    The  PAD function uses all the front panel debounce and repeat software 
    contained in PAM-8.  (See "The Segment Functions," page 12-72,  for  an 
    additional example.) 
     
    NOTE:  The  PAD  function  must be completely executed before any other 
    function will respond.  Therefore, CTRL-C, etc, will not work until you 
    press an H8 front panel key. 
     
    The  PAD  function  is  intended for use on an H8 Computer, where front 
    panel access is necessary.  On an  H89  Computer,  there  is  no  front 
    panel.   If  a BASIC program using the PAD function is run on an H89, a 
    zero (0) will be returned as soon  as  the  PAD(0)  is  executed.   The 
    CTRL-C function is not disabled on the H89. 
    ....................................................................... 
 
    THE PEEK FUNCTION, PEEK(iexp) 
    ----------------------------- 
 
    The  PEEK  function  returns  the  numeric  value of the byte at memory 
    location iexp, where iexp is in decimal. 
    ....................................................................... 
 
    THE PIN FUNCTION, PIN(iexp) 
    --------------------------- 
 
    The PIN function returns the value input from port "iexp" where iexp is 
    a decimal expression ranging from 0-255.  For example: 
     
    "*"'A=PIN(38)<RTN>' 
                          



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-70 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE PIN FUNCTION, PIN(iexp) (Cont) 
    ---------------------------------- 
 
    where "A" now contains the data that was at port #38 (46 octal). 
    ....................................................................... 
 
    THE POSITION FUNCTION, POS(chan) 
    -------------------------------- 
 
    The  POSITION  function returns the current terminal printhead (cursor) 
    position.  The argument "chan" specifies the I/O  channel  number  (see 
    the  OPEN  statement)  you  wish  to  interrogate.   BASIC  maintains a 
    separate cursor address for each I/O channel  in  use.   Channel  0  is 
    always the console channel, and is always considered "open."  Thus, use 
    POS(0) to read the position of the console cursor.  The value  returned 
    is  a  decimal  number  indicating  the  column number of the printhead 
    (cursor) postion.  For example: 
     
    "*"'PRINT POS(0), POS(0), POS(0); POS(0); POS(0)<RTN>' 
                                                            
    "1             14             28   32   36" 
 
    "*" 
    ....................................................................... 
      
    THE RANDOM FUNCTION, RND(narg) 
    ------------------------------ 
 
    The  RANDOM number function returns the next element in a pseudo-random 
    series.  The RANDOM number generator is not truly random,  and  may  be 
    manipulated  by controlling the argument.  If narg>0, the random number 
    generator returns the next random number in this  series.   If  narg=0, 
    the  random  number  generator  returns  the previously returned random 
    number.  If narg<0, the value "narg" is used as a new seed for a random 
    number,  thus  starting an entire new series.  Using these three inputs 
    to the random number series, the program may  continuously  return  the 
    same  number  while debugging the program, determine what the series of 
    numbers will be when the program is run,  or  start  a  series  of  new 
    random numbers each time BASIC is loaded.  For example: 
     
    [Note: The example will be found on the next page.] 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-71 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE RANDOM FUNCTION, RND(narg) (Cont) 
    ------------------------------------- 
 
    "*"'10 RUN FOR A=0 to 2' 
    "*"'20 PRINT RND(1)' 
    "*"'30 NEXT' 
    "*"'40 END' 
    "*" 
 
    "*"'RUN<RTN>'                                                 
    -------------                                                         
    ".93677" 
    ".566681" 
    ".53128" 
 
    "END AT LINE 40" 
 
    "*"'20PRINT RND(0)<RTN>' 
    ------------------------   
 
    "*"'RUN<RTN>' 
                    
    ".332306" 
    ".332306"                   
    ".332306" 
 
    "END AT LINE 40" 
    "*"'20PRINT RND(-1)<RTN>' 
    -------------------------   
 
    "*"'RUN<RTN>'                 
    -------------                 
    "6.25305E-02" 
    "6.25305E-02" 
    "6.25305E-02" 
 
    "END AT LINE 40" 
    "*"'20PRINT RND(-5)<RTN>' 
    -------------------------    
 
    "*"'RUN<RTN>' 
    -------------  
    ".460968" 
    ".460968" 
    ".460968" 
 
    "END AT LINE 40" 
    ---------------- 
    "*" 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-72 
    ==============      ============================             ========== 
 
                ARITHMETIC AND SPECIAL FEATURE FUNCTIONS (Cont) 
                =============================================== 
 
    THE SEGMENT FUNCTION, SEG(narg)  [Applies to the H8 Computer only.] 
    ------------------------------------------------------------------- 
 
    The  SEG  function  returns  a numeric value which is the correct 8-bit 
    binary number to display the digit on the H8  front  panel  LEDs.   The 
    argument  must  be  an  integer between 0 and 9.  The following program 
    demonstrates the use of PAD, POKE, and SEG in  Extended  Benton  Harbor 
    BASIC: 
 
        10 REM A PROGRAM TO USE THE FRONT PANEL LEDS. CNTRL 2,1 TURNS 
        20 REM ON THE LEDS WITHOUT UPDATE.  THE KEYPAD NOW DRIVES THE 
        30 REM DISPLAY THRU BASIC.  8203 IS THE FIRST LED MEM LOCATION. 
        40 CNTRL 2,1 
        50 A=8203 
        60 FOR I=A TO A+8 
        70 POKE I,SEG(PAD(0)) 
        80 NEXT I 
        90 GOTO 60 
    "*"'RUN<RTN>' 
                     
      
    When the program is executed, the H8 front panel LEDs respond to the H8 
    keypad numeric entries.  To escape from the  program,  you  would  type 
    CTRL-C, and then press any key on the H8 front panel. 
 
    NOTE: The SEG function is not useful on the H89 Computer.  Running this 
    sample program on your H89 will produce no  results.   Type  CTRL-C  to 
    exit. 
    ....................................................................... 
 
     



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-73 
    ==============      ============================             ========== 
 
               ARITHMETIC AND SPECIAL FUNCTIONS FEATURES (Cont) 
               ================================================ 
 
 
    THE SIGN FUNCTION, SGN(narg) 
    ---------------------------- 
 
    The  SIGN  function returns the value +1 if "narg" is a positive value, 
    and 0 if "narg" is 0, and -1 if "narg" is negative.  For example: 
     
    "*"'PRINT SGN(5.6)<RTN>' 
                                
    "1" 
 
    "*"'PRINT SGN(-500)<RTN>' 
                               
    "-1" 
 
    "*"'PRINT SGN(12-12)<RTN>' 
                                 
    "0" 
         
    "*" 
    ....................................................................... 
 
    THE SINE FUNCTION, SIN(nexp) 
    --------------------------- 
 
    The  SIN  function returns the sine of the argument (nexp) expressed in 
    radians.  For example: 
     
    "*"'PRINT SIN(30/57.297)<RTN>' 
                                   
    ".499999" 
 
    "*" 
    ....................................................................... 
 
    THE SPACE FUNCTION, SPC(iexp) 
    ----------------------------- 
 
    The  SPACE  function  spaces  the printhead (cursor) iexp spaces to the 
    right of its present position.  For example: 
     
    "*"'PRINT 12.14,SPC(20);600<RTN>' 
                                                                       
        "12               14               600" 
 
    "*" 
    ....................................................................... 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-74 
    ==============      ============================             ========== 
 
               ARITHMETIC AND SPECIAL FUNCTIONS FEATURES (Cont) 
               ================================================ 
 
 
    THE SQUARE ROOT FUNCTION, SQR(narg) 
    ----------------------------------- 
 
    The  SQUARE  ROOT  function  returns  the  square  root of "narg."  The 
    argument "narg" must be greater than or equal to 0.  Positive  examples 
    follow: 
     
    "*"'FOR A=0 TO 5:PRINT A,SQR(A),A*A:NEXT<RTN>' 
                                                   
    "0         0              0" 
    "1         1              1" 
    "2         1.41421        4" 
    "3         1.73205        9" 
    "4         2              16" 
    "5         2.23607        25" 
 
    "*" 
    ....................................................................... 
 
    THE TAB FUNCTION, TAB (iexp) 
    ---------------------------- 
 
    The  TAB  function  moves the printhead (cursor) to the iexp th column. 
    NOTE: If the printhead is at or past the iexp th column,  the  function 
    is ignored.  For example: 
     
    "*"'PRINT TAB(20);60,70<RTN>' 
                                                                
                                   60          70" 
 
    "*" 
    ....................................................................... 
 
    THE TANGENT FUNCTION, TAN(nexp) 
    ------------------------------- 
 
    The  TANGENT  function  returns  the  TANGENT  of  the  argument "nexp" 
    expressed in radians.  For example: 
     
    "*"'PRINT TAN (45/57.296)<RTN>' 
                                      
    ".999996" 
 
    "*" 
    ....................................................................... 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-75 
    ==============      ============================             ========== 
 
                               STRING FUNCTIONS 
                               ================ 
 
    BASIC  contains  various  functions for processing character strings in 
    addition to the functions  used  for  mathematical  operations.   These 
    functions  allow  the program to concatenate two strings, access a part 
    of a string, generate a  character  string  corresponding  to  a  given 
    number, or generate a number for a given string. 
     
 
    THE ASCII FUNCTION, ASC(sexp) 
    ----------------------------- 
 
    The  ASCII  function  returns the ASCII code for the first character in 
    the string expression (sexp).  If the  string  is  a  null,  the  ASCII 
    function  returns  a zero.  The return is a decimal number, and must be 
    converted to  octal  for  a  comparison  to  must  ASCII  tables.   See 
    "Appendix B" for details.  For example: 
     
    "*"'PRINT ASC("ABC")<RTN>' 
                                                           
    "65" 
 
    "*"'PRINT CHR$(65)<RTN>' 
                                                       
    "A" 
 
    "*" 
    ....................................................................... 
 
    THE CHARACTER FUNCTION, CHR$(iexp) 
    ---------------------------------- 
 
    The  CHARACTER  function  returns  a  string  that consists of a single 
    character.  The character generated has the ASCII code  "iexp."   NOTE: 
    "iexp"  is  a  decimal  number  and  must  be  converted  to  octal for 
    comparison with most ASCII character  tables.   See  "Appendix  B"  for 
    details.  For example: 
     
    "*"'PRINT CHR$(65)<RTN>'         NOTE: If iexp = 0, the generated 
    "A"                                 string is null. 
    "*"'PRINT CHR$(70)<RTN>' 
    "F" 
 
    "*" 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-76 
    ==============      ============================             ========== 
 
                            STRING FUNCTIONS (Cont) 
                            ======================= 
 
 
    THE LEFT STRING FUNCTION, LEFT$(sexp,iexp) 
    ------------------------------------------ 
 
    The LEFT STRING function returns the "iexp" left-most characters of the 
    string expression (sexp).  If "iexp"  equals  0,  the  null  string  is 
    returned. For example: 
      
    "*"'PRINT LEFT$("HELLO, THIS IS A TEST",10)<RTN>' 
                                                        
    "HELLO, THI" 
 
    "*" 
    ....................................................................... 
 
    THE LEN FUNCTION, LEN(sexp) 
    --------------------------- 
      
    The  LEN  function  returns the length of the string expression "sexp." 
    For example: 
     
    "*"'PRINT LEN("HOW LONG IS THE STRING?")<RTN>' 
                                                    
    "23" 
 
    "*" 
    ....................................................................... 
 
    THE MATCH STRING FUNCTION, MATCH (sexp1,sexp2,iexp) 
    --------------------------------------------------- 
 
    The  MATCH  function  searches  the  string  sexp1  for  any substrings 
    matching sexp2.  The search starts with character iexp  in  the  string 
    sexp1.  If iexp = 1, the search starts at the first character in sexp1. 
    If iexp = 2, the search starts at the second character in sexp1, and so 
    forth.   MATCH  returns  the  character  number  of  the  start  of the 
    substring in sexp1, if one was found, and a 0 if it was not found.  For 
    example: 
     
    "*"'PRINT MATCH("THIS IS A RATHER LONG STRING","TH",2)<RTN>' 
                                                                   
    "13" 
 
    "*" 
 
    Note  that  MATCH found the TH in RATHER, not in THIS.  Since the MATCH 
    call specified a search to  start  with  the  second  character,  BASIC 
    started  searching at the "HIS IS .  .  .  ", thereby ignoring the T in 
    "THIS." 
    ....................................................................... 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-77 
    ==============      ============================             ========== 
 
                            STRING FUNCTIONS (Cont) 
                            ======================= 
 
 
    THE MIDDLE STRING FUNCTION, MID$(sexp, iexp1, [iexp2]) 
    ------------------------------------------------------ 
 
    The  MIDDLE  STRING  function  returns  the right-hand substring of the 
    string expression "sexp" starting with the "iexp1"  th  character  from 
    the  left-hand  side  (the first character is 1).  The return continues 
    for "iexp2" characters or to the end of  the  string  if  the  optional 
    terminating expression "iexp2" is omitted.  For example: 
     
    "*"'PRINT MID$("HELLO, THIS IS A TEST",10,10)<RTN>' 
                                                         
    "IS IS A TE" 
 
    "*" 
    ....................................................................... 
 
    THE NUMERIC VALUE FUNCTION, VAL (sexp) 
    ------------------------------------- 
 
    The  NUMERIC  VALUE  function  returns  the numeric value of the number 
    encoded in the string expression (sexp).  For example: 
 
    "*"'PRINT VAL (".0032E-1")<RTN>' 
                                       
    "3.00000E-04" 
 
    "*" 
    ....................................................................... 
 
    THE RIGHT STRING FUNCTION, RIGHT$ (sexp,iexp) 
    --------------------------------------------- 
 
    The  RIGHT  STRING function returns the rightmost  "iexp" characters of 
    the string expression (sexp).  If "iexp" equals 0, the null  string  is 
    returned.  For example: 
      
    "*"'PRINT RIGHT$("HELLO, THIS IS A TEST",10)<RTN>' 
                                                        
    "IS A TEST" 
 
    "*" 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-78 
    ==============      ============================             ========== 
 
                            STRING FUNCTIONS (Cont) 
                            ======================= 
 
 
    THE STRING FUNCTION, STR$(narg) 
    ------------------------------- 
 
    The  STRING function encodes the argument (narg) into ASCII in the same 
    format used by the PRINT statement for numbers.  These  characters  are 
    returned as a string, with leading and trailing blanks. For example: 
     
    "*"'PRINT STR$(100)<RTN>' 
                                
    "100"                           (STR$ Function) 
 
    "*"'PRINT "100"<RTN>' 
                           
    "100"                           (Normal string printing) 
 
    "*" 
    ....................................................................... 
 
 
                              GENERAL TEXT RULES 
                              ++++++++++++++++++ 
 
    BLANKS AND TABS 
    --------------- 
 
    BASIC  programs  are  generally "free format."  That is, blanks (spaces 
    and TABS) may be included freely with the following restrictions. 
     
         1.   Variable  names,  keywords,  and  numeric  constants  may not 
    contain imbedded blanks or tabs. 
     
         2.   Blanks or tabs may not appear before a statement number. 
 
 
    LINE INSERTION 
    -------------- 
 
    You  can  insert  lines  into  a  BASIC  program  by  simply  typing an 
    appropriate line number followed by the desired line of text.  This  is 
    done in response to the command mode prompt (an asterisk).  Except when 
    running a program, BASIC remains in the command mode, showing a  single 
    asterisk [*] as a prompt.  NOTE: The text should immediately follow the 
    last digit  of  the  line  number.   Although  intervening  blanks  are 
    allowable, they waste memory.  BASIC automatically inserts a blank when 
    listing the text.  For example: 
     
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-79 
    ==============      ============================             ========== 
 
                           GENERAL TEXT RULES (Cont) 
                           +++++++++++++++++++++++++ 
 
    LINE INSERTION (Cont) 
    --------------------- 
 
    "*"'100PRINT "HEATH BASIC"' 
    "*"'LIST<RTN>' 
    ---------------------------               
    "*"'100 PRINT "HEATH BASIC"' 
 
    "*" 
 
    Each  time you type a statement with a line number, BASIC performs some 
    simple syntactical checks before inserting the line into your  program. 
    BASIC  checks  to  see  if  all the keywords are spelled correctly, and 
    translates them into upper case.  It makes sure that all function calls 
    are  immediately  followed  by  an  open parenthesis ["("].  BASIC also 
    makes checks of the line for simple syntax  errors.   If  the  line  is 
    determined to be incorrect, the message: 
     
        SYNTAX ERROR 
 
    will  be  typed  on  the screen, and the line will not be inserted into 
    your program.  Note that this preliminary syntax check will not  detect 
    all  possible  errors.  BASIC  may accept the line when you type it and 
    then detect an error later when you execute your program. 
     
 
    LINE LENGTH 
    ----------- 
 
    A line in Extended Benton Harbor BASIC is restricted to 100 characters. 
 
 
    LINE REPLACEMENT 
    ---------------- 
 
    Replace existing program lines by simply typing the line number and the 
    new text.  This is the same process you use to insert a new line.   The 
    old line is completely lost once the new line is entered. 
     
 
    LINE DELETION 
    ------------- 
 
    Delete lines by typing the line number immediately followed by a <RTN>. 
    You can leave blank lines by pressing the space bar once for each blank 
    line before pressing <RTN>. 
     
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-80 
    ==============      ============================             ========== 
 
                           GENERAL TEXT RULES (Cont) 
                           +++++++++++++++++++++++++ 
 
 
    USING A LINE PRINTER WITH BASIC 
    ------------------------------- 
 
    You can access LP: (or whatever other two-letter name you have assigned 
    to your line printer driver) from  within  BASIC  in  order  to  obtain 
    program listings or printed program output.  For example, if you wanted 
    computations or other such results of programs to be listed on the line 
    printer instead of the console terminal, you would use the command OPEN 
    "LP:" FOR WRITE AS FILE #.  The  general  format  of  this  command  is 
    outlined in the sample application as follows: 
     
    "*"'10 OPEN "LP:" FOR WRITE AS FILE#1' 
    -------------------------------------- 
    "*"'20 FOR I=1 TO 10' 
    "*"'30 PRINT#1, I' 
    ------------------                    
    "*"'40 NEXT I' 
    "*"'50 CLOSE#1' 
    ---------------                 
    '60 END' 
 
    "*" 
 
    This program will print the numbers 1 through 10 on LP:. 
 
    To  obtain  a  listing  of a BASIC program that is currently in memory, 
    type REPLACE "LP:". 
     
    *********************************************************************** 
 
                                    ERRORS 
                                    ++++++ 
 
    BASIC  detects  many  different  error  conditions.   When  an error is 
    detected, a message of the form: 
     
    "! ERROR-(ERROR MESSAGE) [at line NNNNN]" 
 
    is  typed  on  the screen.  BASIC returns to the command mode (if it is 
    not already in the command mode), ringing the  console  terminal  bell. 
    If  BASIC  is  in  the  command mode, the "at line NNNN" portion of the 
    error message is omitted.  For example: 
     
    "*"'!PRINT 1/0<RTN>' 
    -------------------- 
    "*"'! ERROR - ATTEMPTED DIVIDE BY ZERO' 
    "*"'*10PRINT 1/0<RTN>' 
    ---------------------- 
    "*"'RUN<RTN>' 
    -------------   
    "! ERROR - ATTEMPTED DIVIDE BY ZERO AT LINE 10" 
    "*" 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-81 
    ==============      ============================             ========== 
 
                                 ERRORS (Cont) 
                                 +++++++++++++ 
 
    NOTE:  If  a  line  of  BASIC  contains an error, you can correct it by 
    retyping  the entire line.  Once the line number is typed, the contents 
    of  the  old  line  are  lost.   To delete a line, simply type the line 
    number, and follow it with a <RTN>. 
     
 
    RECOVERING FROM ERRORS  
    ====================== 
 
    When  it  detects  an  error,  BASIC  enters  the command mode with the 
    variables and stacks as they were at the time of the error.  Thus,  the 
    user  can  use  PRINT  and LET statements to examine and alter variable 
    contents.  Likewise, a GOTO statement can be  used  to  set  the  "next 
    statement"   pointer   to  any  desired  statement  number.   Often,  a 
    combination of these techniques allows the user to continue  a  program 
    with the error corrected. 
     
    NOTE:  If  the  program  text is modified in any way, the GOSUB and FOR 
    stacks are purged.  If an error occurred in a GOSUB routine for a  FOR- 
    loop, the entire program must be restarted. 
     
 
    ERROR MESSAGES 
    ============== 
 
    The  following Table 12-1, Error Messages, describes the error messages 
    generated by Extended Benton Harbor BASIC.  This error table  discusses 
    only  those  errors  which  are  detected  directly by BASIC.  They are 
    printed in the BASIC error message format described.   For  details  on 
    the  HDOS  3.02  system  error  messages,  refer  to Chapter 3, "System 
    Optimization," Appendix 3-A:, page 3-33. 
    *********************************************************************** 
      



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-82 
    ==============      ============================             ========== 
 
                         TABLE 12-1: - ERROR MESSAGES 
                         ++++++++++++++++++++++++++++ 
 
 
    AN ILLEGAL CHARACTER WAS ENCOUNTERED 
          This  message  indicates a syntax error in the line.  BASIC 
          saw a character  that  was  illegal  to  have  in  a  BASIC 
          statement. 
          
    ATTEMPTED DIVIDE BY ZERO 
          Your program tried to divide a number by zero. 
 
    CAN'T FIND VARIABLE NAME MENTIONED IN NEXT STATEMENT 
          BASIC  has  not  seen  a matching FOR-loop for the variable 
          named in the NEXT statement.  This error can be  caused  by 
          improper FOR-loop nesting. 
 
    CTL-B STRUCK 
          The  CTRL-B  key  was  struck and no CTRL-B line number has 
          been set up.  Refer to the CNTRL  0,  n  command  for  more 
          information. 
 
    CTL-C STRUCK 
          The CTRL-C key was struck, interrupting the program. 
 
    DATA EXHAUSTED 
          A  READ  statement  was  executed  when  there  was no data 
          remaining in DATA statements  to  satisfy  the  READ.   You 
          either  have  too  many  READ  requests,  or  too  few DATA 
          statements. 
 
    DATA LOCK ENGAGED 
          This  operation  is  illegal  when  BASIC  is in the LOCKed 
          state.   See  the  LOCK  and  UNLOCK  commands   for   more 
          information. 
 
    END 
          Your  program  executed an END statement.  This is a normal 
          way of terminating execution, and not an  error.   If  your 
          program has no END statement, BASIC will invent one at line 
          65535. 
 
    FILE ALREADY EXISTS 
          You tried to SAVE to a filename which is already present on 
          that device.  Either SAVE to a different  filename,  UNSAVE 
          (delete) the existing filename, or use the REPLACE command. 
           
    FILE IS NOT OPEN 
          You  tried to do file I/O(PRINT #chan, or INPUT #chan) to a 
          channel which has no open file  associated  with  it.   You 
          must  OPEN  a  file  before  it  can  be  used for INPUT or 
          PRINTing. 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-83 
    ==============      ============================             ========== 
 
                         TABLE 12-1: - ERROR MESSAGES 
                         ++++++++++++++++++++++++++++ 
 
    FLOATING POINT OVERFLOW (Number too large) 
          An arithmetic calculation produced a number larger than 1 X 
          10^37. 
           
    ILLEGAL FORMAT FOR FILE NAME 
          A  filename  specified  in  an OPEN statement contained too 
          many characters to be valid.  There should be no blanks  or 
          extraneous characters in a filename string. 
 
    ILLEGAL NUMBER VALUE 
          A  number appeared in an illegal format or syntax.  If this 
          error occurs during a READ or INPUT  statement,  check  the 
          value being READ or INPUTted to see if it is valid. 
 
    ILLEGAL OR UNKNOWN STATEMENT NUMBER 
          A reference was made to a statement that does not exist, or 
          to an illegal statement number.  Statement numbers must  be 
          between 1 and 65534. 
 
    ILLEGAL USAGE 
          This  statement  may  not  be  used in this mode.  You have 
          tried to use an "execution mode only" command in  immediate 
          mode,  or  an "immediate mode only" command in an executing 
          program. 
 
    NO CORRESPONDING GOSUB FOR THIS RETURN STATEMENT 
          A RETURN statement was encountered when the GOSUB stack was 
          empty. 
           
    OUT OF RAM SPACE 
          There  is insufficient free RAM space to continue with this 
          program.  This error usually occurs when  you  DIMension  a 
          large  array.   If  you  cannot  determine the cause of the 
          memory overflow,  use  the  FREE  command  to  display  the 
          amounts  being  used  by  the  various tables.   
 
          FOR  HDOS 2.0 AND EARLIER: If you have specified CNTRL 4,1, 
          you can free up some RAM space  by  specifying  CNTRL  4,0. 
 
    STOP 
          A  STOP  statement  was  encountered.   This  is  a  normal 
          condition, and not an error. 
           
    STRING LENGTH EXCEEDS 255 CHARACTERS 
          The maximum length of a string in BASIC is 255 characters. 
 
    SUBSCRIPT OUT OF RANGE 
          The  program  specified  a  subscript value larger than the 
          declared limit for that dimension.  Either your  array  was 
          declared  too  small,  or your program incorrectly computed 
          the subscript. 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-84 
    ==============      ============================             ========== 
 
                         TABLE 12-1: - ERROR MESSAGES 
                         ++++++++++++++++++++++++++++ 
 
    SYNTAX ERROR 
 
          There is an error in the statement's syntax. 
 
    TOO MANY OR TOO FEW ARGUMENTS SPECIFIED 
          An  incorrect  number of arguments was specified for a call 
          to a built-in function, or a user-defined function. 
           
    TOO MANY OR TOO FEW SUBSCRIPTS SUPPLIED 
          The  number  of  subscripts  in  the array reference do not 
          match the number of dimensions declared. 
 
    TYPE CONFLICT (Illegal mix of string and number values) 
          The  program attempted an operation illegally mixing string 
          and number values, or supplied  a  numeric  argument  to  a 
          function  requiring a string argument, or vice-versa.  This 
          error can also occur if you try to INPUT or READ  a  string 
          value into a numeric variable. 
 
    UNDEFINED FUNCTION 
          This  user-defined  function  has  not  been defined.  Your 
          program must  execute  the  DEF  FN  statement  before  you 
          attempt to call that function. 
    ...................................................................... 
    NOTE: BASIC may also call up some HDOS Operating System Error Messages. 
    For details concerning the system error messages, refer to  Chapter  3, 
    System Optimization, Appendix 3-A:, "Error Messages." 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-85 
    ==============      ============================             ========== 
 
                    APPENDIX 12-A: - SUMMARY OF B.H. BASIC 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    NUMERIC DATA 
    ============ 
 
    NOTE:  The terms "10^-38" and "10^+37" shown below represent the number 
    of 10 to the  negative  38th  power  and  10  to  the  positive  power, 
    respectively.   It is impossible to show this relationship per standard 
    methods using the H89 Computer, therefore a brief  explanation  of  the 
    arbitrary technique used herein is required. 
 
    Numbers may be real or integer with the following characteristics: 
 
        Range ................. 10^-38 to 10^+37 
        Accuracy .............. 6.9 digits 
        Decimal Range ......... 0.1 to 999999   
        Exponential format .... (+ or -)X.XXXXXE(+ or -)NN 
 
 
    BOOLEAN DATA 
    ============ 
 
    Integer  numbers  from  0  to 65535 represent two-byte binary data from 
    00000000 00000000 to 11111111 11111111.  Fractional  parts  of  numbers 
    between 0 and 65535 are discarded. 
 
 
    STRING DATA 
    =========== 
 
    Data  is all printed in ASCII characters plus the BELL, BLANK, TAB, and 
    FORM-FEED, with the following characteristics: 
 
        Maximum string length . 255 characters 
        Inclosure ............. Quotation marks (") on both ends 
        Multiple lines ........ Not allowed for a single string 
                                                       
 
    VARIABLES 
    ========= 
 
    Variables  are  named  by  a  single  letter (A through Z), or a single 
    letter followed by a single number (0 through 9).  For  example:  A  or 
    A6. 
     
 
    SUBSCRIPTED VARIABLES 
    ===================== 
 
    Subscripted  variables  are  named  like variables, but are followed by 
    dimensions in parentheses.  Subscripted variables are of the form: 
        An(N1,N2, . . . Nx)  For example: A(1,2,7) or A6(1,5) 
    You  must  use  a DIMENSION statement to define the range and number of 
    allowable subscripts for a variable. 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-86 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    ARITHMETIC OPERATORS 
    ==================== 
 
    Listed  in  order  of  priority.  Operators on the same line have equal 
    precedence.  Parenthetical operations are performed first.   Precedence 
    is left to right if all other factors are equal. 
 
                SYMBOL             EXPLANATION 
                ------             ----------- 
                  -                Unary negation logical complement 
                  ^                Exponentiation 
                *   /              Multiplication    Division 
                +   -              Addition          Subtraction 
 
 
    RELATIONAL OPERATORS 
    ==================== 
 
                SYMBOL             EXPLANATION 
                ------             ----------- 
                  =                Equal to 
                  <                Less than 
                 < =               Less than or equal to 
                  >                Greater than 
                 > =               Greater than or equal to 
                 < >               Not equal to 
 
 
    BOOLEAN OPERATORS 
    ================= 
 
    Boolean  operators  perform  the  Boolean  (logical)  operations on two 
    integer operands.  The operands must evaluate to integers in the  range 
    of 0 to 65535.  The operators are: 
 
                 NOT               Logical complement, bit by bit 
                  OR               Logical OR, bit by bit 
                 AND               Logical AND, bit by bit 
 
 
    STRING VARIABLES 
    ================ 
 
    String  variables  may  be  either subscripted or nonsubscripted.  They 
    take the same form as Booleran variables, but are followed by a  dollar 
    sign  ($) to indicate a string variable.  For example: A$ A6$ A$(1,2,7) 
    or A6$(1,5). 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-87 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    STRING OPERATORS 
    ================ 
 
    String  expressions  may  be operated on by the relational operators as 
    well as the plus (+) symbol.  The plus symbol is used to perform string 
    concatenation. 
 
 
    THE COMMAND MODE 
    ================ 
 
    The  command  mode  does not use line numbers.  Statements are executed 
    when a <RTN> is typed. 
     
 
    LINE NUMBERS 
    ============ 
 
    When  it  is used in the program mode, BASIC requires that each line be 
    preceded by an integer line number in the range 1 to 65535. 
 
 
    MULTIPLE STATEMENTS ON ONE LINE 
    =============================== 
 
    BASIC  permits  multiple  statements  on  one  line.  Each statement is 
    separated from the others by a colon  [:].   DATA  statements  may  not 
    appear on lines with other statements. 
 
 
    COMMAND MODE STATEMENTS: 
    ======================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    BUILD       BUILD iexp1, iexp2  Automatically generates program line  
                                    numbers starting at iexp1 in steps of 
                                    iexp2. 
 
    BYE         BYE                 Exits  BASIC, returns to the HDOS 
                                    command mode. 
 
    CONTINUE    CONTINUE            Resumes program execution. 
 
    DELETE      DELETE              Deletes program lines between 
                [iexp1,iexp2]       iexp1 and iexp2. 
 
    LIST        LIST                Lists the entire program on the  
                [iexp1][,iexp2]     console terminal.  Lists the line  
                                    iexp1, or the range of lines iexp1 
                                    through iexp2. 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-88 
    ==============      ============================             ========== 
 
                APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                +++++++++++++++++++++++++++++++++++++++++++++ 
 
    COMMAND MODE STATEMENTS: (Cont) 
    =============================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    OLD         OLD "fname"         Loads file "fname" into BASIC.  Clears 
                                    variables. 
 
    REPLACE     REPLACE "fname"     Saves current program as file "fname." 
                                    Replaces "fname" if it already exists. 
 
    RUN         RUN                 Starts execution of current program. 
                                    Preclears all variables, stacks, etc. 
 
    SAVE        SAVE "fname"        Saves current program as file "fname." 
                                    Will not replace any pre-existing 
                                    "fname." 
 
    SCRATCH     SCRATCH             Clears all program and data storage 
                SURE?Y<RTN>         area.  Any response to "SURE?" but "Y" 
                                    cancels SCRATCH. 
 
 
    COMMAND AND PROGRAM MODE STATEMENTS: 
    ==================================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    CHAIN       CHAIN 
                "fname"[,linnum]    Loads new program "fname" into BASIC 
                                    and continues execution at linnum.  If 
                                    no line number is specified, starts  
                                    execution at first line number.  Does 
                                    not affect variables or open files. 
 
    CLEAR       CLEAR[varname]      Clears all variables, arrays, string 
                                    buffers, etc.  Optionally clears named 
                                    variable [varname].  Specifies  
                                    functions and arrays as V(. 
 
    CLOSE       CLOSE #chan 1       Close an HDOS file.  "#chan" is the 
                [,#chan n]          number assigned to the opened file. 
 
    CONTROL     CNTRL iexp1,iexp2   CNTRL 0 sets a GOSUB to line iexp2 
                                    when a CTRL-B is typed. 
 
                                    CNTRL 1 sets iexp2 digits before 
                                    exponential format is used. 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-89 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    COMMAND AND PROGRAM MODE STATEMENTS (Cont) 
    ========================================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    CONTROL     CNTRL iexp1,iexp2   CNTRL 2 controls the H8 front panel. 
    (Cont)      (Cont)              If iexp2=0, display off; if iexp2=1, 
                                    display on without update; if iexp2=2, 
                                    display on with update.  (NOTE: Has no 
                                    effect on the H89.) 
 
                                    CNTRL 3 sets the width of a print zone 
                                    to iexp2 columns. 
 
                                    CNTRL 4 controls the state of the HDOS 
                                    operating system overlay: iexp2=0,   
                                    swap overlay, iexp=1, keep overlay in 
                                    memory.  (Use in Command Mode only.) 
 
    DIMENSION   DIM varname(iexp1   Defines the maximum size of variable 
                [, ... iexpn])      arrays. 
                [,varname2(...)] 
 
    FOR/NEXT    FOR var=nexp1       Defines a program loop.  Var is  
                TO nexp2            initially set to nexp1.  Loop cycles 
                [STEP nexp3]        until NEXT is executed; then var is 
                                    incremented by nexp3 (default is +1). 
                NEXT var            Looping continues until var>nexp2, 
                                    (or less than nexp2 if STEP is  
                                    negative).  The statement after  
                                    NEXT is then executed. 
 
    FREE        FREE                Displays the amount of memory  
                                    assigned to tables and text. 
 
    FREEZE      FREEZE"fname"       Saves BASIC interpreter, current 
                                    program, and data values on file 
                                    "fname."  All files must be closed 
                                    before FREEZE is executed. 
 
    GOSUB/      GOSUB iexp          Transfers execution sequence of  
    RETURN      RETURN              program to line iexp (the beginning 
                                    of a subroutine).  RETURN returns 
                                    execution sequence to the statement 
                                    following the calling GOSUB. 
 
    GOTO        GOTO iexp           Unconditionally transfers the program 
                                    execution sequence to the line iexp. 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-90 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    COMMAND AND PROGRAM MODE STATEMENTS (Cont) 
    ========================================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    IF/THEN     IF expression       If the expression is true, control 
                THEN iexp IF        passes to iexp line or to "statement." 
                expression THEN     If the relation is false, control 
                statement           passes to the next independent 
                                    statement. 
 
    LET         LET var=nexp        Assigns the value nexp (or sexp in the 
                LET var$ = sexp     case of strings) to the variable var 
                                    (or var$).  LET keyword is optional. 
 
    LOCK        LOCK                Protects your program by preventing 
                                    you from executing the BUILD, BYE, 
                                    CHAIN, UNFREEZE, DELETE, RUN, SCRATCH, 
                                    and CLEAR command mode statements. 
                                    Also prevents the entry or deletion of 
                                    program text. 
 
    ON/GOSUB    ON iexp1 GOSUB      Permits a computed GOSUB.  Iexp1 is 
                iexp2, ... ,iexpn   evaluated and acts as an index to line 
                                    numbers iexp2 through iexpn, each 
                                    pointing to a different subroutine. 
 
    ON/GOTO     ON iexp1 GOTO       Permits a computed GOTO.  Iexp1 is 
                iexp2,...,iexpn     evaluated and acts as an index to line 
                                    numbers iexp2 through iexpn. 
 
    OPEN        OPEN sexp FOR       Opens file for read/write operations. 
                READ AS FILE        "sexp" is a string expression for the 
                #iexp               filename.  "#iexp" is the channel 
                OPEN sexp FOR       number assigned to the file to be 
                WRITE AS FILE       opened. 
                #iexp 
 
    OUT         OUT iexp1, iexp2    Outputs a number iexp2 to output port 
                                    iexp1. 
 
    PAUSE       PAUSE(iexp)         Ceases program execution until a  
                                    console terminal key is typed.  Ceases 
                                    program execution for 2 X iexp mS. 
 
    POKE        POKE iexp1,iexp2    Writes a number iexp2 into memory at 
                                    location.  CAUTION: This command could 
                                    damage or destroy your operating  
                                    system if used improperly! 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-91 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    COMMAND AND PROGRAM MODE STATEMENTS (Cont) 
    ========================================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    PRINT       PRINT [#chan.]      Prints the value of the expression(s) 
                (nexp1 sep1 ...     exp with a leading and trailing space. 
                nexpn (sepn)        Expressions may be numeric or string. 
                                    If the separator is a comma, the next 
                                    print zone is used.  If the separator 
                                    is a semicolon, no print zones are  
                                    used.  No separator prints each  
                                    expression on a new line.  #chan 
                                    specifies channel to write line to 
                                    HDOS file.  If no #chan is specified, 
                                    line goes to console terminal screen. 
 
    READ/DATA   READ var1,...,varn  The READ statement assigns the values 
                DATA exp1,..,expn   exp1 through expn in the data to the 
                                    variables var1 through varn. 
 
    REMARK      REM                 Text following the REM is not executed 
                                    and is used for commentary only. 
 
    RESTORE     RESTORE             Causes the program to reset the DATA 
                                    pointer, thus reusing data at the first 
                                    DATA statement. 
 
    STEP        STEP iexp           Executes iexp lines of the program.  
                                    Then returns BASIC to the command mode. 
 
    UNFREEZE    UNFREEZE "fname"    Restores BASIC program and variables 
                                    from previously created FREEZE file. 
 
    UNLOCK      UNLOCK              Aborts the LOCK mode and restores the 
                                    use of all command mode statements. 
                                     
    UNSAVE      UNSAVE "fname"      Deletes programs or files from the      
                                    disk. 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-92 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    PROGRAM MODE STATEMENTS: 
    ======================== 
 
    COMMAND     FORM                DESCRIPTION 
    -------     ----                ----------- 
 
    DEF         DEF FN varname      Defines a single-line program function 
                (arg list)=exp      created by the user. 
 
    END         END                 Causes control to return to the command 
                                    mode. 
 
    INPUT       INPUT[#chan,] 
                prompt;var1,..,varn Reads data from the console terminal,  
                                    or from the HDOS file open on channel 
                                    "chan," if #chan is specified.  String 
                                    data must be inclosed in quotes if it 
                                    contains any commas. 
 
    LINE INPUT  LINE INPUT          Reads string data from the console 
                [#chan,] prompt;    terminal, or from the HDOS file open 
                stringvar           on channel "chan," if #chan is  
                                    specified.  Data should not be inclosed 
                                    in quotes; entire line is read into 
                                    string variable. 
 
    STOP        STOP                Causes BASIC to enter the command mode 
                                    when the statement containing STOP is 
                                    executed. 
 
 
    PREDEFINED FUNCTIONS 
    ==================== 
 
    FUNCTION                 DEFINITION 
    --------                 ----------                              
                          
    ABS (nexp)               Returns the absolute value of nexp. 
 
    ASC (sexp)               Returns the ASCII code for the first character 
                             in the string, sexp. 
 
    ATN (nexp)               Returns the arctangent of nexp in radians. 
 
    CHR$ (iexp)              Returns the ASCII character iexp. 
 
    CIN (chan)               Reads a character from any open file, or from 
                             the console terminal (if chan=0).  If the  
                             value returned is positive, a character was 
                             read.  If the value is negative, an end of 
                             file, or no line was read. 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-93 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    PREDEFINED FUNCTIONS (Cont) 
    =========================== 
 
    FUNCTION                 DEFINITION 
    --------                 ---------- 
    COS (nexp)               Returns the cosine of nexp in radians. 
 
    EXP (nexp)               Returns e nexp, where "nexp" is an exponent. 
 
    INT (narg)               Returns the integer value of narg. 
 
    LEFT$(sexp,iexp)         Returns the left iexp characters of the string 
                             sexp. 
 
    LEN (sexp)               Returns length of string expression sexp. 
 
    LNO (iexp)               Converts iexp to a line number. 
 
    LOG (nexp)               Returns the natural logarithm of nexp. 
 
    MATCH                    Finds the first occurrence of the substring 
    (sexp1,sexp2,iexp)       sexp2 in sexp1, starting at the iexp th  
                             character in sexp1.  Returns index of start 
                             of substring if found, 0 if not found. 
 
    MAX (nexp1,..,nexpn)     Returns the maximum value of expressions 
                             nexp1 through nexpn. 
 
    MID$ (sexp,iexp1)        Returns the substring of the string sexp, 
    [,iexp2]                 starting with the iexp1 th character and 
                             ending with the iexp2 th character, if iexp2 
                             is specified.  If not specified, returns 
                             iexp1 th character to the end. 
 
    MIN (nexp1,...,nexpn)    Returns the minimum value of expressions 
                             nexp1 through nexpn. 
 
    PAD (0)                  Returns the value of the H8 front panel key 
                             pressed.  Includes key debounce.  Returns a 
                             0 on an H89. 
 
    PEEK                     Returns the numeric value at memory location 
                             iexp. 
 
    PIN (iexp)               Returns the data input from port iexp. 
 
    POS (chan)               Returns the current file or console printhead 
                             (cursor) position by column number. 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-94 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B.H. BASIC (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    PREDEFINED FUNCTIONS (Cont) 
    =========================== 
 
    FUNCTION                 DEFINITION 
    --------                 ---------- 
 
    RND (narg)               Returns a random number.  If narg > 0, RND 
                             is next in the series.  If narg = 0 RND is 
                             the previous random number.  If narg < 0, 
                             RND algorithm uses narg as a new seed. 
 
    RIGHT$ (sexp,iexp)       Returns the right iexp characters of the 
                             string sexp. 
 
    SEG (narg)               Returns the correct eight-bit number to 
                             display narg (0-9) on the H8 LEDs. (Has no 
                             effect on the H89.) 
 
    SGN (narg)               Returns +1 if narg is positive. 
                             Returns -1 if narg is negative. 
                             Returns 0 if narg is zero. 
 
    SIN (nexp)               Returns the sine of nexp in radians. 
 
    SPC (iexp)               Positions printhead (cursor) iexp columns 
                             to the right. 
 
    SQR (narg)               Returns the square root of narg. 
 
    STR$ (narg)              Returns narg encoded into ASCII with leading 
                             and trailing blanks, as in the print  
                             statement. 
 
    TAB (iexp)               Position printhead (cursor) to the iexp th 
                             column. 
 
    TAN (nexp)               Returns the tangent of nexp in radians. 
 
    VAL (sexp)               Returns the numeric value of the number 
                             encoded in the string. 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-95 
    ==============      ============================             ========== 
 
                 APPENDIX 12-A: - SUMMARY OF B. H. BASIC (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ALPHABETICAL LISTING OF FUNCTIONS AND STATEMENTS 
    ================================================ 
 
    ITEM                  ROOT                               PAGE  
    ----                  ---                                ---- 
    Abs ................. Predefined Functions ............. 12-65, 92 
    Accuracy ............ Numeric Data ..................... 12-85 
    Addition ............ Arithmetic Operators ............. 12-86 
    And ................. Boolean Operators ................ 12-86 
                          ARITHMETIC OPERATORS ............. 12-86 
    Asc ................. Predefined Functions ............. 12-75, 92 
    Atn ................. Predefined Functions ............. 12-66, 92 
                          BOOLEAN DATA ..................... 12-85    
                          BOOLEAN OPERATORS ................ 12-86 
 
    Build ............... Command Statements ............... 12-87 
    Bye ................. Command Statements ............... 12-87 
    Chain ............... Command and Program Statements ... 12-88 
    Chr$ ................ Predefined Functions ............. 12-75, 92 
    Cin ................. Predefined Functions ............. 12-92 
    Clear ............... Command and Program Statements ... 12-88 
    Close ............... Command and Program Statements ... 12-88 
                          COMMAND MODE ..................... 12-87 
    Continue ............ Command Statements ............... 12-87 
    Control ............. Command and Program Statements ... 12-88 
    Cos ................. Predefined Functions ............. 12-66, 93 
    Decimal Range ....... Numeric Data ..................... 12-85 
    Def ................. Program Mode Statements .......... 12-92 
    Delete .............. Command Statements ............... 12-87 
    Dimension ........... Command and Program Statements ... 12-89 
    Division ............ Arithmetic Operators ............. 12-86 
    End ................. Program Mode Statements .......... 12-92 
    Equal to ............ Relational Operators ............. 12-86 
    Exp ................. Predefined Functions ............. 12-67, 93 
    Exponential Format .. Numeric Data ..................... 12-85 
    Exponentiation ...... Arithmetic Operators ............. 12-86 
    For/Next ............ Command and Program Statements ... 12-89 
    Free ................ Command and Program Statements ... 12-89 
    Freeze .............. Command and Program Statements ... 12-89 
    Gosub ............... Command and Program Statements ... 12-89 
    Goto ................ Command and Program Statements ... 12-89 
    Greater than ........ Relational Operators ............. 12-86 
    Greater than- 
     or equal to ........ Relational Operators ............. 12-86 
    If/Then ............. Command and Program Statements ... 12-90 
    Inclosure ........... String Data ...................... 12-85 
    Input ............... Program Mode Statements .......... 12-92 
    Int ................. Predefined Functions ............. 12-67, 93 
    Integer Numbers ..... Boolean Data ..................... 12-85 
    Left$ ............... Predefined Functions ............. 12-76, 93 
    Len ................. Predefined Functions ............. 12-76, 93 
                        
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-96 
    ==============      ============================             ========== 
                          
                APPENDIX 12-A: - SUMMARY OF B. H. BASIC (Cont) 
                ++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ALPHABETICAL LISTING OF FUNCTIONS AND STATEMENTS (Cont) 
    ======================================================= 
 
    ITEM                  ROOT                                PAGE 
    ----                  ----                                ---- 
    Less than ........... Relational Operators ............. 12-86 
    Less than- 
     or equal to ........ Relational Operators ............. 12-86 
    Let ................. Command and Program Statements ... 12-90 
    Line Input .......... Program Mode Statements .......... 12-92 
                          LINE NUMBERS ..................... 12-87 
    List ................ Command Statements ............... 12-87 
    Lno ................. Predefined Functions ............. 12-67, 93 
    Lock ................ Command and Program Statements ... 12-90 
    Log ................. Predefined Functions ............. 12-68, 93 
    Match ............... Predefined Functions ............. 12-76, 93 
    Max ................. Predefined Functions ............. 12-68, 93 
    Maximum String- 
     Length ............. String Data ...................... 12-85 
    Mid$ ................ Predefined Functions ............. 12-77, 93 
    Min ................. Predefined Functions ............. 12-69, 93 
    Multiple Lines ...... String Data ...................... 12-85 
    Multiple Statements . Multiple Statements on One Line .. 12-87 
    Multiplication ...... Arithmetic Operators ............. 12-86 
    Nonsubscripted ...... String Variables ................. 12-86 
    Not equal to ........ Relational Operators ............. 12-86 
    Not ................. Boolean Operators ................ 12-86 
                          NUMERIC DATA ..................... 12-85 
    Old ................. Command Statements ............... 12-88 
    On/Gosub ............ Command and Program Statements ... 12-90 
    On/Goto ............. Command and Program Statements ... 12-90 
    Open ................ Command and Program Statements ... 12-90 
    Or .................. Boolean Operators ................ 12-86 
    Out ................. Command and Program Statements ... 12-90 
    Pad ................. Predefined Functions ............. 12-69, 93 
    Pause ............... Command and Program Statements ... 12-90 
    Peek ................ Predefined Functions ............. 12-69, 93 
    Pin ................. Predefined Functions ............. 12-70, 93 
    Poke ................ Command and Program Statements ... 12-90 
    Pos ................. Predefined Functions ............. 12-70, 93 
                          PREDEFINED FUNCTIONS ............. 12-92 
    Print ............... Command and Program Statements ... 12-91 
                          PROGRAM MODE STATEMENTS .......... 12-92 
    Range ............... Numeric Data ..................... 12-85 
    Read/Data Command and- 
      Program Statements  PROGRAM STATEMENTS ............... 12-91 
                          RELATIONAL OPERATORS ............. 12-86 
    Remark .............. Command and Program Statements ... 12-91 
    Replace ............. Command Statements ............... 12-88 
    Restore ............. Command and Program Statements ... 12-91 
    Return .............. Command and Program Statements ... 12-89 
                                                                     
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC             PAGE 12-97 
    ==============      ============================             ========== 
 
                APPENDIX 12-A: - SUMMARY OF B. H. BASIC (Cont) 
                ++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ALPHABETICAL LISTING OF FUNCTIONS AND STATEMENTS (Cont) 
    ======================================================= 
 
    ITEM                  ROOT                               PAGE 
    ----                  ----                               ---- 
    Right$ .............. Predefined Functions ............. 12-94 
    Rnd ................. Predefined Functions ............. 12-70, 94 
    Run ................. Command Statements ............... 12-88 
    Save ................ Command Statements ............... 12-88 
    Scratch ............. Command Statements ............... 12-88 
    Seg ................. Predefined Functions ............. 12-72, 94 
    Sgn ................. Predefined Functions ............. 12-73, 94 
    Sin ................. Predefined Functions ............. 12-73, 94 
    Spc ................. Predefined Functions ............. 12-73, 94 
    Sqr ................. Predefined Functions ............. 12-74, 94 
    Step ................ Command and Program Statements ... 12-91 
    Stop ................ Program Mode Statements .......... 12-92 
    Str ................. Predefined Functions ............. 12-78, 94 
                          STRING DATA ...................... 12-85 
                          SRRING OPERATORS ................. 12-87 
                          STRING VARIABLES ................. 12-86 
                          SUBSCRIPTED VARIABLES ............ 12-85 
    Subscripted ......... String Variables ................. 12-86 
    Subtraction ......... Arithmetic Operators ............. 12-86 
    Tab ................. Predefined Functions ............. 12-74, 94 
    Tan ................. Predefined Functions ............. 12-74, 94 
    Unary ............... Arithmetic Operators ............. 12-86 
    Unfreeze ............ Command and Program Statements ... 12-91 
    Unlock .............. Command and Program Statements ... 12-91 
    Unsave .............. Command and Program Statements ... 12-91 
    Val ................. Predefined Functions ............. 12-77, 94 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-98 
    ==============      ============================            ========== 
 
                         APPENDIX 12-B: - ASCII CODES 
                  DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION 
                  +++++++++++++++++++++++++++++++++++++++++++ 
 
    DECIMAL OCTAL  HEX   ASCII  CTRL-n      DECIMAL OCTAL  HEX   ASCII 
 
      0     000    00    NUL    CTRL-@      48      060    30    0 
      1     001    01    SOH    CTRL-A      49      061    31    1 
      2     002    02    STX    CTRL-B      50      062    32    2 
      3     003    03    ETX    CTRL-C      51      063    33    3 
      4     004    04    EOT    CTRL-D      52      064    34    4 
      5     005    05    ENQ    CTRL-E      53      065    35    5 
      6     006    06    ACK    CTRL-F      54      066    36    6 
      7     007    07    BEL    CTRL-G      55      067    37    7 
      8     010    08    BS     CTRL-H      56      070    38    8 
      9     011    09    HT     CTRL-I      57      071    39    9 
     10     012    0A    LF     CTRL-J      58      072    3A    : 
     11     013    0B    VT     CTRL-K      59      073    3B    ; 
     12     014    0C    FF     CTRL-L      60      074    3C    < 
     13     015    0D    CR     CTRL-M      61      075    3D    = 
     14     016    0E    SO     CTRL-N      62      076    3E    > 
     15     017    0F    SI     CTRL-O      63      077    3F    ? 
     16     020    10    DLE    CTRL-P      64      100    40    @ 
     17     021    11    DC1    CTRL-Q      65      101    41    A 
     18     022    12    DC2    CTRL-R      66      102    42    B 
     19     023    13    DC3    CTRL-S      67      103    43    C 
     20     024    14    DC4    CTRL-T      68      104    44    D 
     21     025    15    NAK    CTRL-U      69      105    45    E 
     22     026    16    SYN    CTRL-V      70      106    46    F 
     23     027    17    ETB    CTRL-W      71      107    47    G 
     24     030    18    CAN    CTRL-X      72      110    48    H 
     25     031    19    EM     CTRL-Y      73      111    49    I 
     26     032    1A    SUB    CTRL-Z      74      112    4A    J 
     27     033    1B    ESC    CTRL-[      75      113    4B    K 
     28     034    1C    FS     CTRL-\      76      114    4C    L 
     29     035    1D    GS     CTRL-]      77      115    4D    M 
     30     036    1E    RS     CTRL-^      78      116    4E    N 
     31     037    1F    US     NOTE 1      79      117    4F    O 
     32     040    20    SPACE              80      120    50    P 
     33     041    21    !                  81      121    51    Q 
     34     042    22    "                  82      122    52    R 
     35     043    23    #                  83      123    53    S 
     36     044    24    $                  84      124    54    T 
     37     045    25    %                  85      125    56    U 
     38     046    26    &                  86      126    56    V 
     39     047    27    '                  87      127    57    W 
     40     050    28    (                  88      130    58    X 
     41     051    29    )                  89      131    59    Y 
     42     052    2A    *                  90      132    5A    Z 
     43     053    2B    +                  91      133    5B    [ 
     44     054    2C    ,                  92      134    5C    \ 
     45     055    2D    -                  93      135    5D    ] 
     46     056    2E    PERIOD             94      136    5E    ^ 
     47     057    2F    /                  95      137    5F    _ 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-99 
    ==============      ============================            ========== 
                                                                           
                         APPENDIX 12-B: - ASCII CODES 
              DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION (Cont) 
              ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    DECIMAL    OCTAL    HEX    ASCII      DECIMAL    OCTAL    HEX    ASCII 
 
     96        140      60     `         112         160      70     p 
     97        141      61     a         113         161      71     q 
     98        142      62     b         114         162      72     r 
     99        143      63     c         115         163      73     s 
    100        144      64     d         116         164      74     t 
    101        145      65     e         117         165      75     u 
    102        146      66     f         118         164      76     v 
    103        147      67     g         119         167      77     w 
    104        150      68     h         120         170      78     x 
    105        151      69     i         121         171      79     y 
    106        152      6A     j         122         172      7A     z 
    107        153      6B     k         123         173      7B     { 
    108        154      6C     l         124         174      7C     | 
    109        155      6D     m         125         175      7D     } 
    110        156      6E     n         126         176      7E     ~ 
    111        157      6F     o         127 NOTE 2  177      7F     DELETE 
 
 
    NOTES:                               
    ------ 
    NOTE 1: DECIMAL 31:  Use the CTRL-SHIFT-HYPHEN keys with the H89. 
 
    NOTE 2: DECIMAL 127: Use the DELETE key with the H89. 
 
    NOTE  3:  The following notes explain the abbreviations under the ASCII 
    column of the table shown on page 12-95.  Many of the  expressions  are 
    carryovers from the old days when it was common to use TWX machines and 
    teletypes to transmit information. 
 
    NOTE  4:  The  data  included  in the Decimal to Octal to Hex to ASCII 
    Table enables one to convert from one kind of notation to  another  and 
    retain the same values.  For example, if you have Hex 9, the equivalent 
    Octal and ASCII code are 11 and CTRL-I, respectively.  (Ignore  the  HT 
    code in  the same line.)  Similiarily, CTRL-V is equivalent to Octal 26 
    and Hex 16, respectively.  (Ignore the SYN code.)  Notice that you  can 
    go in either direction. 
 
    From time to time one has a need for notation conversion.  For example, 
    one of the major uses of this conversion table is  to  obtain  "control 
    codes"  for  your  printer.  These codes are obtained from your printer 
    manual.  Once you decide what you want to do, you determine  the  codes 
    to  use  to accomplish your objective, such as making a title print out 
    in "double high" or "emphasized," type, etc.  Then you simply type  the 
    control  codes  into  your manuscript in accordance with the particular 
    needs of the editor  you  are  using.   For  example,  EDIT19  requires 
    control  codes to be input in HEX notation, while TXTPRO requires codes 
    to be input in ASCII notation.  By consulting this table, it should  be 
    obvious as to how to perform the aforementioned task. 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC           PAGE 12-100 
    ==============      ============================           =========== 
 
                         APPENDIX 12-B: - ASCII CODES 
              DECIMAL TO OCTAL TO HEX TO ASCII CONVERSION (Cont) 
              ++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    ASCII CODE EXPLANATIONS 
    ----------------------- 
    NULL --  Null, Tape Feed 
    SOH ---  Start of Heading; Start of Message 
    STX ---  Start of Text; End of Address 
    ETX ---  End of Text; End of Message 
    EOT ---  End of Transmission; Shuts off TWX Machines 
    ENQ ---  Inquiry; WRU 
    ACK ---  Acknowledge; RU 
    BEL ---  Rings Terminal Bell 
    BS  ---  Backspace; Format Effector 
    HT ----  Horizontal TAB 
    LF ----  Line-Feed or Space (New Line) 
    VT ----  Vertical TAB 
    FF ----  Form-Feed 
    CR ----  Carriage Return 
    SO ----  Shift Out 
    SI ----  Shift In 
    DLE ---  Data Link Escape 
    DC1 ---  Device Control 1; Reader On 
    DC2 ---  Device Control 2; Punch On 
    DC3 ---  Device Control 3; Reader Off 
    DC4 ---  Device Control 4; Punch Off 
    NAK ---  Negative Acknowledge; Error 
    SYN ---  Synchronous Idle (SYNC) 
    ETB ---  End of Transmission Block; Logical End of Medium 
    CAN ---  Cancel (CANCL) 
    EM ----  End of Medium 
    SUB ---  Substitute   
    ESC ---  Escape 
    FS ----  File Separator 
    GS ----  Group Separator 
    RS ----  Record Separator 
    US ----  Unit Separator 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-101 
    ==============      ============================            =========== 
 
                   APPENDIX 12-C: - SUPPLEMENTAL REFERENCES 
                   ++++++++++++++++++++++++++++++++++++++++ 
 
    For additional information on Heath Extended Benton Harbor BASIC, refer 
    to the following articles in REMark Magazine, the official Heath/Zenith 
    publication. 
 
    [1] REMark Issue 7, Published Quarterly, No Date, 1979, Page 3 
    -------------------------------------------------------------- 
    "ORGANIZATION!    Confusion  with  A  Structured  Defintion,"  by  Gene 
    Bellinger.  6 pages.  Presents a logical method of conceptualizing  the 
    structure  of  composing  a  BASIC  program.  Discusses all the factors 
    involved. Attempts to outline a logical approach. 
 
    [2] REMark Issue 7, Published Quarterly, No Date, 1979, Page 12 
    --------------------------------------------------------------- 
    "A Menu for BASIC Programs," by Douglas H.  McNeill, M.D.    0.5 pages. 
    Describes a program which prints a menu of all the  BASIC  programs  on 
    your  disk, and then allows you to select a number which loads and runs 
    the program of your choice. 
 
    [3] REMark Issue 19, August 1981, Page 7 
    ---------------------------------------- 
    "Menu  Driven Demo Program," by Gene Sevin.  2 pages. 
    Demonstrates  a technique in Extended Benton Harbor BASIC for selecting 
    menu-driven program options, using  H89/H19  graphics,  function  keys, 
    cursor addressing, the 25th line, and the HDOS type-ahead buffer. 
 
    [4] REMark Issue 19, August 1981, Page 18 
    ----------------------------------------- 
    "Using the HDOS Type-Ahead Buffer," by Patrick Swayne.  2 pages.  Shows 
    the user how to POKE commands into the HDOS type-ahead  buffer  from  a 
    BASIC  program.   The effect, of course, is the same as if the commands 
    had been typed from the console. 
 
    [5] REMark Issue 29, June 1982, Page 5 
    -------------------------------------- 
    "IMPROVEMENTS TO B.H. BASIC," by Patrick Swayne.  8.5 pages 
    Provides  a  means  of  calling  machine language subroutines from B.H. 
    BASIC, provides a means of inputting single characters without  hitting 
    the  RETURN,  and  provides a patch for FREEZE and UNFREEZE commands so 
    that they load programs in a compressed format, thus  speeding  up  the 
    performance. 
 
    [6] REMark Issue 30, July 1982, Page 28 
    --------------------------------------- 
    "AN EDITOR FOR B.H. BASIC," Patrick Swayne.  4.5 pages 
    Developes  the  topics  from REMark 29, and adds an assembly coded line 
    editor for B.H. BASIC. 
 
    [7] REMark Issue 39, April 1983, Page 11 
    ---------------------------------------- 
    "A  FASTER  B.H. BASIC," by Dahl B.  Metters.   6.5 pages  with listing 
    Tells how to increase execution speed by a factor of 200%. 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-102 
    ==============      ============================            =========== 
 
                APPENDIX 12-C: - SUPPLEMENTAL REFERENCES (Cont) 
                +++++++++++++++++++++++++++++++++++++++++++++++ 
 
    [8] REMark Issue 41, June 1983, Page 23 
    --------------------------------------- 
    "USING BINARY FILES WITH B.H.BASIC," by David A. Sandage. 
    Developes the use of the .CIN command to incorporate binary files. 
 
    [9] REMark Issue 46, November 1983, Page 66 
    ------------------------------------------- 
    Letter,  Shows  how  to  shorten the technique required to send data to 
    printer, disk, and screen simultaneously.   Randall Stokes 
    ....................................................................... 
 
                                     NOTE 
    In  case the reader desires to order copies of REMark Magazine, contact 
    "Heath Users' Group,  P.O.   Box  217,  Benton  Harbor,  MI  49022-0217 
    (616)982-3463. 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-103 
    ==============      ============================            =========== 
 
                                     INDEX 
                                     +++++ 
 
    ASCII Function (ASC), 12-75 
    Absolute Value Function (ABS), 12-65 
    Addition, 12-11, 12-13 
    AND, 12-15 
    Arc Tangent Function (ATN), 12-66 
    Arithmetic, 12-4 
    Arithmetic And Special Feature Functions, 12-65 
    Arithmetic Operators, 12-9  
    Arithmetic Priority, 12-10 
    Arrays, 12-8, 12-17, 12-31 
    Assignment statement, 12-7 
    Asterisk, 12-4, 12-9, 12-28, 12-42, 12-78  
 
    BASIC file, 12-25, 12-27 
    BASIC Statements, 12-21 
    Blanks (spaces), 12-52, 12-53, 12-59, 12-77, 12-78, 12-79 
    Blanks and Tabs, 12-78 
    Boolean Operators, 12-15 
    Boolean Values, 12-6 
    Brackets, 12-22 
    BUILD, 12-23 
    BYE, 12-24 
 
    CHAIN, 12-29 
    Character Function (CHR$), 12-75 
    Character Input Function (CIN), 12-66 
    CHR$, 12-75 
    CLEAR, 12-31 
    Clear varname, 12-31 
    CLOSE, 12-31 
    CNTRL, 12-32 
    CNTRL 0, 12-25, 12-33 
    CNTRL 1, 12-34 
    CNTRL 2, 12-34 
    CNTRL 3, 12-34 
    CNTRL 4, 12-34 
    Colon, 12-21 
    Comma, 12-53, 12-55, 12-63 
    Command Mode, 12-18, 12-22, 12-23, 12-29 
    Comments, 12-57, 12-58 
    Concatenation, 12-17 
    Continue, 12-24 
    CONTROL, 12-32 
    CTRL-B, 12-33, 12-82 
    CTRL-C, 12-25, 12-82 
    CNTRL, 12-34 
    Cosine Function (COS), 12-66 
 
    DATA, 12-55, 12-62 
    Data Exhausted, 12-82 
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-104 
    ==============      ============================            =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
 
    Data Only Statement, 
        One line, 12-58 
    Data Types, 12-4 
    Debugging, 12-19 
    Decimal Notation, 12-5  
    DEF FN, 12-61 
    DELETE, 12-25 
    DIMENSION (DIM), 12-8, 12-9, 12-35 
    Displays Control, 12-32 
    Divide by zero, 12-80, 12-82 
    Division, 12-10, 12-11 
    Dollar sign ($), 12-16, 12-17, 12-18 
    Double commas, 12-56 
 
    END, 12-62 
    Equal sign, 12-14, 12-18, 12-46 
    Error Messages, 12-81 
    Error Recovery, 12-81 
    ERROR Table, Table 12-1: 12-82 
    Errors, 12-80 
    Exponential Function (EXP), 12-67 
    Exponential notation, 12-5, 12-6, 12-13 
    Exponentiation, 12-10 
    Expressions, 12-9  
    Extended B. H. BASIC, 12-3 
 
    False, 12-18 
    fname, 12-23 
    FOR, 12-20, 12-33, 12-36, 12-37 
    FOR AND NEXT, 12-40 
    FREE, 12-40 
    FREEZE, 12-42 
    Functions, Predefined, 12-65 
     
    GOSUB, 12-43 
    GOTO, 12-44 
    iexp, 12-22, 12-48, 12-50, 12-77 
    IF GOTO, 12-45 
    IF THEN, 12-45 
    Immediate Execution, 12-19 
    Input and Line Input, 12-62 
    Integer Functions (INT), 12-67 
    Integer numbers, 12-5, 12-21 
 
    Left String Function (LEFT$), 12-76 
    LEN Function (LEN), 12-76 
    LET, 12-46 
    Lexical Rules, 12-78 
                          
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-105 
    ==============      ============================            =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
 
    Line deletion, 12-79 
    Line input, 12-63 
    Line Insertion, 12-78 
    Line length, 12-79 
    Line Number Function (LNO), 12-67 
    Line numbers, 12-21, 12-23 
    Line printer, 12-51, 12-80 
    Line replacement, 12-79 
    Linnum, 12-22, 12-43, 12-44, 12-45, 12-48 
    LIST, 12-25 
    Loading BASIC, 12-4 
    LOCK, 12-47 
    Logarithm Function (LOG), 12-68 
    Loop, 12-39, 12-37, 12-40 
 
    MATCH String Function (MATCH), 12-76 
    Maximum Function (MAX), 12-68 
    Memory, 12-3 
    Middle String Function (MID$), 12-77 
    Minimum Function (MIN), 12-69 
    Multiple statements, 12-19 
    Multiplication, 12-10, 12-11 
 
    "Name". 12-23 
    Negation, 12-9, 12-11, 12-18 
    Nesting, 12-20, 12-39 
    Nesting depth, 12-39 
    nexp, 12-22 
    NEXT, 12-20, 12-37 
    NOT, 12-10, 12-16 
    Numeric data, 12-4 
    Numeric Value Function (VAL), 12-78 
    NXT, 12-59 
 
    OLD, 12-26 
    ON ... GOSUB, 12-47 
    ON ... GOTO, 12-48 
    OPEN, 12-48 
    Operators: 
      Arithmetic, 12-9 
      Boolean, 12-15 
      Relational, 12-13 
      String, 12-17 
      Unary, 12-10 
    OR, 12-15 
    OUT, 12-50 
    Output Port, 12-50 
 
                              
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-106 
    ==============      ============================            =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
 
    PAD Function (PAD), 12-69 
    Parentheses, 12-8, 12-12, 12-17 
    PAUSE, 12-50 
    Peek Function (PEEK), 12-69 
    Pin Function (PIN), 12-69 
    Plus character, 12-17 
    Poke Function (POKE), 12-51 
    Position Function (POS), 12-70 
    Predefined Functions, 12-65 
    PRINT, 12-51 
      Printing Strings, 12-53 
      Printing Variables, 12-52 
      Print zone, 12-53 
    Priority, Arithmetic, 12-9 
    Program loop, 12-20, 12-39 
    Program Mode, 12-29, 12-60 
    Prompt,  
        BASIC Prompt, 12-4 
        Input, 12-62 
 
    Quotation Marks (Quotes): 
        Data, 12-56   
        Input, 12-63 
        Line input, 12-63, 12-64 
        Strings, 12-53 
 
    Random Function(RND), 12-70 
    READ, 12-55, 12-56, 12-57 
    Read and Data, 12-55, 12-56, 12-57 
    Real Numbers, 12-4 
    Recovering from Errors, 12-81 
    Relational Operators, 12-13, 12-18 
    REM (Remark), 12-58 
    REPLACE, 12-27 
    RESTORE, 12-58 
    RETURN, 12-43 
    Right String Function (RIGHT$), 12-77 
    Rules, Text, General, 12-78 
    RUN, 12-3, 12-31 
    Running BASIC, 12-3 
 
    SAVE, 12-28 
    Scope of B.H. BASIC Manual, 12-3 
    SCRATCH, 12-29 
    Segment Function (SEG), 12-72 
    Semicolon, 12-53, 12-55  
    Sep, 12-22 
    sexp, 12-22 
                                
 
 
 



    CHAPTER TWELVE      EXTENDED BENTON HARBOR BASIC            PAGE 12-107 
    ==============      ============================            =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
 
    Sine Function (SIN), 12-73 
    Sign Function (SGN), 12-73 
    Single Statements, 12-21 
    Single Step Execution, 12-21, 12-59 
    Space Function (SPC), 12-73 
    Spaces, see "Blanks", 12-52, 12-78 
    Special Feature Functions, 12-65 
    SQUARE (Example), 12-20 
    Square Root Function (SQR), 12-74 
    Statement Length, 12-21 
    Statements, 12-21 
    Statement types, 12-22 
    STEP, 12-59 
    Step, FOR/NEXT, 12-37 
    STOP, 12-64 
    String Data, 12-6  
    String Functions (STR), 12-78 
    String Operators, 12-17 
    Strings, 12-6, 12-16 
    String Variables, 12-16 
    Subroutines, 12-43, 12-47 
    Subscripted Variables, 12-7  
    Subtraction, 12-11 
    SURE, 12-24 
 
    TAB Function (TAB), 12-74 
    Tangent Function (TAN), 12-74 
    Text Rules, General,  12-78 
    Trailing Blanks, 12-55 
    True, 12-18 
    Truncation, 12-5  
 
    Unary Operators, 12-10 
    UNFREEZE, 12-60 
    UNLOCK, 12-60 
    UNSAVE, 12-60 
    USE error, 12-23 
    User Defined Functions,  
       Single Line (DEF-FN), 12-61 
 
    VAL, 12-78 
    Var, 12-23, 12-46 
    Variables, 12-6  
      Dimensioned, 12-17 
      String, 12-16 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                  CHAPTER 13 
 
                      HDOS PROGRAMMERS' REFERENCE MANUAL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-i 
    ================    ==================================        ========= 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection.  Indeed, HDOS is still alive and well! 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2,  and  3,  while chapters 4, 5, 6, 7, 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual.  
 
    Chapter 13, The HDOS Programmers' Reference Manual, is intended for the 
    advanced programmer.  This chapter calls out and describes all  of  the 
    new  .SCALLS  for HDOS 3.02.  You will find some references to HDOS 2.0 
    and its overlays in this chapter.  These should be ignored. 
     
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead,  you  are invited to direct any questions concerning the Heath 
    Disk Operating System (HDOS) to Mr.  Kirk L.  Thompson, Editor "Staunch 
    89/8"  Newsletter,  P.O.   Box 548, #6 West Branch Mobile Home Village, 
    West Branch, IA 52358. 
     
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-1 
    ================    ==================================        ========= 
 
 
                              TABLE OF CONTENTS 
                              +++++++++++++++++ 
 
          PART 1 -- INTRODUCTION .......................... 13-3 
            Purpose ....................................... 13-3 
            Background .................................... 13-3 
            Preface ....................................... 13-3 
            File Names .................................... 13-3 
 
          PART 2 -- RUN-TIME ENVIRONMENT .................. 13-4 
            Memory Layout ................................. 13-4 
            I/O Environment ............................... 13-6 
            Interrupt Environment ......................... 13-6 
              Interrupt Vectors ........................... 13-7 
              Discontinuing Interrupts .................... 13-7 
            CPU Environment ............................... 13-8 
            Channel Environment ........................... 13-8 
 
          PART 3 -- I/O CHANNELS .......................... 13-8 
 
          Part 4 -- PRECAUTIONS ........................... 13-9 
            Memory Precautions ........................... 13-10            
              User Memory Area ........................... 13-10 
              Stack Maintenance .......................... 13-10 
            I/O Precautions .............................. 13-10 
            Interrupt Precautions ........................ 13-10 
            CPU Precautions .............................. 13-11 
            Debugging Hints .............................. 13-12 
 
          PART 5 -- RESIDENT SCALLs ...................... 13-13 
            Introduction ................................. 13-13 
            .EXIT ........................................ 13-13 
            .SCIN ........................................ 13-15 
            .SCOUT ....................................... 13-16 
            .PRINT ....................................... 13-16 
            .READ ........................................ 13-18 
            .WRITE ....................................... 13-20 
            .CONSL ....................................... 13-21 
 
            .CLRCO ....................................... 13-24 
            .VERS ........................................ 13-26 
            .GDA ......................................... 13-27 
            .CRC16 ....................................... 13-27 
            .LINK ........................................ 13-27 
            .CTLC ........................................ 13-29 
            .OPENR ....................................... 13-31 
            .OPENW ....................................... 13-32 
            .OPENU ....................................... 13-34 
            .OPENC ....................................... 13-36 
            .CLOSE ....................................... 13-37 
            .POSIT ....................................... 13-38 
            .DELETE ...................................... 13-42 
            .RENAME ...................................... 13-42 
            .SETTOP ...................................... 13-44 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-2 
    ================    ==================================        ========= 
 
 
                           TABLE OF CONTENTS (Cont) 
                           ++++++++++++++++++++++++ 
 
            .DECODE ...................................... 13-45  
            .NAME ........................................ 13-47 
            .CLEARA ...................................... 13-50 
            .ERROR ....................................... 13-51 
            .CHFLG ....................................... 13-52 
            .DISMT ....................................... 13-54 
            .LOADD ....................................... 13-54 
            .TASK ........................................ 13-55 
            .TDU ......................................... 13-55 
            .LOG ......................................... 13-56 
            .DMOUN ....................................... 13-57 
            .MOUNT ....................................... 13-56 
            .MONMS ....................................... 13-57 
            .DMNMS ....................................... 13-58 
            .RESET ....................................... 13-58 
            .NAME ........................................ 13-58 
            .RESMNS ...................................... 13-59 
            .DAD ......................................... 13-59 
            Summary ...................................... 13-60 
 
          PART 6 -- HDOS SYMBOL DEFINITIONS .............. 13-62 
          HDOS Common Deck Contents ...................... 13-63 
            HOSDEF.ACM Contents .......................... 13-63 
            HOSEQU.ACM Contents .......................... 13-64 
            ASCII.ACM Contents ........................... 13-65 
            TYPTX.ACM Contents ........................... 13-66 
            MOVE.ACM Contents ............................ 13-67 
            ECDEF.ACM Contents ........................... 13-67 
          HDOS Symbol Values ............................. 13-69 
 
          PART 7 -- PROLOGUE SYS ......................... 13-71 
 
          PART 8 -- PROGRAMMING EXAMPLES ................. 13-71 
 
          APPENDIX 13-A 
            Sample Programming Files ..................... 13-72 
          APPENDIX 13-B 
            Device Driver Programming .................... 13-77 
          APPENDIX 13-C 
            Conversion Chart ............................ 13-107 
          APPENDIX 13-D 
            Memory ...................................... 13-115 
          APPENDIX 13-E 
            Directory Entry Format ...................... 13-128 
          APPENDIX 13-F 
            H17 ROM Subroutines ......................... 13-141 
 
          CHAPTER 13 INDEX .............................. 13-150  
 
 
  
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-3 
    ================    ==================================        ========= 
 
 
                             PART 1 - INTRODUCTION 
                             +++++++++++++++++++++ 
 
    Purpose 
    ======= 
 
    This  manual  describes  the  advanced features of HDOS version 3.0 and 
    3.02 that are necessary for a user program to interface  with  HDOS  at 
    the  assembly  language  level.   This  information is provided for the 
    advanced programmer.  References to overlays pertain to HDOS 2.0. 
     
    Data and information provided in this manual applies equally to the H8, 
    H89, or Z90 family of computers. 
 
 
    Background 
    ========== 
 
    Chapter 11, ASM, of this "HDOS Software Reference Manual" documents the 
    various system commands and  BASIC  statements  used  to  generate  and 
    maintain files at the higher language level.  At this level, the novice 
    or average programmer need not be concerned about the involved  details 
    of interfacing his programs with HDOS or the disk drives. 
     
 
    Preface 
    ======= 
 
    HDOS provides a full run-time support environment for assembly language 
    programs.    Communications   with   file-oriented   devices,   console 
    communications, memory allocation, and other such services are provided 
    by the HDOS  system.   Since  the  H8  does  not  afford  any  hardware 
    protection,  assembly  language routines must be "polite," in that they 
    should not damage the H8 running environment.   This  subject  will  be 
    discussed in greater detail further on in this document.           
 
 
    File Names 
    ========== 
 
    Since  many SCALLs require file names as arguments, this is a good time 
    to discuss HDOS file names. 
     
    In general, when you supply a file name as an argument to a SCALL,  you 
    point  to  an  ASCII  string containing the file descriptor just as the 
    user would have typed  it.   The  line  should  be  terminated  with  a 
    delimiter  of  some  sort,  usually  a  comma,  blank, or zerozero (00) 
    character.  For example, the  following  are  examples  of  valid  file 
    names: 
 
             DB      'SY0:MYFILE.TMP',0 
             DB      'TMP',0 
             DB      'BASIC.SAM,'   
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-4 
    ================    ==================================        ========= 
 
 
                         PART 1 - INTRODUCTION (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    File Names (Cont) 
    ================= 
 
    NOTE: The expression ',' delimits the file name. 
 
    Of  course  these names are all shown being assembled into the program. 
    You might just as well have read  them  from  the  user's  console,  or 
    generated  the  names  on the keyboard.  They must not have imbedded 00 
    bytes or blanks in the names. 
     
    Also note that some of the examples shown do not specify  an  extension 
    or a device.  All SCALLs that take file names as arguments also require 
    a default block.  This block is a 6-byte area  containing  the  default 
    device  specification and a default extension specification.  A typical 
    default block is: 
 
             DB      'SY0 TMP' 
 
    which  yields  a  default device of SY0: and extension of TMP.  Another 
    common block is: 
 
             DB      'SY0',0,0,0 
 
    which  indicates  that there is no default extension.  File descriptors 
    not specifying a name will generate a file with a null extension. 
    *********************************************************************** 
 
 
                         PART 2 - RUN-TIME ENVIRONMENT 
                         +++++++++++++++++++++++++++++ 
 
    Memory Layout  
    ============= 
 
    HDOS  contains  many  useful  general-purpose  subroutines which may be 
    called by user programs.  These,  together  with  the  system  services 
    provided,   make   assembly   language   programming  under  HDOS  very 
    convenient. 
 
    When  you type "RUN fname," HDOS will load your program into memory and 
    run it.  This section will discuss the initial run-time environment  of 
    the  program.   Refer  to the memory map in the HDOS Software Reference 
    Manual, Chapter 8, Appendix 8-A, and Appendix  13-D, for  further  data 
    that  will  help  you  to  understand  the information provided in this 
    chapter. 
     
    The first 64 bytes of RAM from 040000 to 040100 are used by PAM-8.  The 
    PAM-8 source listing documents their use.            
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-5 
    ================    ==================================        ========= 
 
 
                     PART 2 - RUN-TIME ENVIRONMENT (Cont) 
                     ++++++++++++++++++++++++++++++++++++ 
 
    Memory Layout (Cont) 
    ==================== 
 
                                     NOTE 
              Although   the   PAM-8   ROM   will  be  referenced 
              throughout   this   manual,   the   general-purpose 
              routines  of the MTR -88, MTR-89, MTR-90, PAM-8-GO, 
              and XCON-8 ROMs all have common entry points.   For 
              specific  information,  refer  to  the  data in the 
              manual covering the ROM that you are using.        
               
    The next 295 bytes are used by HDOS and the disk device driver for work 
    cells.  These cells are in low memory, so that HDOS can reference  them 
    without  having  to  compute relocation factors (HDOS is relocatable in 
    low memory).  Some of the contents of these cells are  of  interest  to 
    assembly  language  programmers  and  are  indirectly available through 
    HDOS system calls.  You should refrain from  accessing  them  directly, 
    since  their  position  may  change  with  future releases.  Use of the 
    proper HDOS symbols and system calls in assembly language programs will 
    make  it  possible  to  transport  your  programs  to future Heath CPUs 
    executing an advanced HDOS system.  There are a few cells that  may  be 
    of  interest  to  the  programmer,  and these are documented in Part 6. 
    They may be read, but never written to. 
     
    Following  the  work  cell  area is a 279-byte stack area.  When a user 
    program is executed, the stack pointer is  set  to  the  symbol  STACK, 
    which  is  042200A.  Note that you may not set your stack pointer below 
    that  address and then use the area  below  42200A  for  code  or  data 
    (other  than  that  stored  by  a normal PUSH).  You may make the stack 
    larger, setting SP to a value larger than 042200A.  Calls to  the  HDOS 
    system will preserve this larger stack.              
     
    The  user  program area starts at 042200A, immediately after the top of 
    the stack.  The user program extends until the last byte loaded by  the 
    RUN  command.  Note that the assembler generates a dummy 00 byte as the 
    last statement in a program, so that trailing DS declarations  will  be 
    contained  in  the size of the running program.  There is a system call 
    which requests access to more memory.  You must issue the  call  first, 
    since HDOS may be using that area for its own code.              
 
    Any  active  device  drivers are loaded immediately before the resident 
    HDOS code.  A device driver is loaded when a file is opened on a device 
    whose  driver  is  not  yet  in  memory.   The  TT:  device  driver  is 
    automatically loaded during the boot process, and  never  needs  to  be 
    loaded.   Since  the  SY: driver is permanently loaded into memory when 
    the system is first booted up, it never needs to be loaded. 
     
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-6 
    ================    ==================================        ========= 
 
 
                     PART 2 - RUN-TIME ENVIRONMENT (Cont) 
                     ++++++++++++++++++++++++++++++++++++ 
 
    Memory Layout (Cont) 
    ==================== 
      
    Finally,  the  HDOS  system  resides in low memory.  When the system is 
    booted up, HDOS initially loads at a fixed lower address.  After sizing 
    memory,  HDOS  moves  its  permanently  resident parts into low memory. 
    This section contains the SCALL Dispatcher and  the  handlers  for  all 
    standard SCALL functions. 
 
    I/O Environment 
    =============== 
 
                                  TABLE 13-1 
                      PORT ASSIGNMENTS FOR THE H89 AND H8 
    +---------------------+-----------------------------------------------+ 
    |       PORT          |   H89 COMPUTER **** BOTH ***** H8 COMPUTER    | 
    +---------------------+-----------------------------------------------+ 
    | 170-173Q (078-078H) | ---- H37, H47, or H67 Disk Drive Systems ---- | 
    | 174-177Q (07C-07FH) | ---- H17, H47, or H67 Disk Drive Systems ---- | 
    | 300-307Q (0C0-0C7H) | ---------------- Reserved ------------------- | 
    | 320-327Q (0D0-0D7H) | H88-3 ------- Alternate Terminal ------- H8-4 | 
    | 330-337Q (0D8-0DFH) | H88-3 ------------  Modem -------------- H8-4 | 
    | 340-347Q (0E0-0E7H) | H88-3 ---------- Line Printer ---------- H8-4 | 
    | 350-357Q (0E8-0EFH) | CPU ---------- Console Terminal -------- H8-4 | 
    | 360-361Q (0F0-0F1H) | ---- Reserved ----     --- H8 Front Panel --- | 
    | 370-371Q (0F8-0F9H) | H88-5 ------------ Cassette ------------ H8-5 | 
    | 372-373Q (0F2-0FBH) | ---- Reserved ----     ----- Console Terminal |   
    | 374-375Q (0FC-0FDH) | ---- Reserved ----     --- Alternate Terminal | 
    | 376-377Q (0FE-0FFH) | ---- Reserved ----     ------  Reserved ----- | 
    +---------------------+-----------------------------------------------+ 
                                                                            
    HDOS  has  a  vested interest in the I/O ports being used by the device 
    drivers currently in memory.  These ports should not be disturbed  when 
    HDOS  or  a  device  driver  may  be trying to use them.  The ports are 
    listed in Table 13-1.         
 
    Since  the  TT:  and  SY: drivers are permanently resident, it is vital 
    that you do not disturb the TT: and SY: ports.  Disturbing the SY: port 
    will destroy your system disk.  Disturbing the TT: port will damage the 
    console driver package.  The console driver package  communicates  with 
    the console device at interrupt time, so you will not be able to detect 
    character entry by examining the console status  bits.   HDOS  provides 
    you with a facility to test the presence of a console character. 
     
 
    Interrupt Environment 
    ===================== 
 
    HDOS  is  an  interrupt-driven  system,  so  be  careful how you handle 
    interrupts.  Your program must not  turn  off  interrupts  via  the  DI 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-7 
    ================    ==================================        ========= 
 
 
                     PART 2 - RUN-TIME ENVIRONMENT (Cont) 
                     ++++++++++++++++++++++++++++++++++++ 
 
    Interrupt Environment (Cont) 
    ============================ 
 
    instruction  for other than very short periods of time.  The H17 device 
    driver makes use  of  the  front  panel  clock  interrupts  on  the  H8 
    computer,  so  you must not disable them, either directly via port 360Q 
    or by the PAM-8 control word.  Likewise, console interrupts are used by 
    the system console handler, and should not be disturbed.  HDOS does not 
    currently support any interrupt-driven device drivers  except  the  H37 
    device  driver,  but  programs may still make use of interrupts.  There 
    are  two  major  trouble  areas  in  this:  choosing  a   vector    and 
    discontinuing the interrupts. 
     
 
    Interrupt Vectors 
    ----------------- 
 
    Of  the  eight  interrupt  vectors available in an 8080A microprocessor 
    (sometimes abbreviated "processor") HDOS makes use of six or  seven  of 
    them.                                                                 
     
         0 ----- Master Clear.  Returns control to PAM-8. 
         1 ----- Clock Interrupts. 
         2 ----- Single-Step.  Used by DBUG.  May be used by a user 
                   program when not running DBUG. 
         3 ----- Console Interrupts. 
         4 ----- Reserved for H37. 
         4 ----- Reserved for H14 Printer. 
         5 ----- Reserved for modems. 
         5 ----- Available for user programs. 
         6 ----- Available for user programs. 
         7 ----- HDOS SCALL vector.                     
 
    Set  the  vectors by storing a JMP to your interrupt service routine in 
    the PAM-8 ".UIVEC" area, as discussed in the PAM-8 manual.  
 
 
    Discontinuing Interrupts 
    ------------------------ 
 
    When  a  user  program  causes a device to start issuing interrupts, it 
    must somehow turn off that device before control returns to the system. 
    HDOS  will not alter the interrupt vector (JMP) in PAM-8's "UIVEC," and 
    an interrupt occurring after your program has  been  removed  from  the 
    system  will  be tragic.  Also note that as a user, you must be careful 
    of typing CTRL-Z, as this can kill your program before it can shut down 
    any interrupting devices.  
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-8 
    ================    ==================================        ========= 
 
 
                     PART 2 - RUN-TIME ENVIRONMENT (Cont) 
                     ++++++++++++++++++++++++++++++++++++ 
 
    Discontinuing Interrupts (Cont) 
    ------------------------------- 
     
                                     NOTE 
              You  MUST  turn  off  the  device interrupts before 
              surrendering control  to  HDOS.   Simply  replacing 
              your  interrupt vector with EI and RET instructions 
              will cause disaster, since the interrupting  device 
              will  continue  to  request  interrupts until it is 
              serviced, and HDOS does not know how to service it. 
              Your  computer  will  then  hang  in  an  interrupt 
              service loop.  
               
 
    CPU Environment 
    =============== 
 
    After  loading  your  program,  HDOS transfers control to the program's 
    entry point.  This is the address  specified  in  the  END  (assembler) 
    pseudo.  
     
 
    Channel Environment 
    =================== 
 
    HDOS allows user programs to communicate with file-oriented devices via 
    "channels."  These channels are discussed in Part  3.   In  all  cases, 
    channel  -1  (377Q) is open for read access on the device and file that 
    the program was loaded from.  This is done so you can conveniently load 
    overlays  without  having  to  know under what name and disk drive your 
    program was run from.  If your program was run  in  response to  a  RUN 
    command, all other channels will be closed.  If your program was run in 
    response  to a .LINK SCALL, then the other channels will remain as they 
    were set up by the program which issued the .LINK.  
    *********************************************************************** 
 
 
                             PART 3 - I/O CHANNELS 
                             +++++++++++++++++++++ 
 
    All  file  I/O in the HDOS system is done via I/O channels.  "File I/O" 
    refers to normal input/output done to  HDOS  devices  via  HDOS  device 
    drivers.  Naturally, a program may control its "private devices" (those 
    not suitable for device drivers) in any way it pleases. 
     
    In general, the sequence for doing file I/O is to issue an "open" SCALL 
    (i.e., .OPENR, .OPENW, or .OPENU) to HDOS, supplying HDOS with the file 
    descriptor  as  an  ASCII string.  HDOS will parse the string, load the 
    device driver (if necessary), and open the file.  When  you  issue  the 
    "OPEN"  SCALL,  you  supply a channel number from -1 (i.e., 377Q) to 5. 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-9 
    ================    ==================================        ========= 
 
 
                         PART 3 - I/O CHANNELS (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    This channel number must not already be in use.  This  means  that  you 
    may open a maximum of seven files simultaneously.  
     
    Once  the file has been opened, you can perform I/O by using the .READ, 
    .WRITE, and .POSIT SCALLs.  Make these requests by supplying HDOS  with 
    the  channel  number  of  the file you want read or written.  After the 
    initial open, you no longer need the file  descriptor  string.   Should 
    you  suddenly  need  that  file  name (for  example, to  issue an error 
    message), HDOS provides the .NAME SCALL to recall the  file  name  used 
    when that channel was opened.  
 
    All  disk  file  I/O is done in multiples of 256 bytes, the HDOS system 
    sector size.  As many bytes as desired may be transferred at one  time, 
    so  long  as  the  count  is an integer multiple of 256.  HDOS normally 
    performs I/O in a sequential fashion.  For example, if your program  is 
    reading  from  a  disk file one sector (256 bytes) at a time, the first 
    read will return sector 0, the next read sector 1, etc.  For each  open 
    channel, HDOS maintains a "sector cursor," which indicates which sector 
    in the file is next to be read  or  written.   HDOS  does  provide  the 
    facility,  via  .POSIT, to randomly read and write sectors to or from a 
    disk file by changing the value of this "sector cursor."  
     
    When  you  are  done  with  the  file,  use the .CLOSE SCALL, once more 
    supplying the channel number.  HDOS will close the file and  thus  make 
    that channel available for another open command.  
     
                                     NOTE 
              Although  channel  -1  may  be  used  as  a general 
              purpose I/O channel, its  use  should  normally  be 
              avoided.   It is already open when your  program is 
              started, but you must close it before you can  open 
              a  file  on  it.   Also, channel -1 will be cleared 
              (see the .CLEAR SCALL for details) if you  use  the 
              .LINK  SCALL.   Thus,  any  file  open for write on 
              channel -1 at that time will be lost.            
    ********************************************************************** 
 
                             PART 4 - PRECAUTIONS 
                             ++++++++++++++++++++ 
 
    We  have  stated earlier in this document that the HDOS system does not 
    provide any hardware protection, and thus is vulnerable  to  errors  in 
    assembly  language  programs.   In order to help minimize this problem, 
    this segment discusses the  "Do's  and  Dont's"  of  assembly  language 
    programming in greater detail.             
     
 
                        
                        
 
                                                                            
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-10 
    ================    ==================================       ========== 
 
 
                         PART 4 - PRECAUTIONS (Cont) 
                         +++++++++++++++++++++++++++ 
 
    Memory Precautions 
    ================== 
 
    The two most important areas of memory precautions are: respect for the 
    user program area and maintenance of the stack.            
 
 
    User Memory Area 
 
    ---------------- 
 
    A  user  program  must  never  write into memory outside of its domain. 
    This "domain" consists of the memory area from 042200A (USERFWA) to the 
    LWA  of the user program area.  When your program is first loaded, this 
    LWA is set up to the end of your program and its  declared  data  areas 
    via DS, DW, or DB; not EQU.  The ".SETTOP" SCALL is available to adjust 
    this limit.  User programs may adjust this limit as often as they  like 
    (for  details,  refer  to  the .SETTOP SCALL documentation).  Note that 
    HDOS may use all memory after this limit for a storage area,  which  is 
    going to cause trouble if your routine also tries to use it.            
 
 
    Stack Maintenance 
    ----------------- 
 
    Since  the  HDOS  system  uses  interrupts and  requires  interrupts to 
    handle the console, the H17 disk, and the H37 disk, your program may be 
    interrupted  at  any  time.   You  must  always  maintain a valid stack 
    pointer  with at least 64 free bytes on the top of that stack.  If  you 
    plan  to  fill  the system stack area, then you should ORG your program 
    above 042200A and set the stack pointer  higher,  giving  yourself  and 
    HDOS  a  bigger stack.  HDOS does not use a separate stack; it uses the 
    top of the user program stack. 
     
 
    I/O PRECAUTIONS 
    =============== 
 
    As  we  discussed  earlier, I/O precautions consist of keeping your INs 
    and OUTs to yourself.  Don't disturb the H17, the H37, and the H47, and 
    don't disturb the console ports!  Also, be careful what you do with the 
    front panel ports on the H8, either directly or indirectly  via  PAM-8. 
    These  ports  control the clock interrupts, which are necessary for the 
    H17 device driver.              
 
     
    INTERRUPT PRECAUTIONS 
    ===================== 
 
    When you are using interrupts, you must use only the available vectors, 
    which are 4 (if you are not using the H37), 5 (if you are not 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-11 
    ================    ==================================       ========== 
 
 
                         PART 4 - PRECAUTIONS (Cont) 
                         +++++++++++++++++++++++++++ 
 
    INTERRUPT PRECAUTIONS (Cont) 
    ============================ 
 
    using  a  modem),  and 6.  You may also use 2, if you will not be using 
    DBUG.  Before you enable your interrupting device, install the  service 
    vector in the appropriate ".UIVEC" location. 
     
    Most  importantly,  turn off the interrupting device so it cannot issue 
    any  more interrupts before you either return control to HDOS or  CTL-Z 
    out  of  the  program.   If an interrupt occurs when your program is no 
    longer there to service it,  the  operating  system  and  possibly  the 
    information on your diskettes will be destroyed.             
     
    Since  console and clock interrupts may occur at any time, your program 
    should not turn off interrupts via DI, except for very short periods of 
    time.            
     
    Finally,  HDOS uses the clock interrupts, so you should not overlay its 
    interrupt vector.  Programs desiring clock service should use all means 
    possible  to  make  do with the interrupt counter (PAM-8s .TICCNT).  If 
    you absolutely must have clock interrupts,  save  the  address  in  the 
    clock  vector,  install  your own vector, and have your service routine 
    exit the interrupt by jumping to the HDOS vector  address.   HDOS  uses 
    the  clock  interrupts  for H17 timings; disturbing it might cause your 
    motors to keep spinning, prematurely wearing the motors.  Or worse, you 
    might defeat the H17 driver's head-settle delays and cause a bad sector 
    to be written. 
     
 
    CPU PRECAUTIONS 
    =============== 
 
    This   precaution   should   be   familiar  to  all  assembly  language 
    programmers: don't let the  CPU  execute  undefined  memory  locations. 
    Should  such  a  thing  occur,  it  is unlikely that your disks will be 
    damaged, due to some safeguards built into the  system.   However,  you 
    should  immediately  shift-reset  and reboot, and not try to warm-start 
    the  system,  since  the  CPU  may  have   damaged  tables  in  memory. 
    Remember, the HDOS system uses a sophisticated linked-allocation scheme 
    to  handle disk files.  Damaging that table or damaging  the  directory 
    or  allocation  areas  on  the disk can cause all files on that disk to 
    become lost; not just one or two!             
     
    If  you  are  debugging  a  program  which  consistently  vectors  into 
    undefined memory locations, then it is best to use write-protect labels 
    on  the  disks.   Then  if  you crash, you can quickly restart by using 
    PAM-8 to start at the HDOS cold start address,  040100A.   Entering  at 
    this  address  should return you to HDOS command mode.  Do this only if 
    you have your disks write-protected.  Otherwise, it is too risky. 
               
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-12 
    ================    ==================================       ========== 
 
 
                         PART 4 - PRECAUTIONS (Cont) 
                         +++++++++++++++++++++++++++ 
 
    CPU PRECAUTIONS (Cont) 
    ====================== 
 
    Usually,  when  your  program  runs  wild, the CPU ends up at some high 
    memory location where you don't have any memory.  The computer hardware 
    generates  0  for nonexistent memory, so you will quickly run through a 
    long  string of NOPs until you wrap from 377377A to 000000A,  which  is 
    the  master clear restart address for PAM-8.  If you display the PC and 
    find it set to your high memory address, then you  probably  took  this 
    "circumpolar" route into PAM-8.             
     
 
    Debugging Hints 
    =============== 
 
    The best way to debug programs is to ORG them above DBUG, and test them 
    using DBUG.  After entering DBUG, use the LOAD command to load  in  the 
    program  under  test.  You can then break-point and single-step through 
    your program.  Do not single-step through an HDOS  SCALL,  or  you  may 
    damage the disk.            
     
    After  the program seems to be working, ORG it back down to 042200A, or 
    wherever, and reassemble.            
    *********************************************************************** 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-13 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    INTRODUCTION 
    ============ 
 
    Within HDOS 3.0 all system calls are "Resident Scalls," since there are 
    no overlays.  This  segment  covers  those  HDOS  system  calls,  often 
    referred to as "SCALLS," which are permanently resident in memory. 
 
    In general for the H8, a SCALL (System CALL) consists of a 
 
            RST    7 
                                              
    instruction  followed  by  a  byte containing the request number.  Most 
    SCALLs  require  that  some  registers  be  set  up  before  the  call. 
    Likewise,  most  may  alter the registers, so a program should save any 
    registers which it wants to preserve.             
     
    The  ASM  (assembler)  has  a special opcode for SCALLs: 'SCALL code' - 
    where "code" is the number of the request.   This  statement  generates 
    the equivalent of: 
 
                       DB    377Q,code 
 
    We  recommend  that  you  use  the HOSDEF.ACM file to include all these 
    definitions.  In general, it is advisable to use the recommended symbol 
    definitions for all references to HDOS, and include them in one or more 
    XTEXT decks.  This will make programming easier for you, and  guarantee 
    compatibility  with  future HDOS releases.  Although we will make every 
    effort to keep binary compatibility, we may need to revert to "assembly 
    language compatibility," in which case you may have to change some HDOS 
    symbol values and reassemble.             
    ....................................................................... 
    The SCALLs for HDOS Versions 3.0/3.02 are listed in numerical order: 
    ....................................................................... 
 
    .EXIT - Exit User Program (Octal 0Q) 
    ==================================== 
 
    ***     EXIT - EXIT USER PROGRAM            
    *       
    *       EXIT IS CALLED TO RETURN CONTROL TO THE SYSTEM COMMAND 
    *       PROGRAM.           
    * 
    *       FOR A NORMAL EXIT, THE CONTROL CHARACTERS ARE  
    *       CLEARED, AND SYSCMD IS ENTERED.     
    * 
    *       MVI       A,FLAG          (see below) 
    *       SCALL     .EXIT 
    * 
    *       FOR EITHER EXIT, THE CONTROL CHARACTER VECTORS 
    *       (SET BY .CTLC) ARE CLEARED.         
      
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-14 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .EXIT - Exit User Program (Octal 0Q) (Cont) 
    =========================================== 
 
    * 
    *       IN ADDITION, THE ABORT EXIT RESETS THE DISK AND 
    *       CONSOLE I/O DRIVERS.        
    * 
    *       ENTRY     (A)       = FLAG ( 0 = NORMAL, 1 = ABORT ) 
    *       EXIT      -IF-      [ SYSTEM DISK IS STILL MOUNTED ] 
    *                                  - or - 
    *                           [ STAND-ALONE IS SET ] 
    *                 -THEN-    EXIT TO "SYSCMD.SYS" 
    *                 -ELSE-    EXIT TO REBOOT CODE 
 
 
    Notes: 
    ------ 
    The  .EXIT  SCALL  is the proper way for a program to return control to 
    HDOS.  In any mode, .EXIT will  close  all  open  I/O  channels.   This 
    action  is  equivalent  to  that of the .CLEAR SCALL.  It is best for a 
    program to close or clear its own channels before incurring  .EXIT,  as 
    future releases may differ in this action.            
     
    It  should  not be necessary for a program to use the abort exit unless 
    some process was being used which affected the state of the console  or 
    disk I/O ports.  The use of such processes is not recommended.  
     
    If  SY0: has been dismounted, and the STAND-ALONE flag is not set, HDOS 
    exits to reboot.  If the STAND-ALONE flag has been set, and no disk  is 
    mounted  on  SY0:,  or  SYSCMD.SYS  is not found on the disk mounted on 
    SY0:, HDOS  exits to reboot.  Thus, the  only  way  for  a  program  to 
    return to the command level once SY0: has been dismounted and remounted 
    is for the STAND-ALONE flag to have  been previously set  via  the  SET 
    command,  and for the disk mounted on SY0: to have a copy of SYSCMD.SYS 
    on it.    
     
 
    **      EXAMPLES: 
    ALDONE  MVI    A,0          FLAG NORMAL EXIT 
            SCALL  .EXIT 
    ABTXIT  MVI    A,1          FLAG ABORT EXIT 
            SCALL  .EXIT 
 
 
 
 
 
 
 
 
 
            



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-15 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .EXIT - Exit User Program (OCTAL 0Q)(Cont) 
    ========================================== 
 
                                     NOTE 
              You  should  always close your open channels before 
              exiting.  Do not rely upon .EXIT to do it for  you. 
              Future  HDOS  releases may not be so accommodating. 
              The one exception is for temporary  scratch  files, 
              for  which you may use .CLEAR.  This will cause the 
              file  to be dissolved and its space returned to the 
              free pool. 
    ....................................................................... 
 
    .SCIN - System Console Input (Octal 1Q) 
    ======================================= 
 
    ***     SCIN - SYSTEM CONSOLE INPUT. 
    * 
    *       .SCIN TAKES A SINGLE CHARACTER FROM THE CONSOLE INPUT 
    *       BUFFER, IF ANY ARE AVAILABLE. 
    *        
    *  L1   SCALL   .SCIN 
    *       JC      L1          CHARACTER NOT READY 
    * 
    *       ENTRY   NONE 
    *       EXIT    'C' SET IF NO CHARACTER 
    *               'C' CLEAR IF CHARACTER 
    *               (A) =CHARACTER 
    *       USES    A,F 
 
    Notes: 
    ------ 
    This  command  is  relatively  obvious.  Detailed examples of .SCIN are 
    shown in the HEATH HDOS Software Reference Manual, Chapter 11, Appendix 
    11-B, pages 11-70 thru 11-76.  A simple application example follows: 
     
 
    **      EXAMPLE: 
 
    RDCHAR  SCALL   .SCIN       TRY TO READ CHARACTER 
            JC      RDCHAR      NONE READY YET 
            RET                  EXIT, (A) = CHARACTER 
 
        
                                     NOTE 
          The .CONSL SCALL may be used to set console mode bits. 
    ....................................................................... 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-16 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .SCOUT - System Console Output (Octal 2Q) 
    ========================================= 
 
    ***     SCOUT - SYSTEM CONSOLE OUTPUT 
    * 
    *       SCOUT OUTPUTS A SINGLE CHARACTER TO THE CONSOLE.  CURSOR 
    *       POSITIONING IS KEPT TRACK OF.  A 'NL' CHARACTER 
    *       INDICATES A NEW LINE.  'CR' AND 'LF' CHARACTERS 
    *       SHOULD NOT BE USED. 
    * 
    *       MVI     A,CHAR 
    *       SCALL   .SCOUT 
    * 
    *       ENTRY   (A) = CHARACTER 
    *       EXIT    (A) = CHARACTER 
    *       USES    NONE 
 
    Notes: 
    ------ 
    This  command  is  relatively obvious.  Detailed examples of .SCOUT are 
    shown in the HEATH HDOS Software Reference Manual, Chapter 11, Appendix 
    11-B, pages 11-71 through 11-76.  A simple application example follows: 
     
 
    **      EXAMPLE:  
 
            MVI     A,'*' 
            SCALL   .SCOUT      TYPE AN ASTERISK ON THE CONSOLE 
 
    ....................................................................... 
 
 
    .PRINT - Print Line On System Console (Octal 3Q) 
    ================================================ 
 
    ***     .PRINT - PRINT CONSOLE LINE. 
    * 
    *       PRINT CAUSES A CODED LINE TO BE PRINTED AT THE CONSOLE. 
    * 
    *       LXI     H,LINEADDR 
    *       SCALL   .PRINT 
    * 
    *       THE LAST CHARACTER IN THE LINE SHOULD HAVE THE 
    *       200Q BIT SET. 
    *        
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-17 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .PRINT - Print Line On System Console (Octal 3Q) (Cont) 
    ======================================================= 
 
    * 
    *       ENTRY   (HL) = LINE ADDRESS 
    *       EXIT    (HL) = LWA OF MESSAGE +1 
    *       USES    A,F,H,L 
 
 
    Notes: 
    ------ 
    .PRINT  is an efficient and convenient way to print lines on the system 
    console.  Another good way is to use the subroutine "$TYPTX," as  shown 
    in  Part  8,  Appendix  13-A, pages 13-73 through 13-76 of this manual. 
    Note that the parity bit (200Q) is set over the last  character  to  be 
    printed  to  notify  the  end-of-line  to  HDOS.   Remember, use the NL 
    character  (012Q,  same  as  LF)  for  a  CRLF  sequence.   HDOS   will 
    automatically  insert  the  required  number  of PAD characters for the 
    console.  If you prefer, you can include the "NULL 00" character  in  a 
    print  line.   It is ignored, does not cause a delay in console output, 
    and thus cannot be used as a PAD character. 
     
     
    ***     EXAMPLE: 
            . 
            LXI     H,MSGA      TYPE OUT STARTUP MESSAGE 
            SCALL   .PRINT 
            . 
            . 
    PROMPT  LXI     H,MSGB      TYPE OUT PROMPT MESSAGE 
            SCALL   .PRINT 
    REACHA  SCALL   .SCIN       READ REPLY.... 
            . 
            . 
    MSGA    DB      12Q,'SET OPTIONS:' 
            DB      12Q 
            DB      12Q, 'HELP - TYPE THIS LIST' 
            DB      12Q, 'CRASH - DESTROY DISK SURFACE' 
            DB      12Q+200Q                   NEW LINE, END OF PRINT 
           
    MSGB    DB      12Q,'YOUR COMMAND?',' '200Q 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-18 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .READ - Read From File (Octal 4Q) 
    ================================= 
 
    Notes: 
    ------ 
    Use  the  .READ  SCALL  to read data from an open channel.  The channel 
    must already have been opened via a .OPENR or .OPENU SCALL (except  for 
    channel -1, as noted previously).              
     
    Currently,  all  device  I/O  under  HDOS  (with  the  exception of the 
    console, via the .SCIN and .SCOUT SCALLs) is "block mode."  This  means 
    that  you  must  read or write to the device in multiples of 256 bytes. 
    If you cannot fill in the last block,  you  should  pad  it  with  zero 
    bytes.   The  last  block in all HDOS source files is padded out to 256 
    characters with 00 bytes.            
     
    The  quoted  C in the following example indicates the Carry Flag.  This 
    SCALL, as in all others in HDOS, returns with the carry flag set if  an 
    error  or abnormal condition has occurred.  The most common "error" for 
    the .READ command is "end-of-file."   The  convention  used  above  and 
    throughout  this manual is that exit conditions which are predicated on 
    the setting of a flag are discussed directly under that flag,  indented 
    one space.  Thus, the (BC) register pair contains the unused byte count 
    if, and only if, the "C" flag is set.  If "C" is clear, then all of the 
    bytes  were  read,  and (BC) contains garbage.  Thus, the (BC) and (DE) 
    registers contain meaningful information only when an  error  condition 
    occurred, which is normally an "end-of-file."  The error codes returned 
    by HDOS are defined in Part 7, pages 13-67 and 13-68  of  this  manual. 
    This  is  simply  a condensation of the error messages discussed in the 
    HDOS Software Reference Manual.  (For details  concerning  HDOS  system 
    error  messages,  refer  to Chapter 11, pages 11-61.  Note that you can 
    use the .ERROR SCALL to look up an explanatory message. 
     
     
    ***     .READ - BLOCKS OF DATA 
    * 
    *       READ PROCESSES READ SCALLS.  IF A SERIAL DEVICE, PASS TO 
    *       DRIVER.  IF A STORAGE DEVICE, HANDLE STORAGE MAPPING. 
    * 
    *       MVI     A,CHAN 
    *       LXI     B,COUNT     MUST BE MULTIPLE OF 256 
    *       LXI     D,ADDR 
    *       SCALL   .READ       READ DATA FROM FILE 
    * 
    *       ENTRY   (A) = I/O CHANNEL/NUMBER 
    *               (B) = COUNT OF 256-BYTE BLOCKS TO TRANSFER 
    *               (C) = 0 
    *               (DE) = DATA ADDRESS 
    * 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-19 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .READ - Blocks Of Data (Octal 4Q)(Cont) 
    ======================================= 
 
    * 
    *       EXIT    'C' CLEAR IF ALL OK 
    *               'C' SET IF ERROR 
    *               (A) = ERROR CODE 
    *               (BC) = UNUSED TRANSFER COUNT 
    *               (DE) = NEXT UNUSED ADDRESS 
    *       USES    ALL 
 
 
                                     NOTE 
              All  read  operations must be for integer multiples 
              of 256 bytes.  Thus, the last sector in a file  may 
              have to be padded with 00 bytes.  All ASCII (coded) 
              files in HDOS are  zero-byte  filled  in  the  last 
              sector  (if they need it).  A 00 byte is considered 
              to  be  a  NULL  character  and  should  always  be 
              ignored when encountered in an ASCII file.  
               
    ***     EXAMPLES: 
 
            . 
            . 
    READ    MVI     A,1         READ FROM ALREADY OPEN CHANNEL 1 
            LXI     B,256       READ ONE SECTOR 
            LXI     D,BUFFER     
            SCALL   .READ       READ IT 
            JC      READ1       ERROR 
            LXI     B,256       READ 256 BYTES 
            JMP     READ2 
 
    *       HAVE ERROR.  SEE IF EOF, OR SOMETHING WORSE  
    READ1   CPI     EC,EOF      SEE IF JUST EOF 
            JNE     ERROR       HAVE SERIOUS ERROR 
            STA     EOFFLG      FLAG HAVE SEEN EOF 
            LXI     H,256       (HL) = ORIGINAL STARTING COUNT 
            MOV     A,L 
            SUB     C 
            MOV     C,A 
            MOV     A,H 
            SBB     B 
            MOV     B,A         (BC) = 256-REMCNT = AMOUNT READ 
 
    *       READ COMPLETE.  (BC) = BYTES AVAILABLE 
    READ2   .... 
            . 
            . 
    BUFFER  DS      256         SECTOR BUFFER 
    ....................................................................... 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-20 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .WRITE - Write to Open File (Octal 5Q) 
    ====================================== 
 
    ***     .WRITE - PROCESS WRITE SCALL. 
    * 
    *       MVI     A,CHAN 
    *       LXI     B,COUNT     MUST BE MULTIPLE OF 256 
    *       LXI     D,ADDR 
    *       SCALL   .WRITE      WRITE DATA TO CHANNEL 
    * 
    *       ENTRY   (A) = CHANNEL # 
    *               (BC) = DATA COUNT 
    *               (DE) = DATA ADDRESS 
    *       EXIT    'C' CLEAR IF ALL OK 
    *               'C' SET IF ERROR 
    *                (BC) = UNUSED TRANSFER COUNT 
    *                (DE) = NEXT UNUSED ADDRESS 
    *                (A) = ERROR CODE 
    *       USES     ALL 
 
    Notes: 
    ------ 
    The  .WRITE  SCALL  is  very similar to the .READ SCALL, except that it 
    writes the data to the file.  Once again, the count in (BC) must be  an 
    integral multiple of 256.  The most typical error returned by .WRITE is 
    "NO ROOM ON MEDIA."             
     
                                     NOTE 
              All  write operations must be for integer multiples 
              of 256 bytes.  Thus, the last sector in a file  may 
              have  to  be  filled  out  to 256 bytes.  All ASCII 
              (coded) files in HDOS are zero-byte filled  in  the 
              last  sector  (if  they  need  it).   A  00 byte is 
              considered  a NULL character and should  always  be 
              ignored when encountered in an ASCII file.           
               
 
    **      EXAMPLE: 
 
    WRIDAT  MVI     A,1         CHANNEL 1 ALREADY OPEN 
            LXI     B,512       WRITE 512 BYTES 
            LXI     D,BUFFER     
            SCALL   .WRITE      WRITE IT 
            JC      ERROR       SERIOUS ERROR 
            . 
            . 
    BUFFER  DS      512         BUFFER AREA FOR WRITE 
    ....................................................................... 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-21 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .CONSL - Set Console Mode Bits (Octal 6Q) 
    ========================================= 
 
    ***     .CONSL - SET AND CLEAR CONSOLE FLAGS. 
    * 
    *       CONSL IS CALLED TO SET, CLEAR, OR READ BITS IN THE 
    *       VARIOUS CONSOLE FLAGS. 
    * 
    *       THE CALLER PASSES AN INDEX INTO THE PROPER FLAG.  A 
    *       MASK TO INDICATE THE AFFECTED BITS, AND A SET OF NEW 
    *       VALUES FOR THOSE BITS. 
    *            
    *       INDEX = 
    * 
    *       0       I.CSLMD 
    *       1       I.CONTY 
    *       2       I.CUSOR 
    *       3       I.CONWI 
    *       4       I.CONFL 
    * 
    *       ENTRY   (A) = INDEX 
    *               (B) = NEW VALUES 
    *               (C) = MASK ('1' BIT FOR EVERY BIT TO CHANGE) 
    *       EXIT    'C' CLEAR IF NO ERROR 
    *                (A) = NEW VALUE 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    The .CONSL SCALL is used to read and write the console control bits and 
    bytes.  These bytes are available directly in memory, but we  recommend 
    that   you   access   them   via   the   .CONSL  command  to  guarantee 
    synchronization and upward compatibility with future releases of HDOS. 
 
    The caller supplies HDOS with three values: the index of the byte to be 
    read and/or written, the bits to be altered, and the  new  bit  values. 
    The  technique  of  supplying  a "bits-affected" mask and a "new value" 
    pattern  allows you to alter just one bit in a byte without  having  to 
    know the values of the other bits in the byte.  Since the console is an 
    interrupt-responsive device, this also avoids synchronization problems. 
    There  are  five  bytes which may be read and/or written via the .CONSL 
    function.            
     
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-22 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .CONSL - Set Console Mode Bits (Octal 6Q)(Cont) 
    ================================================ 
 
    I.CSLMD - Console Mode 
 
    I.CSLMD EQU     0           I.CSLMD IS FIRST BYTE 
 
    CSL.ECH EQU     10000000B   SUPPRESS ECHO 
    CSL.WRP EQU     00000010B   WRAP LINES AT WIDTH 
    CSL.CHR EQU     00000001B   UPDATE IN CHARACTER MODE 
 
    These  three  bits  are  used  to affect the mode in which HDOS handles 
    characters typed at the console.  They are documented in greater detail 
    in  the  "HDOS  Software  Reference  Manual,"  Chapter  11, pages 11-70 
    through 11-76. 
     
    I.CONTY - Console Type 
    ---------------------- 
    I.CONTY EQU     1           I.CONTY IS 2ND BYTE 
 
    CTP.BKS EQU     10000000B   TERMINAL PROCESSES BACKSPACES 
    CTP.MLI EQU     00100000B   MAP LOWER CASE TO UPPER ON INPUT 
    CTP.MLO EQU     00010000B   MAP LOWER CASE TO UPPER ON OUTPUT 
    CTP.2SB EQU     00001000B   TERMINAL NEEDS TWO STOP BITS 
    CTP.BKM EQU     00000010B   MAP BKSP (UPON INPUT) TO RUBOUT 
    CTP.TAB EQU     00000001B   TERMINAL SUPPORTS TAB CHARACTERS 
 
    The  bits  in  the  I.CONTY  byte  are  used  to describe the console's 
    hardware characteristics.  These bits are all discussed under  the  SET 
    command  section  in the "HDOS Software Reference Manual."  See Chapter 
    3, page 3-19, for details.            
 
    I.CUSOR - Console Cursor Position 
    --------------------------------- 
    I.CUSOR EQU     2           I.CUSOR IS 3RD BYTE 
 
    The I.CUSOR  byte  contains  the current cursor position of the console 
    terminal cursor.  Immediately after a NEW LINE, this byte contains 001. 
                
    I.CONWI - Console Width 
    ----------------------- 
    I.CONWI EQU     3           I.CONWI IS 4TH BYTE 
 
    The  I.CONWI  byte  contains  the current console width.  This value is 
    documented under the SET command in the HDOS Software Reference Manual. 
    See  Chapter  3,  page  3-19, for  details.   In brief, when the cursor 
    reaches this value, HDOS automatically generates a NEW LINE.   You  can 
    effectively disable this option by setting the width to 255. 
     
     
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-23 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .CONSL - Set Console Mode Bits (Octal 6Q)(Cont) 
    =============================================== 
 
    I.CONFL - Console Flags 
    ----------------------- 
    I.CONFL EQU     4           I.CONFL IS 5TH BYTE 
 
    CO.FLG  EQU     00000001B   CTL-O FLAG 
    CO.FLG  EQU     10000000B   CTL-S FLAG 
 
    The  I.CONFL byte contains the current setting of the console CTL-O and 
    CTL-S bytes.  A user program may find it useful to note that  the  user 
    has  typed CTL-O or CTL-S.  In addition, your program may want to clear 
    the CTL-O flag immediately before an input prompt is typed, so that the 
    typing of the prompt is guaranteed.             
                                 
                                     NOTE 
              If the CTL-S flag is set, and your program issues a 
              character to the console via .SCOUT or .PRINT, then 
              your  program will hang up in HDOS, waiting for the 
              CTL-S flag to clear.  There  is  no  way  to  do  a 
              "conditional"  character type out.  Programmers who 
              do not want their programs to hang  up  must  check 
              the  status of the CTL-S flag after every .SCOUT or 
              .PRINT, and trust to luck  that  the  user  doesn't 
              type the CTL-S between the .CONSL and the .SCOUT. 
                          
 
    **      EXAMPLES: 
 
    *       SET CHARACTER MODE, NO ECHO 
      
            MVI     A,I.CSLMD   (A) = BYTE INDEX 
            MVI     B,CSL.ECH+CSL.CHR   SET BOTH BITS 
            MVI     C.CSL.ECH+CSL.CHR   AFFECT BOTH BITS 
            SCALL   .CONSL 
 
    *       SET MAP LOWER CASE TO UPPER, CLEAR BACKSPACE ON 'RUBOUT' KEY 
 
            MVI     A,I.CONTY   (A) = BYTE INDEX 
            MVI     B,CTP.MLI+CTP.MLO   SET MAP LOWER CASE BITS 
            MVI     C,CTP.MLI+CTP.MLO+CTP.BKS   SET MAP, CLEAR BKS 
            SCALL   .CONSL 
 
    *       READ CONSOLE CURSOR POSITION 
            MVI     A,I.CUSOR 
            MVI     C,O         AFFECT NO BITS, (B) MEANINGLESS 
            SCALL   .CONSL      AFFECT NOTHING, JUST GET NEW 
                                (SAME AS OLD) VALUE 
            CPI     1           SEE IF CURSOR OVER COLUMN 1 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-24 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .CONSL - Set Console Mode Bits (Octal 6Q)(Cont) 
    =============================================== 
 
    *       SET CONSOLE WIDTH 
 
            MVI     A,I.CONWI 
            MVI     B,80        SET 80 COLUMNS 
            MVI     C,377Q      AFFECT FULL BYTE 
            SCALL   .CONSL      SET WIDTH 
    ....................................................................... 
 
 
    .CLRCO - Clear Console Buffer (Octal 7Q) 
    ======================================== 
 
    ***     .CLRCO - CLEARS THE CONSOLE BUFFERS. 
    * 
    *       CLRCO CLEARS THE CONSOLE TYPE-AHEAD BUFFER. 
    *       CTL-O AND CTL-S FLAGS ARE ALSO CLEARED. 
    * 
    *       EMTRY   NONE 
    *       EXIT    NONE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    The  .CLRCO  SCALL is  used to clear the console buffer and the console 
    CTL-O and CTL-S flags.  HDOS contains a  "type-ahead"  buffer,  so  the 
    user  may  type  commands  before  a program asks to read them from the 
    console.  All typed text is stored in  this  "type-ahead"  buffer;  the 
    .SCIN  SCALL reads the characters from the buffer.  The special control 
    characters, CTL-A, CTL-B, and CTL-C, are not stored  in  the type-ahead 
    buffer,  but  instead  cause an interrupt to a user service routine (if 
    you set one up via the .CTLC SCALL).  Often a user has typed a  partial 
    line  before  he has typed the CTL-C (or CTL-A, or CTL-B).  You can use 
    the .CLRCO function to clear out any unwanted type-ahead characters. 
               
 
                                     NOTE 
              Issuing  the  .CLRCO  function does not cause a NEW 
              LINE to be sent to the console.  The user is  given 
              no indication that the characters he may have typed 
              in have been discarded.  Your program should  issue 
              a  new prompt immediately after the .CLRCO function  
              to make things clear to the user.              
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-25 
    ================    ==================================       ========== 
 
 
                           PART 5 - RESIDENT SCALLS 
                           ++++++++++++++++++++++++ 
 
    .CLRCO - Clear Console Buffer (Octal 7Q)(Cont) 
    ============================================== 
 
    ***     EXAMPLE: CLEANUP AFTER CTL-C 
 
    *       ASSUME CONTROL PASSES HERE AT CTL-C 
 
    CCHIT   LXI     H,CCHITA    TYPE CTL-C 
            SCALL   .PRINT      ACKNOWLEDGE CTL-C, SETUP NEW LINE 
            SCALL   .CLRCO      CLEAR TYPE-AHEAD 
            . 
            . 
    CCHITA  DB      '^C',212Q   ^C WITH NEW-LINE 
 
 
 
                                     NOTE 
                   PART 6 discusses intercepting CTL-Cs.    
    ....................................................................... 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-26 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .VERS - HDOS Version Number (Octal 11Q) 
    ======================================= 
 
    ***     VERS - RETURN HDOS VERSION NUMBER 
    * 
    *       VERS RETURNS THE HDOS VERSION NUMBER AS A ONE-BYTE 
    *       BCD NUMBER.  A DECIMAL IS ASSUMED BETWEEN THE HIGH 
    *       AND LOW ORDER NYBBLES. 
    *        
    *       ENTRY   NONE 
    *       EXIT    (PSW)       = 'C' CLEAR IF NO ERROR 
    *                              (A) = VERSION NUMBER 
    *                             'C' SET IF ERROR ( VERS < 1.5 ) 
    *                              (A) = ERROR CODE ( EC.ILC ) 
    * 
    *       USES    A,F 
 
 
    Notes: 
    ------ 
    The  .VERS system call returns the current version number of HDOS.  The 
    primary use of this system call is to ascertain under which version  of 
    HDOS  the  program  is  running.   If  the  program determines that the 
    version does not support these new SCALLs, it may exit gracefully  with 
    an  error  message.                                                     
     
    The  version  number is returned as one BCD byte.  That is, version 1.5 
    will return 21, 25Q, or 015H.  Refer to the HDOS  Common  Deck  listing 
    for an example of the definition format. 
     
     
    ***     EXAMPLE: 
 
            SCALL   .VERS 
            JC      BADVER      No version system call 
            CPI     VERS 
            JNZ     BADVER      Invalid version 
            . 
            . 
    BADVER  LXI     B,MESSAG 
            SCALL   .PRINT 
            . 
            . 
    MESSAG  DB      12Q,'This Version of HDOS Does Not Support' 
            DB      'the Required System Calls.',12Q+200Q 
    ....................................................................... 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-27 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .GDA - Get Device Driver Address (Octal 12Q) 
    ============================================ 
 
    ***     GDA - Get Device Driver Address. 
    * 
    *       Entry:  (DE) = Device Name 
    *       Exit:   'C' Clear 
    *                (HL) = Driver address 
    *                (BC) = Table address for this device 
    *               'C' Set if error 
    *                (A) = Error Code 
    *                (HL) = (BC) = 0 
    *       Uses:   A,F,H,L,B,C 
 
    ....................................................................... 
 
    .CRC16 - CRC-16 Is A Block Of Memory (Octal 13Q) 
    ================================================ 
 
    ***     CRC16 - CRC-16 A Block of memory. 
    * 
    *       Entry:  (HL) = BUFFER ADDRESS 
    *               (DE) = INITIAL CRC-16 
    *               (BC) = LENGTH OF DATA 
    *       Exit:   (HL) = ADVANCED PAST BUFFER 
    *               (DE) = UPDATED CRC-16 
    *               (BC) = 0 
    *       Uses:   ALL 
 
    ....................................................................... 
 
 
    .LINK - Process Link Scall (Octal 40Q) 
    ====================================== 
                  
    ***     .LINK - PROCESS LINK SCALL 
    * 
    *       LINK LOADS IN AND RUNS ANOTHER PROGRAM.  THE OPEN FILES 
    *       SYSTEM TABLES, AND STACK ARE NOT DISTURBED. 
    * 
    *       ENTRY   (HL) = ADDRESS OF PROGRAM FILE DESCRIPTOR 
    *       EXIT    TO LINKED PROGRAM, IF OK 
    *                (A) UNCHANGED 
    *                (SP) = VALUE AT 'LINK' SCALL 
    *               TO CALLER IF ERROR 
    *                'C' SET 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-28 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .LINK - Process Link Scall (Octal 40)(Cont) 
    =========================================== 
 
    Notes: 
    ------ 
    The .LINK SCALL is used to pass control to another program.  
 
    **      EXAMPLE: TRANSFER CONTROL TO PROGRAM 'CLEANUP.ABS' 
 
    XFER    MVI     A,-1        CHANNEL -1 OPEN ON LOADED FILE 
 
    *       GET DEVICE WERE LOADED FROM, SO THAT WE CAN  
    *       RUN 'CLEANUP.ABS' FROM THAT SAME DISK 
 
            LXI     D,DEVCODE   AREA FOR DEVCODE 
            LXI     H,BUFFER    PUT NAME INTO SCRATCH AREA 
            SCALL   .NAME 
 
    *       BUILD NAME TO LINK TO ... 
 
            LXI     B,XFERAL    (BC) = NUMBER OF BYTES TO MOVE 
            LXI     D,XFERA      FROM XFERA 
            LXI     H,DEVCODE+3  PUT AFTER DEVICE SPECIFICATION 
            CALL    $MOVE        PUT NAME AFTER DEVICE (ROUTINE 
                                 IN H17 ROM) 
 
    *       CALL PROGRAM 
 
            LXI     H,DEVCODE 
            SCALL   .LINK       TRY TO EXECUTE IT 
            JC      ERROR       FAILED 
 
    XFERA   DB      ':CLEANUP.ABS',0     NAME 
    XFERAL  EQU     *-XFERA     AMOUNT TO MOVE 
 
    DEVCODE DS      3+XFERAL    ROOM FOR ENTIRE FILE SPECIFICATION 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-29 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .CTLC - Set Up Handlers for Control Characters (Octal 41Q) 
    ========================================================== 
 
    ***     .CTLC - SET CONTROL CHARACTER ADDRESS 
    * 
    *       THE .CTLC SCALL IS USED TO SET UP HANDLING FOR 
    *       THE CONTROL CHARACTERS CTL-A, CTL-B, AND CTL-C. 
    * 
    *       A SEPARATE ADDRESS IS SPECIFIABLE FOR EACH CHARACTER. 
    *       IF AN ADDRESS OF 0 IS SPECIFIED, PROCESSING OF THAT 
    *       CHARACTER IS SUSPENDED. 
    * 
    *       THE PROCESS ADDRESS MUST BE >255A. 
    * 
    *       ENTRY   (A) = CONTROL CHARACTER WHOSE PROCESS ADDRESS IS 
    *                     TO CHANGE (CTL-A, CTL-B, OR CTL-C) 
    *               (HL) = NEW ADDRESS (=0 TO CLEAR PROCESSING) 
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    A,F,H,L 
 
    Notes: 
    ------ 
    The .CTLC SCALL allows you to set up interrupt service routines for the 
    handling of CTL-A, CTL-B, and CTL-C.  You may set up a separate service 
    routine for each character.              
     
    When a service routine has been set up, and the specified character has 
    been struck, your routine  will  be  entered  at  interrupt-time,  with 
    interrupts enabled. 
     
    Upon  entry  to  your  routine,  the  registers  B, C, D, E, and L have 
    whatever contents were in them at the time  of  the  control  character 
    interrupt.  The stack contains: 
     
                ((SP)+0) = Return Address into HDOS 
                ((SP)+2) = Interrupted PSW 
                ((SP)+4) = Interrupted PC 
 
    Your  routine  can  do  some  interrupt-time  work  (having  saved  the 
    registers first, of course) and then do a RET to HDOS,  in  which  case 
    HDOS  will  take care of the rest.  Or, if you wish, you may ignore the 
    HDOS  return  address and jump back into your program's command loop or 
    whatever.            
     
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-30 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .CTLC - Set Up Handlers For Control Characters (Octal 41Q)(Cont) 
    ================================================================ 
 
    **      EXAMPLE 1: SETTING AN 'INTERRUPT OCCURRED' FLAG 
 
            LXI     H,CCINT     SET UP CTL-C INTERRUPT PROCESSOR 
            MVI     A,003       (A) = CTLC 
            SCALL   .CTLC       SET UP CTL-C 
            . 
            . 
    LOOP    SCALL   .SCIN 
            JNC     GOTONE      GOT A CHARACTER 
            LDA     CCHIT 
            ANA     A 
            JZ      LOOP        NO CTL-C HIT 
            JMP     PROCC       PROCESS CTL-C 
            . 
            . 
    *       CTL-C CAUSES THIS ROUTINE TO BE ACTIVATED 
 
    CCINT   MVI     A,1         PSW IS ALREADY SAVED 
            STA     CCHIT       SET CC HIT 
            RET                 RETURN TO INTERRUPTED CODE VIA  
    HDOS 
            . 
            . 
    CCHIT   DB      0           SET =1 WHEN CTL-C TYPED 
 
 
    **      EXAMPLE 2: RETURNING CONTROL TO MAIN COMMAND LOOP. 
 
            . 
 
            . 
            . 
            LXI     H,CBHIT 
            MVI     A,002       (A) = CTLB 
            SCALL   .CTLB 
            . 
            . 
    START   LXI     SP,STACK    CLEANUP STACK 
    LOOP    .                   DO WHATEVER WE DO... 
            . 
            . 
    *       ENTERED HERE IF CTL-B HIT 
 
    CBHIT   JMP     START       RESTART COMMAND LOOP 
    ....................................................................... 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-31 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .OPENR - Open File for Read (Octal 42Q) 
    ======================================= 
 
    ***     .OPENR - OPENR SCALL PROCESSOR. 
    * 
    *       OPENR IS CALLED TO OPEN A CHANNEL FOR READ. 
    * 
    *       THE CALLER SUPPLIES A FILE NAME.  A DEFAULT BLOCK 
    *       FOR THE DEVICE AND EXTENSION, AND A CHANNEL NUMBER. 
    * 
    *       DEFAULT BLOCK FORMAT: 
    * 
    *       DB      'DDD'       DEFAULT DEVICE 
    *       DB      'XXX'       DEFAULT EXTENSION 
    * 
    *       ENTRY   (DE) = DEFAULT BLOCK ADDRESS 
    *               (HL) = NAME ADDRESS 
    *               (A) = CHANNEL NUMBER 
    *       EXIT    'C' CLEAR IF OK 
    *               (HL) = ADVANCED PAST FILE NAME 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
      
 
    Notes: 
    ------ 
    Use  the  .OPENR  SCALL to open files for read access.  This means that 
    you may then read the file, but HDOS will not allow any write  requests 
    to  it.   You  may  open  an individual file for read access on as many 
    channels as you wish.           
     
    The  channel  number supplied must be a legal one (i.e., -1 through 5), 
    and must not already have a file open on it.            
     
    HDOS  will not allow any one file to be open for both read and write at 
    the same time, nor may any one file be open for write to more than  one 
    channel.   Attempting  to  do this will cause a "usage conflict" error. 
    This means that you may not open a file via .OPENR  if  it  is  already 
    open for write, or update, on another channel.             
 
    **      EXAMPLE: 
 
    *       OPEN PRE-DETERMINED FILE NAME ON CHANNEL 1 
 
            MVI     A,1         CHANNEL 1 
            LXI     D,DEFALT    POINT TO DEFAULT BLOCK 
            LXI     H,FNAME     POINT TO FILE DESCRIPTOR 
            SCALL   .OPENR      OPEN FOR READ 
            JC      ERROR       SOME ERROR 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-32 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .OPENR - Open File For Read (Octal 42Q)(Cont) 
    ============================================= 
 
            . 
            . 
 
    *       READ FILE NAME FROM USER, OPEN ON CHANNEL 2 
 
            LXI     H,MSGA 
            SCALL   .PRINT      PROMPT HIM 
            LXI     H,BUFFER 
    REA1    SCALL   .SCIN 
            JC      REA1        NO CHARACTER 
            MOV     M,A         STORE IN MEMORY 
            INX     H 
            CPI     012Q        SEE IF NEW LINE (USER HIT CR KEY) 
            JNE     REA1        NOT YET 
            DCX     H                                         
            MVI     M,0         TERMINATE LINE WITH 00, INSTEAD 
                                OF 012Q 
 
            LXI     H,BUFFER 
            LXI     D,DEFALT    POINT TO DEFAULT BLOCK 
            MVI     A,2         CHANNEL 2 
            SCALL   .OPENR      OPEN FILE 
            JC      ERROR 
            . 
            . 
 
    MSGA    DB      12Q,'FILE NAME?',''+200Q 
    DEFALT  DB      'SY0TMP'    DEFAULT DEVICE AND EXTENSION 
    BUFFER  DS      20          FILE NAME BUFFER 
    FNAME   DS      'SY1:MYFILE.NEW',0   FILE NAME FOR CHANNEL 1 
    ....................................................................... 
 
 
    .OPENW - Open File for Write (Octal 43Q) 
    ======================================== 
 
    ***     .OPENW - OPEN FILE FOR WRITE 
    * 
    *       OPENW IS CALLED TO OPEN A CHANNEL FOR WRITE. 
    * 
    *       THE FILE IS ENTERED IN THE CHANNEL TABLE, BUT NOT ON THE 
    *       DISK.  IT WILL BE ENTERED IN THE DIRECTORY AT CLOSE TIME. 
    * 
    *       THE CALLER SUPPLIES A FILE NAME, A DEFAULT BLOCK FOR THE 
    *       DEVICE AND EXTENSION, AND A CHANNEL NUMBER. 
    * 
    *       DEFAULT BLOCK FORMAT: 
    * 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-33 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .OPENW - Open File For Write (Octal 43Q)(Cont) 
    ============================================== 
 
    * 
    *       DB      'DDD'       DEFAULT DEVICE 
    *       DB      'XXX'       DEFAULT EXTENSION 
    * 
    *       ENTRY   (DE) = DEFAULT BLOCK ADDRESS 
    *               (HL) = NAME ADDRESS 
 
    *               (A) = CHANNEL NUMBER 
    *       EXIT    'C' CLEAR IF OK 
    *               (HL) = ADVANCED PAST FILE NAME 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .OPENW SCALL to open a file for writing.  When HDOS processes 
    the .OPENW SCALL, the file is opened with  a  "temporary"  name,  which 
    does  not  appear  in  the disk directory.  When the channel is closed, 
    HDOS will then enter the name in the directory.  If any  previous  file 
    by  that  name  existed, it will be automatically deleted at that time. 
    This procedure has three implications: 
     
         1.   You  cannot  modify  an  existing file by means of the .OPENW 
    SCALL!  .OPENW is intended for creating  new  files  or  replacing  old 
    ones. 
 
         2.   If  you  are replacing an existing file, there must be enough 
    free space to hold both the new version and the old one, as the old one 
    will  not  be  deleted  until the new one is closed.  You might want to 
    manually delete the old file first via .DELETE. 
     
         3.  If you do not properly close the channel, the new file will be 
    lost.  This is intended as a safety factor.  A previously existing file 
    by  that  name  will  not  be  destroyed  until  the  new  one has been 
    successfully completed.  If you should start to write a  file  by  some 
    name,  then  realize  that you already have a useful file by that name, 
    you can CTRL-Z out and still retain the old file. 
     
    HDOS  will not allow any one file to be open for both read and write at 
    the same time, nor may any one file be open for write on more than  one 
    channel.   If you attempt to do this, you will cause a "usage conflict" 
    error.  This means that you cannot open a file with  .OPENW  if  it  is 
    already open for write or update, or if it is open for read.           
     
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-34 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .OPENW - Open File For Write (Octal 43Q)(Cont) 
    ============================================== 
 
    The  examples  shown  above for .READ are applicable to .WRITE as well. 
    The following example illustrates opening a file on a non-disk  device, 
    "AT:."   Note that exactly the same procedure is followed.  In fact, in 
    the above example where the user types in a file name, he may  just  as 
    well have typed in "TT:" or "AT:" for a device specification.            
     
     
    **      EXAMPLE: 
 
            . 
 
            . 
            MVI     A,3         OPEN ON CHANNEL 3 
            LXI     D,DEFALT    POINT TO DEFAULT BLOCK 
            LXI     H,FNAME 
            SCALL   .OPENW 
            JC      ERROR       ERROR 
            . 
            . 
            . 
    DEFALT  DB      'SY0',0,0,0 UNUSED, BUT REQUIRED 
    FNAME   DB      'AT:',0     NAME AND EXTENSION MEANINGLESS 
    ....................................................................... 
 
 
    .OPENU - Open File For Update (Octal 44Q) 
    ========================================= 
 
    ***     .OPENU - OPEN FILE FOR UPDATE 
    * 
    *       OPENU IS CALLED TO OPEN A CHANNEL FOR UPDATE. 
    * 
    *       UPDATE IS JUST LIKE READ, BUT THE FILE MAY BE WRITTEN 
    *       ALSO. 
    * 
    *       THE CALLER SUPPLIES A FILE NAME.  A DEFAULT BLOCK FOR THE 
    *       DEVICE AND EXTENSION, AND A CHANNEL NUMBER. 
    * 
    *       DEFAULT BLOCK FORMAT: 
    * 
    *       DB      'DDD'       DEFAULT DEVICE 
    *       DB      'XXX'       DEFAULT EXTENSION 
    * 
    *       ENTRY   (DE) = DEFAULT BLOCK ADDRESS 
    *               (HL) = NAME ADDRESS 
    *               (A) = CHANNEL NUMBER 
    * 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-35 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .OPENU - Open File For Update (Octal 44Q)(Cont) 
    =============================================== 
 
    * 
    *       EXIT    'C' CLEAR IF OK 
    *               (HL) = ADVANCED PAST FILE NAME 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  .OPENU  to  open  a file for update.  This means that a previously 
    existing disk file is opened for both read and write.  When opened, the 
    file is positioned at sector zero.            
     
    If  the  channel  is positioned over an existing sector and you issue a 
    .WRITE,  then that  sector  will  be  rewritten.   If  the  channel  is 
    positioned  at the end of the file, the file will be extended.  You can 
    use the .POSIT SCALL to position the channel at the end  of  the  file. 
    Thus,  the  .OPENU  and  .POSIT  SCALL combination allows you to append 
    information onto an existing file.             
 
     
                                     NOTE 
              Always  close  a file  that  you opened for update. 
              Failure to do so causes undefined results.  Failing 
              to  close  the  channel  properly  can  also  cause 
              "orphaned" sectors, which are not being used  by  a 
              file,  nor  are  they  in the free list.  HDOS will 
              automatically recover these orphans when  the  disk 
              is  next  mounted  or booted and return them to the 
              free list.             
 
    The  examples  used  for .OPENR on page 13-31 also apply to .OPENU.  Of 
    course, there are some differences. 
     
         1.   The file opened must already exist.             
 
         2.   The  file  must  reside on a mass storage device which can be 
    both read and written (i.e., not write-protected). 
    ....................................................................... 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-36 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .OPENC - Open Contiguous File for Write (Octal 45Q) 
    ==================================================== 
 
    ***     .OPENC - OPEN CONTIGUOUS FILE FOR WRITE 
    * 
    *       OPENC IS CALLED TO OPEN A CHANNEL FOR WRITE. 
    * 
    *       THE FILE IS ENTERED IN THE CHANNEL TABLE, BUT NOT ON THE 
    *       DISK.  IT WILL BE ENTERED IN THE DIRECTORY AT CLOSE TIME. 
    * 
    *       THE CALLER SUPPLIES A FILE NAME, A DEFAULT BLOCK FOR THE  
    *       DEVICE AND EXTENSION, AND A CHANNEL NUMBER. 
    * 
    *       DEFAULT BLOCK FORMAT: 
    * 
    *       DB      'DDD'           DEFAULT DEVICE 
    *       DB      'XXX'           DEFAULT EXTENSION 
    * 
    *       ENTRY   BC   = SECTOR COUNT 
    *               (DE) = DEFAULT BLOCK ADDRESS 
    *               (HL) = NAME ADDRESS 
    *               A    = CHANNEL NUMBER 
    *       EXIT    'C' CLEAR IF OK 
    *               (HL) = ADVANCED PAST FILE NAME 
    *               'C' SET IF ERROR 
    *               (A)  = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    The  .OPENC  SCALL  is used in a manner similar to the .OPENW SCALL, in 
    that it is used to open a file for output.  The difference is that HDOS 
    will  insure  that  the  file  is  written  with  all  disk  sectors in 
    contiguous order.  If there are not enough contiguous sectors available 
    on  the diskette (due to fragmentation from prior creation and deletion 
    of files), the .OPENC SCALL will fail.  Naturally, HDOS  will  need  to 
    know  in  advance  exactly  how  big  the  file will be, so that it can 
    determine if a large enough contiguous area  exists  on  the  diskette. 
    The  file  size  (in sectors) is passed to HDOS in register pair BC for 
    the .OPENC SCALL, whereas the .OPENW SCALL does not care what value  is 
    present in register pair BC when it is called.  This is one of the very 
    useful undocumented SCALLs.  HDOS primarily uses it for the creation of 
    the  operating  system  files during SYSGEN, but you can use it anytime 
    you want to insure that the files you create occupy contiguous sectors, 
    as  long  as  you  accept the restrictions that this imposes -- (1) you 
    need to know the file size in advance, and (2) you may fail to open the 
    file,  even  if  there  is room on the diskette, if there is not enough 
    CONTIGUOUS space.  
    ....................................................................... 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-37 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .CLOSE - Close Channel (Octal 46Q) 
    ================================== 
 
    ***     .CLOSE - PROCESS CLOSE SCALL. 
    *   
    *       CLOSE PROCESSING DEPENDS UPON THE FILE AND DEVICE TYPE. 
    * 
    *       FOR A WRITE/DIRECTORY TYPE, THE DIRECTORY IS SEARCHED 
    *       FOR A PREVIOUS ENTRY.  IF FOUND, IT IS DELETED.  THE NEW 
    *       ENTRY IS THEN INSERTED. 
    * 
    *       FOR A UPDATE/DIRECTORY TYPE, THE PREVIOUS ENTRY IS UPDATED. 
    * 
    *       FOR ALL FILES, THE DRIVER IS CALLED WITH THE DC.CLO 
    *       FUNCTION.  THE CHANNEL IS RELEASED. 
    * 
    *       ENTRY   (A) = CHANNEL # 
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR 
    *                (A) = CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .CLOSE  SCALL  to  close a channel when you are done with it. 
    Always close all channels your program has opened, with two exceptions: 
     
         1.   HDOS enters your program with channel -1 open on your program 
    load file.  If you do not use this channel, you need not  close  it  -- 
    HDOS will perform the close on it automatically. 
     
         2.   Scratch  files  which  were  created via .OPENW, which are no 
    longer needed, need not be closed.  See ".CLEAR," on page 13-49. 
 
 
    **      EXAMPLE: 
 
            . 
            . 
            MVI     A,1 
            SCALL   .CLOSE      CLOSE CHANNEL 1 
            JC      ERROR 
            MVI     A,2 
            SCALL   .CLOSE      CLOSE CHANNEL 2 
            JC      ERROR       IF ERROR 
    ....................................................................... 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-38 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .POSIT - Position Disk File (Octal 47Q) 
    ======================================= 
 
    ***     .POSIT - POSITION FILE. 
    * 
    *       LXI     B,POSITION 
    *       MVI     A,CHANNEL NUMBER 
    *       SCALL   .POSIT 
    * 
    *       ENTRY   (A) = CHANNEL NUMBER 
    *               (BC) = SECTOR NUMBER TO POSITION BEFORE 
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *                (A) = EC.EOF IF OFF END 
    *                 (BC) = SECTORS UNSKIPPED (REMAINDER OF COUNT) 
    *                 FILE POSITIONED AT EOF 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use the .POSIT SCALL to position the "channel cursor."  Since each read 
    or write on a file, via a channel, must transfer in sector  (or  multi- 
    sector)  lots, the channel's current position in the file is simply the 
    logical  sector  number next to be read or written.  This sector number 
    has no relation to actual physical sector numbers.  The first sector in 
    a  file  is  sector zero, the next is sector 1, the last sector in an n 
    sector file is n-1. 
     
                                     NOTE 
              The  .POSIT  SCALL  positions  the  channel  (file) 
              before the specified sector.  Thus, a .POSIT  to  0 
              positions  the  channel  before sector 0, so that a 
              one-sector read will return sector 0.  To  position 
              the  channel  at  the  end  of a file, .POSIT to n, 
              where n is the number of sectors in the  file.   If 
              you  do  not  know  how long the file is, .POSIT to 
              65535 (377377A), verify that an  EC.EOF  error  was 
              flagged,  and  then compute the file size as SIZE = 
              65535-(BC).             
               
 
    Thus,  when a file is first opened via .OPENR, .OPENW, or .OPENU, it is 
    positioned at sector 0.  The first read or write of m sectors will read 
    or  write  sectors  0 through m-1.  This is a normal sequential access. 
    For example, when reading, each one-sector read will  return  the  next 
    sector in the file. 
     
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-39 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .POSIT - Position Disk File (Octal 47Q) 
    ======================================= 
 
    You can use the .POSIT SCALL to set this "sector cursor" at any spot in 
    the file.  Positioning  a  file  at  sector  0  is  the  equivalent  of 
    rewinding  it.   A  file  may  be positioned at its end, so a read will 
    return end-of-file, and a write will extend the file.  It  may  not  be 
    positioned  after  the  last  sector +1  in  an  attempt  to extend the 
    file.  Files may be extended only via .WRITE SCALLs.            
     
    The  .POSIT SCALL strengthens the similarity between .OPENW and .OPENU. 
    If you have opened a file via .OPENW, you may use  .POSIT  to  position 
    the  channel  cursor to allow you to rewrite any sector in the file, at 
    any time.  If you then wish to add some more sectors to  the  end,  you 
    can  position  to the end of the file, and .WRITE some more.  Also note 
    that you can change the value of any byte or bytes in a file  open  for 
    write  or  update  by positioning before the proper sector, reading the 
    sector, modifying it, repositioning it  over  again,  and  writing  the 
    sector back.           
     
     
    **      EXAMPLE 1: REWINDING A FILE AFTER READING IT 
      
            <OPEN AND READ A FILE ON CHANNEL 1> 
 
            . 
            . 
            . 
            LXI     B,0         BEFORE SECTOR 0 
            MVI     A,1         CHANNEL 1 
            SCALL   .POSIT      POSITION 
            JC      ERROR 
 
            <READ THE FILE OVER AGAIN> 
 
    **      EXAMPLE 2: REPLACING A SECTOR IN A FILE BEING WRITTEN 
 
            <OPEN THE FILE VIA .OPENW > 
            MVI     A,2         CHANNEL 2 
            LXI     B,256*10    WRITE 10 SECTORS 
            LXI     D,BUFFER    FROM BUFFER 
            SCALL   .WRITE 
            JC      ERROR 
            LXI     B,1         PREPARE TO RE-WRITE 2ND SECTOR IN FILE 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-40 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .POSIT - Position Disk File (Octal 47Q)(Cont) 
    ============================================= 
 
            MVI     A,2 
            SCALL   .POSIT 
            JC      ERROR 
            MVI     A,2         CHANNEL 2 
            LXI     B,256 
            LXI     D,BUFFER2 
            SCALL   .WRITE      WRITE DIFFERENT DATA 
            MVI     A,2         CHANNEL 2 
            LXI     B,-1        POSITION AT END OF FILE 
            SCALL   .POSIT      WILL RETURN EOF ERROR 
            CPI     EC.EOF 
            JNE     ERROR       OTHER ERROR 
 
            < FURTHER WRITES WILL APPEND TO END OF FILE > 
 
    **      EXAMPLE 3: INCREMENTING BYTE 7423 IN FILE "DATA.RAW" 
 
            MVI     A,0         OPEN ON CHANNEL 0 
            LXI     D,DEFALT     
            LXI     H,FNAME 
            SCALL   .OPENU      OPEN FOR UPDATE 
            JC      ERROR 
 
    *       POSITION FOR READ 
 
            LXI     H,7423      (H) = SECTOR NUMBER 
                                (L) = BYTE INDEX 
            MOV     C,H 
            MVI     B,0         (BC) = SECTOR NUMBER 
            PUSH    H           SAVE (HL) 
            MVI     A,0 
            SCALL   .POSIT      POSITION 
            JC      ERROR 
 
 
    *       READ SECTOR INTO WORK AREA 
 
            MVI     A,0         (A) = CHANNEL 
            LXI     B,256 
            LXI     D,BUFFER 
            SCALL   .READ 
            JC      ERROR 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-41 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .POSIT - Position Disk File (Octal 47Q)(Cont) 
    ============================================= 
 
    *       INCREMENT BYTE 
 
            POP     B           (B) = SECTOR, (C) = BYTE INDEX 
            LXI     H,BUFFER 
            MOV     A,C         (A) = BYTE INDEX 
            CALL    $DADA       ADD (A) INTO (HL) (ROUTINE IN 
                                H17 ROM) 
            INR     M           INCREMENT BYTE IN BUFFER 
 
    *       POSITION FOR RE-WRITE 
 
            MOV     C,B 
            MVI     B,0         (BC) = SECTOR NUMBER 
            MVI     A,0 
            SCALL   .POSIT 
            JC      ERROR 
 
    *       WRITE BACK OUT 
 
            MVI     A,0         (A) = CHANNEL 
            LXI     B,256 
            LXI     D,BUFFER 
            SCALL   .WRITE 
            JC      ERROR 
 
    *       CLOSE FILE 
 
            MVI     A,0 
            SCALL   .CLOSE 
            JC      ERROR 
            . 
            . 
            . 
    DEFALT  DB      'SY0',0,0,0 
    FNAME   DB      'SY0:DATA.RAW',0 
    BUFFER  DS      256 
 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-42 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .DELETE - Delete Disk File (Octal 50Q) 
    ====================================== 
 
    **      DELETE - PROCESS DELETE COMMAND. 
    *                            
    *       ENTRY   (HL) = NAME STRING 
    *               (DE) = DEFAULT BLOCK 
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR 
    *                (A) = CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use the .DELETE SCALL to delete a disk file.  The format of the call is 
    similar to that of .OPENW, except that no channel number is  specified. 
    Note that deleting a file is considered to be a form of writing, so the 
    file must not be open on any channel for reading or  writing,  as  that 
    would cause a "file usage conflict."             
 
 
    **      EXAMPLE: 
 
            DELETE FILE "SY0:TEMP.TMP" 
 
    DELTEMP LXI     H,NAME 
            LXI     D,DEFALT 
            SCALL   .DELETE 
            JC      ERROR 
            . 
            . 
    NAME    DB      'TEMP.TMP',0     FILE NAME 
    DEFALT  DB      'SY0XXX'         DEFAULT DEVICE, DEFAULT EXTENSION 
    ....................................................................... 
 
    .RENAME - Rename A File (Octal 51Q) 
    =================================== 
 
    ***     .RENAME - PROCESS RENAME FUNCTION. 
    * 
    *       RENAME RENAMES A FILE ON A DIRECTORY DEVICE. 
    * 
    *       * NOTE * RENAME DOES NOT CHECK TO SEE IF THE NEW NAME 
    *       ALREADY EXISTS--THIS IS THE RESPONSIBILITY OF THE CALLER! 
    * 
    *       ENTRY   (HL) = NAME STRING 
    *               (DE) = DEFAULT BLOCK 
    *               (BE) = NEW NAME STRING 
    * 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-43 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .RENAME - Rename A File (Octal 51Q)(Cont) 
    ========================================= 
 
    * 
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR                                   
    *                (A) = CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use the .RENAME SCALL to change the name of a file on disk.  A renaming 
    is considered a form of writing on a file, so the same "usage conflict" 
    restrictions  apply: the file to be renamed must not be open on another 
    channel.  Two other restrictions exist: 
     
         1.   A  file  with  the  "new name" must not already exist on that 
    device.  .RENAME, unfortunately, does not check this for  you,  so  you 
    must  check  yourself  by  trying  to .OPENR  the file before doing the 
    .RENAME.  Also, .RENAME will allow you to designate two files on a disk 
    with the same name.  The results of this will be disasterous. 
     
         2.   The "name string" and the "new name string" must both specify 
    the  same  device  (SY0:,   SY1:,   SY2:,   DK0:,   DK1:,   or   DK2:). 
    Alternatively,  both files may use the default device, which may be any 
    valid HDOS disk drive name. 
 
     
                                     NOTE 
              The default block device and  extension apply  only 
              to the old file name, not to the new name.  The new 
              file   name  must  be  fully  specified,  including 
              device, file name, and extension, if there is to be 
              one.             
 
 
    **      EXAMPLE: 
 
    *       RENAME 'SY1:SORT.ASM' TO 'SY1:SORT.BAK' 
 
            LXI     B,NEWNAM 
            LXI     D,DEFALT 
            LXI     H,OLDNAM 
            SCALL   .RENAME 
            JC      ERROR 
            . 
            . 
    NEWNAM  DB      'SY1:SORT.BAK',0     NO DEFAULTS ALLOWED 
    OLDNAM  DB      'SORT',0             USE DEFAULT DEVICE AND EXTENSION 
    DEFALT  DB      'SY1ASM',0           DEFAULT DEVICE AND EXTENSION 
    ....................................................................... 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-44 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .SETTOP - Set Top of User Memory (Octal 52Q) 
    ============================================ 
 
    ***     .SETTOP - SET TOP OF USER MEMORY 
    * 
    *       SETTOP IS CALLED TO NOTIFY THE SYSTEM OF A NEW 
    *       MEMORY LIMIT ADDRESS.  IF NECESSARY, THE OVERLAYS 
    *       WILL BE UNLOADED. 
    * 
    *       ENTRY   (HL) = NEW ADDRESS 
    *       EXIT    (PSW) = 'C' CLEAR IF OK 
    *                       'C' SET IF TOO HIGH 
    *                        (A) = ERROR CODE 
    *                        (HL) = MAXIMUM ADDRESS 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .SETTOP  SCALL to set the top of the user memory area.  Since 
    HDOS sets the top of memory to the last address in your  program,  most 
    programs  do not need to use .SETTOP.  Programs which need large buffer 
    areas should not declare them with DS statements, since  the  generated 
    binary file will be excessively large.  Instead, they should define the 
    areas via EQU statements, and use the  .SETTOP  SCALL  to  request  the 
    needed space from HDOS.            
 
    Note that by requesting the impossible (65535 bytes), you can determine 
    the actual  maximum  memory  available  from  the  error  return.   The 
    following  information  regarding  overlays  pertains  to  HDOS 2.0 and 
    below.  [If you want to request maximum memory, but avoid swapping  the 
    overlays,  the  approved  method  is  to  first load both overlays (see 
    .LOADO for details) and then make the memory request.] 
     
    **      EXAMPLE 1: GETTING MAXIMUM MEMORY WITHOUT SWAPPING 
 
            MVI     A,OVL0      LOAD OVERLAY 0 
            SCALL   .LOADO 
            JC      ERROR 
    * 
            MVI     A,OVL1      LOAD OVERLAY 1 
            SCALL   .LOADO 
            JC      ERROR 
    * 
            LXI     H, -1       CAUSE DELIBERATE ERROR 
            SCALL   .SETTOP     .. TO GET MAX IN (HL) 
            LXI     D,-10       SUBTRACT 'SLOP' FACTOR 
            DAD     D 
            SHLD    MAXMEM      SAVE MAX MEMORY 
            SCALL   .SETTOP     NOW ASK FOR THE MAX ALLOWABLE 
            JC      ERROR       SHOULD NOT HAPPEN 
      



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-45 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .SETTOP - Set Top Of User Memory (Octal 52Q)(Cont) 
    ================================================== 
            . 
            . 
    MAXMEM  DS      2           MEMORY LIMIT 
 
                                                   
    **      EXAMPLE 2: GETTING ABSOLUTE MAXIMUM MEMORY 
    *                  ( ENTER HERE WITHOUT LOADING OVERLAYS ) 
 
            LXI     H,-1        IMPOSSIBLE AMOUNT 
            SCALL   .SETTOP     WILL FAIL ... 
            SHLD    MAXMEM      SAVE RESULT 
            SCALL   .SETTOP     ASK FOR MAX 
            JC      ERROR       SHOULD NOT HAPPEN 
            . 
            . 
    MAXMEM  DS      2           MEMORY LIMIT 
 
    *       REMEMBER IF THE .SETTOP IS SUCCESSFUL, 
    *       THE CONTENTS OF (HL) ARE MEANINGLESS. 
    ....................................................................... 
 
    .DECODE - Decode File Name (Octal 53Q) 
    ====================================== 
 
    ***     .DECODE - PROCESS DECODE SCALL. 
    * 
    *       DECODE DECODES THE SUPPLIED FILE NAME 
    *       INTO A BLOCK IN THE FORM: 
    * 
    *       DS      1           RESERVED 
    *       DS      2           DEVICE NAME 
    *       DS      1           DEVICE UNIT 
    *       DS      8           FILE NAME 
    *       DS      3           FILE EXTENSION 
    *       DS      4           RESERVED 
    * 
    *       ENTRY   (BC) = AREA FOR TABLE TO BE WRITTEN 
    *               (DE) = DEFAULT LIST 
    *               (HL) = NAME ADDRESS  
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
      
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-46 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .DECODE - Decode File Name (Octal 53Q)(Cont) 
    ============================================ 
 
    Notes: 
    ------ 
    Use  the  .DECODE  SCALL  to  decode  an  ASCII  file descriptor into a 
    formatted block.  The fields in the block  contain  the  device,  unit, 
    name,  and extension values from the file descriptor.  The fields are 0 
    filled.  This function is useful for programs which wish to in some way 
    examine the file name, extension, or device specification without going 
    to the work of manually cracking the file descriptor.  For example,  if 
    your  program  reads  a file descriptor from the console, then wants to 
    know if the extension is "ABC," it might use the .DECODE SCALL to crack 
    out the extension field.             
     
    **      EXAMPLE: SEE IF USER TYPED DEVICE CODE 'TT:' 
 
            < READ LINE FROM CONSOLE INTO *LINE* > 
 
            LXI     B,BUFFER 
            LXI     D,DEFALT 
            LXI     H,LINE 
            SCALL   .DECODE     DECODE SUPPLIED FILE NAME 
            JC      ERROR       ILLEGAL NAME 
            LXI     B,3         COMPARE 3 BYTES 
            LXI     D,BUFFER+1  (DE) = SUPPLIED DEVICE NAME 
            LXI     H,TTSTR 
            CALL    #COMP       COMPARE STRINGS (ROUTINE 
                                IN H17 ROM) 
            JNE     NOTTT       FILE NOT ON TT: 
            JMP     GOTTT       NAME DID SPECIFY TT: 
 
    BUFFER  DS      19          ROOM FOR REPLY DATA 
    LINE    DS      80          USER SUPPLIED FILE NAME 
    TTSTR   DB      'TT',0      NAME AND UNIT IF DEVICE WAS 'TT:' 
    ....................................................................... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-47 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .NAME - Get File Name from Channel (Octal 54Q) 
    ============================================== 
 
    ***     .NAME - PROCESS NAME SCALL. 
    * 
    *        THE NAME SCALL RETURNS THE DEVICE, FILE NAME, AND 
    *        FILE EXTENSION OF AN OPEN CHANNEL. 
    * 
    *        THE INFORMATION IS OBTAINED FROM THE CHANNEL TABLE. 
    *        WHICH WAS SET UP UPON FILE OPEN. 
    * 
    *        ENTRY  (A) = CHANNEL NUMBER 
    *               (DE) = ADDRESS FOR DEVICE AND EXTENSION 
    *                      (DEFAULT BLOCK FORMAT) 
    *               (HL) = ADDRESS FOR NAME (8 CHARACTERS 
    *                      FOLLOWED BY 00 BYTE) 
    *       EXIT    'C' CLEAR IF OK 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the .NAME SCALL to recall the name which was supplied to HDOS when 
    the channel was opened.  This is mainly used when an error  message  is 
    prepared after HDOS has flagged an error on a channel operation.        
     
    **      EXAMPLE: ERROR PRINTING PROGRAM. 
    * 
    *       THIS ROUTINE PRINTS AN ERROR MESSAGE FOR A  
    *       FILE OPERATION GONE WRONG. 
    * 
    *       ENTRY   (A) = ERROR NUMBER 
    *               (CURCHAN) = CHANNEL NUMBER USED IN 
    *                           FAILED OPERATION 
    *       EXIT    ... 
 
    ERROR   PUSH    PSW         SAVE ERROR CODE 
            LXI     H,ERRORA 
            SCALL   .PRINT      PRINT 'ERROR - ' 
            POP     PSW         (A) = CODE 
            MVI     H,07Q       BELL AFTER ERROR CODE 
            SCALL   .ERROR      PRINT ERROR 
            LXI     H,ERRORB 
            SCALL   .PRINT      PRINT ' ON FILE ' 
            LDA     CURCHAN     (A) = CHANNEL NUMBER 
            LXI     D,ERRDFB    (DE) = ADDRESS FOR DEVICE AND EXTENSION 
 
            LXI     H,ERRNAM    (HL) = ADDRESS FOR NAME 
            SCALL   .NAME       GET FILE NAME 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE        PAGE 13-48 
    ================    =================================        ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .NAME - Get File Name From Channel (Octal 54Q)(Cont) 
    ==================================================== 
 
    *       MANIPULATE DEVICE, NAME, AND EXTENSION INTO 
    *       PRESENTABLE FORMAT, AND PRINT ON CONSOLE 
 
            . 
            . 
            . 
    ERRORA  DB      D12Q,'ERROR -',' '+200Q 
    ERRORB  DB      ' ON FILE ',' '200Q 
    ERRDFB  DS      6               DEVICE AND EXTENSION FOR BAD FILE 
    ERRNAM  DS      9               NAME FOR BAD FILE 
    .......................................................................  
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-49 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .CLEAR - Clear I/O Channel (Octal 55Q) 
    ====================================== 
 
    ***     CLEAR - CLEAR I/O CHANNEL. 
    *        
    *       CLEAR IS CALLED TO CLEAR AN I/O CHANNEL.  IF THE 
    *       CHANNEL IS CLOSED, NO ACTION IS PERFORMED.  IF THE 
    *       CHANNEL IS OPEN, IT IS FLAGGED CLOSED.  THE RESULTS 
    *       OF THIS OPERATION DEPEND UPON THE TYPE OF FILE: 
    * 
    *       OPEN FOR                ACTION 
    * 
    *       READ                SAME AS .CLOSE 
    * 
    *       WRITE               FILE IS FORGOTTEN.  ANY WRITTEN 
    *                           DISK BLOCKS ARE RESTORED TO THE 
    *                           FREE POOL. 
    * 
    *       UPDATE              REPLACED SECTORS REMAIN REPLACED. 
    *                           APPENDED SECTORS ARE LOST UNTIL 
    *                           NEXT BOOT.  FILE STARY AT PREVIOUS 
    *                           LENGTH. 
    * 
    *       THE DEVICE DRIVER IS NOT INFORMED OF THE CLOSING. 
    * 
    *       SCALL   .CLEAR 
    * 
    *       ENTRY   (A) = CHANNEL NUMBER 
    *       EXIT    'C' CLEAR IS OK 
    *               'C' SET IF ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .CLEAR  SCALL  to  free up a channel without closing it.  The 
    actions discussed above merely document  the  current  results  of  the 
    .CLEAR  SCALL;  they may not stay the same for future releases of HDOS. 
    There is only one supported use of the .CLEAR SCALL, which is to delete 
    temp  files.   A temp work file is created by means of an .OPENW SCALL. 
    You  need not worry about name conflicts, as any  preexisting file with 
    the  same file name will not be disturbed by the .OPENW.  However, when 
    you are done, you do not want to .CLOSE then .DELETE  the  file,  since 
    this  would  destroy  any  preexisting file by that name.  In that case 
    use .CLEAR on the channel to free up the channel and release  the  used 
    disk sectors.  
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-50 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .CLEAR - Clear I/O Channel (Octal 55Q)(Cont) 
    ============================================ 
 
    **      EXAMPLE: CREATING, USING, AND DESTROYING A SCRATCH FILE 
 
            MVI     A,0         USE CHANNEL 0 
            LXI     D,DEFALT 
            LXI     H,SCRNAME 
            SCALL   .OPENW      OPEN TO SCRATCH FILE 
            JC      ERROR 
            . 
            . 
            < WRITE DATA ON SCRATCH FILE > 
            . 
            . 
            MVI     A,0 
            LXI     B,0 
            SCALL   .POSIT      REWIND SCRATCH FILE 
            . 
            . 
            < READ DATA FROM SCRATCH FILE > 
            . 
            . 
            MVI     A,0 
            SCALL   .CLEAR      DESTROY SCRATCH FILE 
            . 
            . 
    SCRNAME DB      'SY0:TEMP.TMP',0     ANY PRE-EXISTING TEMP.TMP 
                                         NOT AFFECTED 
    ....................................................................... 
 
 
 
    .CLEARA - Clear All Channels Except -1 (Octal 56Q) 
    ================================================== 
 
    ***     .CLEARA - CLEAR ALL CHANNELS. 
    * 
    *       CLEARA PERFORMS THE .CLEAR ACTION FOR ALL EXISTING CHANNELS, 
    *       EXCEPT CHANNEL 377Q, THE LOAD IMAGE CHANNEL. 
    * 
    *       ENTRY   NONE 
    *       EXIT    NONE 
    *       USES    ALL 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-51 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .CLEARA - Clear All Channels Except -1 (Octal 56Q)(Cont) 
    ======================================================== 
 
    Notes: 
    ------ 
    The  .CLEARA  SCALL  is equivalent to calling the .CLEAR SCALL once for 
    every valid HDOS channel except for channel 377Q.  If you had  multiple 
    temporary  files  open simultaneously and wanted to scratch all of them 
    at once, this SCALL could be used  as  a  convenience.   Refer  to  the 
    section  on  .CLEAR  for  details  on  the actions taken by HDOS when a 
    channel is .CLEARed as opposed to being .CLOSEed.  There is  no  reason 
    to  avoid  the  use  of  this  SCALL, since it is fully functional.  It 
    appears to this author that the programmers working  on  HDOS  2.0  had 
    some plans to change the action of the .CLEAR SCALL in a future release 
    of HDOS, and they chose not to document the .CLEARA  SCALL  because  it 
    might also change.  Obviously, .CLEARA is only a 'convenience' for rare 
    situations when you have  multiple  temporary  output  files  open  (or 
    multiple files open for reading).  
 
    ....................................................................... 
 
 
    .ERROR - Print Error Message (Octal 57Q) 
    ======================================== 
 
    *       .ERROR - PRINT ERROR MESSAGE. 
    * 
    *       ERROR IS CALLED TO PRINT AN ERROR MESSAGE. 
    * 
    *       THE HDOS SYSTEM RETURNS ERROR CODE NUMBERS WHEN 
    *       IT DETECTS AN ERROR.  THE ERROR FUNCTION MAY BE 
    *       USED TO TYPE AN ALPHABETICAL EXPLANATION OF THE ERROR. 
    * 
    *       THE ERRORS ARE STORED IN THE FILE 'ERRORMSG.SYS' 
    *       ON THE SYSTEM DISK, ONE MESSAGE PER LINE. 
    *       THE LINES LOOK LIKE: 
    * 
    *       NNNTEXT 
    * 
    *       FOR EXAMPLE: 
    * 
    *       002END OF MEDIA 
    * 
    *       IF THE ERROR MESSAGE FILE CANNOT BE READ, OR THE  
    *       MESSAGE DOES NOT APPEAR, THE ERROR IS TYPED AS 
    * 
    *       'SYSTEM ERROR # NNN' 
    * 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-52 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .ERROR - Print Error Message (Octal 57Q)(Cont) 
    ============================================== 
 
    * 
    *       ENTRY   (A) = ERROR CODE 
    *               (H) = TRAILING CHARACTER (TYPED AFTER MESSAGE) 
    *       EXIT    NONE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .ERROR  SCALL to look up an error message in the system error 
    message file "ERRORMSG.SYS."  Since HDOS returns all error messages  as 
    numbers, this function allows you to easily inform the user in English, 
    and tell him just what went wrong.   Also  note  that  if  you  have  a 
    program which needs to generate a large number of messages, you can add 
    them to "ERRORMSG.SYS."  Of course, this is not a supported use of  the 
    .ERROR SCALL and may not work with future HDOS releases.         
     
    An  example  of  the use of the .ERROR SCALL is shown in the example of 
    the .NAME SCALL.           
    ....................................................................... 
 
 
    .CHFLG - Change File Flag(s) (Octal 60Q) 
    ======================================== 
 
    ***     .CHFLG - CHANGE FILE FLAGS. 
    * 
    *       CHFLG IS CALLED TO CHANGE THE FILE DESCRIPTION FLAGS 
    *       FOR A MASS STORAGE FILE.  ONLY CERTAIN FLAGS MAY BE 
    *       CHANGED: 
    * 
    *       FLAG    BIT         MEANING 
    * 
    *       DIF.SYS 200Q        IS SYSTEM FILE 
    *       DIF.LOC 100Q        LOCKED FOR CHANGE (SETABLE ONLY) 
    *       DIF.WP  040Q        IS WRITE PROTECTED 
    * 
    *       CHFLG WILL REFUSE THE OPERATION IF THE DIF.LOC BIT IS SET. 
    *        
    *       ENTRY   (B) = NEW BIT VALUES 
    *               (C) = CHANGE MASK (BIT SET FOR EVERY BIT 
    *                     TO REPLACE FROM (B)) 
    *               (DE) = DEFAULT BLOCK ADDRESS 
    *               (HL) = FILE NAME 
 
    * 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-53 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .CHFLG - Change File Flag(s) (Octal 60Q)(Cont) 
    ============================================== 
 
    * 
    *       EXIT    'C' CLEAR, CHANGE DONE 
    *               'C' SET, ERROR 
    *                (A) = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .CHFLG  SCALL to change the attribute flags on a file.  These 
    flags are discussed in detail in  the  HEATH  HDOS  Software  Reference 
    Manual,  Chapter 4, SYSCMD/Plus, page 4-11.   The arguments are similar 
    to the .OPEN SCALLs.  Note that a two-byte "bits to  effect"  and  "new 
    bit  values"  scheme  is used, just as described earlier for the .CONSL 
    SCALL.             
     
                                     NOTE 
              You  can  use  the  .CHFLG SCALL to set the DIF.LOC 
              (LOCKed) flag on a file, but you cannot use  it  to 
              clear  the  flag.  Once the DIF.LOC flag is set, no 
              other flag  changes  may  be  made,  including  the 
              clearing  of  the DIF.LOC flag.  If the file is not 
              write-protected (DIF.WP not set),  you can copy  it 
              to  a temp file, delete the old LOCKed version, and 
              rename the temp file back.  If  the  file  is  both 
              LOCKed   and  write-protected,  then  it  is  there 
              "forever" or until the disk is reinitialized.      
 
 
    **      EXAMPLE: 
    * 
    *       WRITE PROTECT 'OUTPUT.DAT' 
      
    WRIPRO  MVI     B,DIF.WP    EFFECT WRITE PROTECT 
            MVI     C,DIF.WP    SET WRITE PROTECT 
            LXI     D,DEFALT 
            LXI     H,NAME 
            SCALL   .CHFLG 
            JC      ERROR       ERROR 
            . 
            . 
            . 
    NAME    DB      'SY1:OUTPUT.DAT',0     FILE NAME 
    ....................................................................... 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-54 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .DISMT - Flag System Disk As Dismounted (61Q) 
    ============================================= 
 
    ***     .DISMT - FLAG SYSTEM DISK DISMOUNTED 
    * 
    *       THE DISMT FUNCTION IS USED WHEN THE SYSTEM DISK IS  
    *       ABOUT TO BE DISMOUNTED.  ANY HDOS FUNCTIONS WHICH 
    *       REQUIRE SYSTEM FILES WILL BE TREATED AS FATAL 
    *       SYSTEM ERRORS. 
    * 
    *       ENTRY   None                                       
    *       EXIT    S.SYSM = LWA OF FREE SPACE FOR USER 
    *               (HL) = (S.SYSM)             
    *       USES    ALL 
    ....................................................................... 
     
 
    .LOADD - Load Device Driver (Octal 62Q) 
    ======================================= 
 
    ***     .LOADD - LOAD DEVICE DRIVER 
    * 
    *       LOADD LOADS THE SPECIFIED DEVICE DRIVER. 
    * 
    *       ENTRY   (HL)    = DEVICE DRIVER DESCRIPTOR STRING. 
    *       EXIT    (PSW)   = 'C' CLEAR IF OK 
    *                         'C' SET IF ERROR 
    * 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the .LOADD system call to load a specified device driver in memory 
    without opening a file on the device.  Like  the  .LOADO  system  call, 
    this system call is not to be used when SY0: is to be dismounted.  If a 
    device driver is not in memory at the time SY0: is dismounted  (because 
    it  was  not  loaded  and  no channel is currently open on the device), 
    subsequent references  to  the  device  will  generate  unknown  device 
    errors.        
 
    Examples of this SCALL are found in Part 8, and in the example below: 
   
 
            LXI     H,DEVICE 
            SCALL   .LOADD 
            JC      ERROR 
            . 
            . 
    DEVICE  DB      'LP:',0 
    ....................................................................... 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-55 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
     
    .TASK - Communicates with TMG (Octal 101Q) 
    ========================================== 
 
    ***     TASK - EXTERNAL SCALL FOR THE TASK MANAGER. 
    * 
    *       TASK IS THE WAY THE USER COMMUNICATES WITH TMG, 
    *       THE TASK MANAGER. 
    * 
    *       ENTRY:  See TASKDEF.ACM 
    *       EXIT:   See TASKDEF.ACM 
    *       USES:   See TASKDEF.ACM 
 
    .TASK   EQU     101Q    41H     65 
    ....................................................................... 
 
 
    .TDU - External SCALL for Terminal DeBugging Utility (Octal 122Q) 
    ================================================================= 
 
    ***     TDU - EXTERNAL SCALL FOR TERMINAL DEBUGGING UTILITY. 
    * 
    *       TDU is a basic debugging task which allows the user to examine 
    *       and alter the state of his CPU. 
    * 
    *       THE USER MUST FIRST START THE TDU TASK WITH THE COMMAND: 
    * 
    *               ST TDU 
    * 
    *       ENTRY INTO TDU IS THEN ACHIEVED BY THE FOLLOWING: 
    * 
    *               . 
    *               user code 
    *               . 
    *               SCALL   .TDU            ; This is a breakpoint 
    *               . 
    *               user code 
    *               . 
    * 
    *       ENTRY:  NONE 
    *       EXIT:   NONE 
    *       USES:   Any registers the user alters 
 
    .TDU    EQU     122Q    52H     82 
    ....................................................................... 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-56 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .LOG - External SCALL Used With the ECHO Task (177Q) 
    ==================================================== 
 
    ***     LOG - EXTERNAL SCALL USED WITH THE ECHO TASK. 
    * 
    *       LOG IS THE SOFTWARE METHOD TO TOGGLE THIS TASK ON AND OFF. 
    * 
    *       ENTRY:  A = 0   Turn the task off 
    *                 = 1   Turn the task on 
    *                 > 1   Will case error 
    *       EXIT:   PSW     'C' clear if NO error 
    *                       'C' set   if    error 
    *                         A = EC.ILC if ECHO is NOT resident 
    *                         A = -1     if illegal value was sent in A 
    *       USES:   A,F,H,L 
 
    .LOG    EQU     177Q    7FH     127 
    ....................................................................... 
 
 
    .MOUNT - Mount A Disk (Octal 200Q) 
    ================================== 
 
    ***     .MOUNT - MOUNT A DISK 
    * 
    *       MOUNT DISK ON SPECIFIED UNIT OF SELECTED DEVICE. 
    * 
    *       ENTRY   (HL)    = ADDRESS OF DEVICE SPECIFICATION 
    *       EXIT    (PSW)   = 'C' SET IF ERROR 
    *                         'C' CLEAR IF NO ERROR 
    *                          (A) = ERROR CODE 
    *                           'Z' CLEAR IF AN ABORT 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    Use  the  .MOUNT  system  call to mount additional devices.  The device 
    specified must not have a volume already mounted on it.  If it does,  a 
    successful  dismount  must  be issued before a .MOUNT may be processed. 
    The devices currently supported are SY0:, SY1:, SY2:, DK0:,  DK1:,  and 
    DK2:.  This system call also prints a message informing the user that a 
    volume has been mounted.  This message is the same one  used  with  the 
    HDOS  "MOUNT"  command.   This  call  will  also  verify  that the disk 
    structure is not corrupt.  If the disk  is  corrupt,  it  will  not  be 
    mounted, and an error message will be returned.  If you do not want the 
    message, you may issue the .MONMS system call.  
     
    For a more detailed example of .MOUNT, refer to Part 8. 
    ....................................................................... 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-57 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .DMOUN - Dismount A Disk (Octal 201Q) 
    ===================================== 
 
    ***     .DMOUN - DISMOUNT A DISK 
    * 
    *       DISMOUNT DISK ON SELECTED DRIVE. 
    * 
    *       ENTRY   (HL)    = ADDRESS OF DEVICE SPECIFICATION  
    *       EXIT    (PSW)   = 'C' SET IF ERROR 
    *                         (A) = ERROR CODE 
 
    * 
    *       USES    ALL 
 
    Notes: 
    ------ 
    Use  the  .DEMOUN  system call to dismount diskettes.  After the volume 
    has  been  successfully  dismounted,  it  will  also  print  a  message 
    verifying  that  the  volume  has  been  dismounted.   The device to be 
    dismounted must have a volume  currently  mounted.   If  it  does  not, 
    .DMOUN returns an error.         
     
    If  the  volume to be dismounted is the system volume, you must observe 
    several precautions.  Device drivers not currently  in  memory  at  the 
    time  of  the  dismount  will  be  considered  nonexistent.  Subsequent 
    references to drivers so marked will generate  unknown  device  errors. 
    You  may  load a device driver by opening a channel on the device or by 
    ".LOADD"ing it.  Even if the current program will not use  the  device, 
    the  device must be loaded before you dismount the system volume if any 
    subsequent programs are to use it. 
     
    Before you dismount a disk, you must clear all of the I/O channels open 
    to that disk.  Remember that the program itself is left open on channel 
    -1 (377Q), and this channel must be  closed  before  you  dismount  the 
    system disk (SY0:).         
    ....................................................................... 
     
 
    .MONMS - Mount A Disk With No Message (Octal 202Q) 
    ================================================== 
 
    ***     MONMS - MOUNT/NO MESSAGE  
    * 
    *       MOUNT SPECIFIED UNIT OF SELECTED DEVICE WITHOUT ISSUING 
    *       A MOUNT MESSAGE. 
    * 
    *       ENTRY   (HL)    = ADDRESS OF DEVICE SPECIFICATION 
    *       EXIT    (PSW)   = 'C' SET IF ERROR 
    *                          (A) =ERROR CODE 
    *                         'C' CLEAR IF NO ERROR 
    *                          'Z' CLEAR IF AN ABORT 
    *       USES    ALL          



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-58 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .MONMS - Mount A Disk With No Message (Octal 202Q)(Cont) 
    ======================================================== 
 
    Notes: 
    ------ 
    In  versions  of  HDOS later than Version 1.5 the .MONMS system call is 
    identical to the .MOUNT system call, except that .MONMS prints no error 
    message.   In the future, this may not be the case.  In all likelihood, 
    this will be changed to  a  "quick"  mount  which  neither  prints  the 
    message  nor  verifies  the  disk  structure.   
    ....................................................................... 
 
 
    .DMNMS - Dismount A Disk With No Message (Octal 203Q) 
    ===================================================== 
 
    ***     .DMNMS - DISMOUNT A DISK WITH NO MESSAGE 
    * 
    *       DISMOUNT SELECTED UNIT OF SPECIFIED DEVICE WITHOUT 
    *       ISSUING MESSAGE. 
    * 
    *       ENTRY   (HL)    = ADDRESS OF DEVICE SPECIFICATION 
    *       EXIT    (PSW)   = 'C' SET IF ERROR 
    *                          (A)  = ERROR CODE 
    *       USES    ALL 
 
 
    Notes: 
    ------ 
    The  .DMNMS  system  call  is  virtually  identical to the .DMOUN call, 
    except for the printing of the dismount message.  In  future  releases, 
    this will probably be changed to some form of "quick" dismount.   
    ....................................................................... 
 
    .RESET - Reset A Disk (Octal 204Q) 
    ================================== 
 
    ***     RESET - RESET A DISK 
    * 
    *       RESET THE SPECIFIED UNIT OF THE SELECTED DEVICE 
    *       BY ISSUING A DISMOUNT FOLLOWED BY A MOUNT. 
    *       THE DEVICE NAME SHOULD BE IN THE SAME FORMAT AS 
    *       THAT EXPECTED BY A MOUNT AND DISMOUNT. 
    * 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-59 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .RESET - Reset A Disk (Octal 204Q)(Cont) 
    ======================================== 
 
    *       ENTRY:  (HL) = ADDRESS OF DEVICE SPECIFICATION 
    *       EXIT:   (PSW) = 'C' CLEAR IF NO ERROR 
    *               'C' SET IF ERROR 
    *                     (A) = Error Code 
    *                  
    *       Uses:   ALL 
    ....................................................................... 
 
 
    .RESMNS - Reset A Disk With No Message (OCTAL 205Q) 
    =================================================== 
 
    ***     RESMNS - RESET A DISK WITH NO MESSAGE. 
    * 
    *       ENTRY:  (HL) = ADDRESS OF DEVICE SPECIFICATION 
    *               (BC) = ADDRESS OF USER MESSAGE 
    *                 0 = NO MESSAGE 
    *                -1 = USE STANDARD MESSAGE 
    *       EXIT:   'C' SET IF ERROR 
    *                (A) = ERROR CODE     
    *                                 
    *       Uses:   ALL 
    ....................................................................... 
 
 
    .DAD - Dismount all Disks (Octal 206Q) 
    ====================================== 
      
    ***     DAD     - DISMOUNT ALL DISKS 
    * 
    *       DAD DISMOUNTS ALL DISKS, THAT IS, ALL MOUNTED VOLUMES OF 
    *       ALL CURRENTLY MOUNTED DISKS.  THIS IS USUALLY USED IN 
    *       PREPARATION FOR DISMOUNTING THE SYSTEM DISK. 
    * 
    *       THIS IS INCLUDED AS A SYSTEM CALL SINCE THE .EXIT CALL 
    *       NEEDS THIS CODE.  EVERYONE ELSE MIGHT AS WELL HAVE ACCESS 
    *       TO IT. 
    * 
    *       ENTRY   NONE 
    *       EXIT    'NC' IF NO ERROR 
    *               'C' IF ERROR 
    *               A  = ERROR CODE 
    *       USES    ALL 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-60 
    ================    ==================================       ========== 
 
 
                        PART 5 - RESIDENT SCALLS (Cont) 
                        +++++++++++++++++++++++++++++++ 
 
    .DAD - Dismount All Disks (Octal 206Q)(Cont) 
    ============================================  
 
    Notes: 
    ------ 
    This SCALL is used to dismount ALL units of ALL directory devices known 
    to HDOS.  Note that this includes the system disk drive SY0: as well as 
    all  the  other disks that have been mounted.  Therefore, if this SCALL 
    is executed and the program issues an .EXIT SCALL afterwards,  it  will 
    require  the  user  to  reboot  HDOS.  Since HDOS 3.0 is already set to 
    stand-alone operation, reboot will not be necessary. 
 
    ----------------------------------------------------------------------- 
                       SUMMARY OF HDOS 3.0 SYSTEM CALLS 
    ----------------------------------------------------------------------- 
 
 Name   OCT HEX DEC Description 
      =======      ===   ===   ===    =========== 
 
 .EXIT  EQU  0Q  0H   0 Exit to SYSCMD.SYS 
 
 .SCIN  EQU  1Q  1H   1 System Console Input 
 
 .SCOUT EQU  2Q  2H   2 System Console Output 
 
 .PRINT EQU  3Q  3H   3 Print Text 
 
 .READ  EQU  4Q  4H   4 Read Disk Sector(s) 
 
 .WRITE EQU  5Q  5H   5 Write Disk Sector(s) 
 
 .CONSL EQU  6Q  6H   6 Console Attributes 
 
 .CLRCO EQU  7Q  7H   7 Clear Console Buffer 
 
 .LOADO EQU 10Q  8H   8 Load Overlay (OBSOLETE) 
 
 .VERS  EQU 11Q  9H   9 Version 
 
 .GDA  EQU 12Q  AH  10 Get Driver Address 
 
 .CRC16 EQU 13Q  BH  11 CRC Checksum of Block 
 
      .LINK    EQU   40Q   20H    32   Link to a Program 
 
 .CTLC  EQU 41Q 21H  33 Control A, B & C 
 
 .OPENR EQU 42Q 22H  34 Open for Read 
 
 .OPENW EQU 43Q 23H  35 Open for Write 
 
                                                                 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-61 
    ================    ==================================       ========== 
 
    ----------------------------------------------------------------------- 
                       SUMMARY OF HDOS 3.0 SYSTEM CALLS 
    ----------------------------------------------------------------------- 
 
 Name   OCT HEX DEC Description 
      =======          ===   ===   ===   =========== 
 
      .OPENU    EQU   44Q   24H    36   Open for Update 
 
 .OPENC  EQU 45Q 25H  37 Open Contiguous 
 
 .CLOSE  EQU 46Q 26H  38 Close a channel 
 
 .POSIT  EQU 47Q 27H  39 Position within a File 
 
 .DELETE   EQU 50Q 28H  40 Delete a File 
 
 .RENAME   EQU 51Q 29H  41 Rename a File 
 
 .SETTOP   EQU 52Q 2AH  42 Set Top of User Memory 
 
 .DECODE   EQU 53Q 2BH  43 Decode File Name 
 
 .NAME   EQU 54Q 2CH  44 Get Name from Channel 
 
 .CLEAR  EQU 55Q 2DH  45 Clear a Channel 
 
 .CLEARA   EQU 56Q 2EH  46 Clear All Channels except -1 
 
 .ERROR  EQU 57Q 2FH  47 Print Error Message 
 
 .CHFLG  EQU 60Q 30H  48 Change File Flag(s) 
 
 .DISMT  EQU 61Q 31H  49 Flag System Disk as Dismounted 
 
 .LOADD  EQU 62Q 32H  50 Load Device Driver 
 
      .TASK     EQU   101Q  41H    65   Used with Task Manager 
 
      .TDU              EQU   122Q  52H    82   Used with Terminal Debugger 
 
      .LOG      EQU   177Q  7FH   127   Used with Echo Task 
 
 .MOUNT  EQU 200Q 80H 128 Mount a Disk 
 
 .MONMS  EQU 202Q 82H 130 Mount a Disk - No Messages 
 
 .DMNMS  EQU 203Q 83H 131 Dismount a Disk - No Messages 
 
 .RESET  EQU 204Q 84H 132 Reset a Drive 
 
 .RESNMS   EQU 205Q 85H 133 Reset a Drive - No Messages 
 
 .DAD   EQU 206Q 86H 134 Dismount All Devices 
    *********************************************************************** 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-62 
    ================    ==================================       ========== 
 
 
                       PART 6 - HDOS SYMBOL DEFINITIONS 
                       ++++++++++++++++++++++++++++++++ 
 
    As  we  stressed in earlier sections of this manual, there are numerous 
    advantages to using symbolic definitions when you  are  interfacing  to 
    the  operating system.  This section lists suggested common decks which 
    contain the appropriate symbolic definitions.              
     
    To obtain access to these definitions, simply insert the pseudo ops: 
 
        XTEXT    HDOSDEF                XTEXT    ASCII 
        XTEXT    HOSEQU                 XTEXT    ECDEF 
 
    into  the  initial  statements  of  your  program.  This will cause the 
    assembler to process, as required, the statements in the file HDOS.ACM, 
    thus defining those symbols for that assembly.              
     
    Note that the assembler will not normally list the contents of any file 
    read by XTEXT.  However, by using the 
 
        LON    C 
 
    pseudo op, or the  
 
        /LON:C 
 
    switch when you are using the assembler, you can cause a listing of all 
    files read by XTEXT to be written to the listing file.  
    ....................................................................... 
 
    The  following  data is extracted from selected source code .ACM files. 
    Refer  to  the  on-disk  library  of  source  code  files  for  further 
    information. 
                                    
             Data Source                                    Page 
             -----------                                    ---- 
    HDOS 3.0 COMMON DECK CONTENTS 
        HOSDEF.ACM Contents ............................... 13-63 
        HOSEQU.ACM Contents ............................... 13-64 
        CONSL SCALL Symbols ............................... 13-64 
        ASCII.ACM Contents ................................ 13-65 
        TYPTX.ACM Contents ................................ 13-66 
        MOVE.ACM Contents ................................. 13-67 
        ECDEF.ACM Contents ................................ 13-67 
 
    HDOS SYMBOL VALUES 
        ECDEF Symbol Definitions .......................... 13-69 
        HOSDEF Symbol Definitions ......................... 13-69 
        HOSEQU Symbol Definitions ......................... 13-70 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-63 
    ================    ==================================       ========== 
 
    HDOS 3.0 COMMON DECK CONTENTS 
    ============================= 
 
    HOSDEF.ACM Contents  
    ------------------- 
 
    HOSDEF  SPACE   3,10 
    **      HOSDEF - DEFINE HOS PARAMETER. 
    * 
 
    VERS    EQU     3*16+0      CURRENT VERSION = 3.0  
    SYSCALL EQU     377Q        SYSCALL INSTRUCTION 
            ORG     0 
 
    *       RESIDENT FUNCTIONS 
 
    .EXIT   DS      1       0Q  EXIT (MUST BE FIRST)  
    .SCIN   DS      1       1Q  SCIN            
    .SCOUT  DS      1       2Q  SCOUT             
    .PRINT  DS      1       3Q  PRINT            
    .READ   DS      1       4Q  READ            
    .WRITE  DS      1       5Q  WRITE            
    .CONSL  DS      1       6Q  SET CLEAR CONSOLE OPTIONS 
    .CLRCO  DS      1       7Q  CLEAR CONSOLE BUFFER 
    .LOADO  DS      1      10Q  LOAD AN OVERLAY (OBSOLETE)   /30a/ 
    .VERS   DS      1      11Q  RETURN HDOS VERSION NUMBER 
    .GDA    DS      1      12Q  GET DEVICE DRIVER ADDRESS    /30a/ 
    .CRC16  DS      1      13Q  CRC A BLOCK OF MEMORY        /30a/ 
    .SYSRES DS      1           PRECEDING FUNCTIONS ARE RESIDENT 
 
    *       HDOSOVL0.SYS FUNCTIONS (Note: HDOS 3.0 Has No Overlays) 
 
    .LINK   DS      1      40Q  LINK  
    .CTLC   DS      1      41Q  CTL-C 
    .OPENR  DS      1      42Q  OPENR 
    .OPENW  DS      1      43Q  OPENW          
    .OPENU  DS      1      44Q  OPENU  
    .OPENC  DS      1      45Q  OPENC        
    .CLOSE  DS      1      46Q  CLOSE  
    .POSIT  DS      1      47Q  POSITION  
    .DELET  DS      1      50Q  DELETE 
    .DELETE  EQU     .DELET                  
    .RENAM  DS      1      51Q  RENAME  
    .RENAME  EQU     .RENAM  
    .SETTP  DS      1      52Q  SETTOP 
    .SETTOP  EQU     .SETTP                      
    .DECODE DS      1      53Q  DECODE  
    .NAME   DS      1      54Q  NAME 
    .CLEAR  DS      1      55Q  CLEAR  
    .CLEARA DS      1      56Q  RESERVED  
    .ERROR  DS      1      57Q  LOOKUP ERROR  
 
    .CHFLG  DS      1      60Q  CHANGE FLAGS  
    .DISMT  DS      1      61Q  FLAG SYSTEM DISK DISMOUNTED 
    .LOADD  DS      1      62Q  LOAD DEVICE DRIVER 
     



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-64 
    ================    ==================================       ========== 
 
    HDOS 3.0 COMMON DECK CONTENTS (Cont) 
    ==================================== 
 
    HOSDEF.ACM Contents (Cont) 
    -------------------------- 
 
    *      HDOSOVL1.SYS FUNCTIONS (NOTE: HDOS 3.0 Has No Overlays) 
 
                   ORG     200Q  
    .MOUNT         DS      1     200Q  MOUNT (MUST BE FIRST) 
    .DMOUN         DS      1     201Q  DISMOUNT  
    .DMOUNT        EQU     .DMOUN       
    .MONMS         DS      1     202Q  MOUNT/NO MESSAGE  
    .DMNMS         DS      1     203Q  DISMOUNT/NO MESSAGE  
    .RESET         DS      1     204Q  RESET = DISMOUNT/MOUNT UNIT  
    .RESNMS        DS      1     205Q  RESET/OPTIONAL MESSAGE 
    .DAD           DS      1     206Q  DISMOUNT ALL DISKS  
    ....................................................................... 
 
    HOSEQU.ACM Contents  
    ------------------- 
 
             SPACE   4,10 
    **      HDOS SYSTEM EQUIVALENCES.                             /3.0a/ 
    * 
 
            ORG     040100A 
 
    S.EXITA DS      8               ; Jump to System Exit 
    D.CON   DS      16              ; Disk Constants 
    SYDD    EQU     *               ; System Disk Entry Point 
    D.VEC   DS      24*3            ; H17 Disk Vectors 
    D.RAM   DS      31              ; H17 Disk Work Area 
    S.VAL   DS      36              ; SYSTEM VALUES 
    S.INT   DS      147             ; SYSTEM INTERNAL WORK AREAS 
    S.SOVR  DS      2               ; STACK OVERFLOW WARNING 
            DS      042200A-*       ; SYSTEM STACK 
    STACKL  EQU     *-S.SOVR        ; STACK SIZE 
    STACK   EQU     *               ; LWA+1 SYSTEM STACK 
    USERFWA EQU     *               ; USER FWA 
                                                                                 
    *       Ensure Compatibility 
 
            ERRNZ   040130A-SYDD 
            ERRNZ   040277A-S.VAL 
            ERRNZ   040343A-S.INT 
            ERRNZ   042200A-USERFWA 
    ....................................................................... 
 
    **      THE FOLLOWING SYMBOLS ARE USED BY THE .CONSL SCALL 
 
    CSL.ECH EQU     10000000B   SUPPRESS ECHO 
    CSL.RAW EQU     00000100B   RAW MODE I/O 
    CSL.WRP EQU     00000010B   WRAP LINES AT WIDTH 
    CSL.CHR EQU     00000001B   OPERATE IN CHARACTER MODE 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-65 
    ================    ==================================       ========== 
 
    HDOS 3.0 COMMON DECK CONTENTS (Cont) 
    ==================================== 
 
    **      THE FOLLOWING SYMBOLS ARE USED BY THE .CONSL SCALL (Cont) 
 
    I.CSLMD EQU     0           CONSOLE MODE 
 
    CTP.BKS EQU     10000000B   TERMINAL PROCESSES BACKSPACES 
    CTP.FF  EQU     01000000B   TERMINAL PROCESSES FORMFEED 
    CTP.MLI EQU     00100000B   MAP LOWER CASE TO UPPER ON INPUT 
    CTP.MLO EQU     00010000B   MAP LOWER CASE TO UPPER ON OUTPUT 
    CTP.2SB EQU     00001000B   TERMINAL NEEDS TWO STOP BITS 
    CTP.HHS EQU     00000100B   TERMINAL USES HARDWARE HANDSHAKE 
    CTP.BKM EQU     00000010B   MAP BKSP (UPON INPUT) TO RUBOUT 
    CTP.TAB EQU     00000001B   TERMINAL SUPPORTS TAB CHARACTERS 
 
    I.CONTY EQU     1           S.CONTY IS 2ND BYTE 
    I.CUSOR EQU     2           S.CUSOR IS 3RD BYTE 
    I.CONWI EQU     3           S.CONWI IS 4TH BYTE 
        
    CO.FLG  EQU     00000001B   CTL-O FLAG 
    CO.FLG  EQU     10000000B   CTL-S FLAG 
    ....................................................................... 
 
    ASCII.ACM Contents  
    ------------------ 
 
            SPACE   3,10 
    **      ASCII CHARACTER EQUIVALENCES. 
 
    NUL     EQU     000Q             ; null 
    BELL    EQU     007Q             ; bell 
    BKSP    EQU     010Q             ; backspace 
    BS      EQU     BKSP 
    TAB     EQU     011Q             ; horizontal tab 
    LF      EQU     012Q             ; line feed 
    NL      EQU     012Q             ; new line (HDOS) 
    FF      EQU     014Q             ; form feed 
    CR      EQU     015Q             ; carriage return 
    ESC     EQU     033Q             ; escape 
    DEL     EQU     177Q             ; delete 
 
    *       Specials 
 
    EOL     EQU     200Q             ; end of line flag 
    NULL    EQU     200Q             ; pad character 
    NUL2    EQU     0                ; ditto 
    RUBOUT  EQU     DEL              ; rubout/delete 
    C.SYN   EQU     026Q             ; SYNC 
    C.STX   EQU     002Q             ; STX 
    QUOTE   EQU     047Q             ; quote character (") 
    ENL     EQU     NL+EOL           ; NL + end-of-line flag 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-66 
    ================    ==================================       ========== 
 
    HDOS 3.0 COMMON DECK CONTENTS (Cont) 
    ==================================== 
 
    ASCII.ACM Contents (Cont) 
    ------------------------- 
 
    *       Control keys 
 
    CTLA    EQU     'A'-'@'          ; CTRL/A 
    CTLB    EQU     'B'-'@'          ; CTRL/B 
    CTLC    EQU     'C'-'@'          ; CTRL/C 
    CTLD    EQU     'D'-'@'          ; CTRL/D 
    CTLE    EQU     'E'-'@'          ; CTRL/E 
    CTLO    EQU     'O'-'@'          ; CTRL/O 
    CTLP    EQU     'P'-'@'          ; CTRL/P 
    CTLQ    EQU     'Q'-'@'          ; CTRL/Q 
    CTLR    EQU     'R'-'@'          ; CTRL/R 
    CTLS    EQU     'S'-'@'          ; CTRL/S 
    CTLX    EQU     'X'-'@'          ; CTRL/X 
    CTLZ    EQU     'Z'-'@'          ; CTRL/Z 
    ....................................................................... 
 
    TYPTX.ACM Contents  
    ------------------ 
 
    $TYPTX  SPACE   4,10 
    **      $TYPTX - TYPE TEXT. 
    * 
    *       $TYPTX IS CALLED TO TYPE A BLOCK OF TEXT TO THE SYSTEM 
    *       CONSOLE, WHERE THE BLOCK OF TEXT TO BE TYPED IMMEDIATELY 
    *       FOLLOWS THE SUBROUTINE CALL INSTRUCTION. 
    * 
    *       $TYPTX. PERFORMS THE SAME FUNCTION AS $TYPTX, EXCEPT THAT 
    *       USES REGISTER H,L AS A POINTER TO THE TEXT WHICH IS TO 
    *       BE TYPED. 
    * 
    *       IMBEDDED ZERO BYTES INDICATES A CARRIAGE RETURN LINE FEED. 
    *       A BYTE WITH THE 200Q BIT SET IS THE LAST BYTE IN THE MESSAGE. 
    * 
    *       EMTRY   (RET) = TEXT 
    *       EXIT    TO (RET+LENGTH) 
    *       USES    A,F 
                                        
    $TYPTX  EQU     031136A                 ; IN H17 ROM 
                    TAKES TEXT IMMEDIATELY 
 
    $TYPTX. EQU     031144A                 ; IN H17 ROM 
                    TAKES TEXT FROM HL REGISTER 
 
    EXAMPLE: 
 
    $TYPTX          TAB IN ONE TAB STOP, OR CALL TAB OVER. 
                    TAB CALL TAB $TYPTX<RTN>       
                    TAB DB TAB 'HELLO, WORLD',  
                    212Q<RTN> 
     



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-67 
    ================    ==================================       ========== 
 
    HDOS 3.0 COMMON DECK CONTENTS (Cont) 
    ==================================== 
 
    TYPTX.ACM Contents (Cont) 
    ------------------------- 
 
    $TYPTX.         TAB LXI TAB H,MSG<RTN> 
                    TAB CALL TAB $TYPTX. 
    ....................................................................... 
 
 
    MOVE.ACM Contents     
    ================= 
 
    MOVE    SPACE   4,10 
    **      $MOVE - MOVE DATA 
    * 
    *       $MOVE MOVES A BLOCK OF BYTES TO A NEW MEMORY ADDRESS. 
    *       IF THE MOVE IS TO A LOWER ADDRESS, THE BYTES ARE MOVED FROM 
    *       FIRST TO LAST. 
    * 
    *       IF THE MOVE IS TO A HIGHER ADDRESS, THE BYTES ARE MOVED FROM 
    *       LAST TO FIRST. 
    * 
    *       THIS IS DONE SO THAT AN OVERLAPED MOVE WILL NOT 'RIPPLE'. 
    * 
    *       ENTRY   (BC) = COUNT 
    *               (DE) = FROM 
    *               (HL) = TO 
    *       EXIT    MOVED 
    *               (DE) = ADDRESS OF NEXT FROM BYTE 
    *               (HL) = ADDRESS OF NEXT *TO* BYTE 
    *               'C' CLEAR 
    *       USES    ALL 
 
    $MOVE   EQU     030252A                 ; IN H17 ROM 
    ....................................................................... 
 
    ECDEF.ACM Contents 
    ------------------ 
 
            SPACE   4,10 
    **      ERROR CODE DEFINITIONS. 
 
            ORG     0 
 
            DS      1           ; NO ERROR #0 
    EC.EOF  DS      1           ; END OF FILE 
    EC.EOM  DS      1           ; END OF MEDIA 
    EC.ILC  DS      1           ; ILLEGAL SCALL CODE 
    EC.CNA  DS      1           ; CHANNEL NOT AVAILABLE 
    EC.DNS  DS      1           ; DEVICE NOT SUITABLE 
    EC.IDN  DS      1           ; ILLEGAL DEVICE NAME 
    EC.IFN  DS      1           ; ILLEGAL FILE NAME 
    EC.NRD  DS      1           ; NO ROOM FOR DEVICE DRIVER 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-68 
    ================    ==================================       ========== 
 
    HDOS 3.0 COMMON DECK CONTENTS (Cont) 
    ==================================== 
 
    ECDEF.ACM Contents (Cont) 
    ------------------------- 
 
    EC.FNO  DS      1           ; CHANNEL NOT OPEN 
    EC.ILR  DS      1           ; ILLEGAL REQUEST 
    EC.FUC  DS      1           ; FILE USAGE CONFLICT 
    EC.FNF  DS      1           ; FILE NAME NOT FOUND 
    EC.UND  DS      1           ; UNKNOWN DEVICE 
    EC.ICN  DS      1           ; ILLEGAL CHANNEL NUMBER 
    EC.DIF  DS      1           ; DIRECTORY FULL 
    EC.IFC  DS      1           ; ILLEGAL FILE CONTENTS 
    EC.NEM  DS      1           ; NOT ENOUGH MEMORY 
    EC.RF   DS      1           ; READ FAILURE 
    EC.WF   DS      1           ; WRITE FAILURE 
    EC.WPV  DS      1           ; WRITE PROTECTION VIOLATION 
    EC.WP   DS      1           ; DISK WRITE PROTECTED 
    EC.FAP  DS      1           ; FILE ALREADY PRESENT 
    EC.DDA  DS      1           ; DEVICE DRIVER ABORT 
    EC.FL   DS      1           ; FILE LOCKED 
    EC.FAO  DS      1           ; FILE ALREADY OPEN 
    EC.IS   DS      1           ; ILLEGAL SWITCH 
    EC.UUN  DS      1           ; UNKNOWN UNIT NUMBER 
    EC.FNR  DS      1           ; FILE NAME REQUIRED 
    EC.DIW  DS      1           ; DEVICE IS NOT WRITABLE (OR WRITE-LOCKED) 
    EC.UNA  DS      1           ; UNIT NOT AVAILABLE 
    EC.ILV  DS      1           ; ILLEGAL VALUE 
    EC.ILO  DS      1           ; ILLEGAL OPTION 
    EC.VPM  DS      1           ; VOLUME PRESENTLY MOUNTED ON DEVICE 
    EC.NVM  DS      1           ; NO VOLUME PRESENTLY MOUNTED 
    EC.FOD  DS      1           ; FILE OPEN ON DEVICE 
    EC.NPM  DS      1           ; NO PROVISIONS MADE FOR REMOUNTING 
                                    MORE DISKS 
    EC.DNI  DS      1           ; DISK NOT INITIALIZED 
    EC.DNR  DS      1           ; DISK IS NOT READABLE 
    EC.DSC  DS      1           ; DISK STRUCTURE IS CORRUPT 
    EC.NCV  DS      1           ; NOT CORRECT VERSION OF HDOS 
    EC.NOS  DS      1           ; NO OPERATING SYSTEM MOUNTED 
    EC.IOI  DS      1           ; ILLEGAL OVERLAY INDEX 
    EC.OTL  DS      1           ; OVERLAY TOO LARGE 
    EC.LAD  DS      1           ; File is locked against delete      /3.0a/ 
    EC.FIX  DS      1           ; Device media is fixed              /3.0a/ 
    EC.ILA  DS      1           ; Illegal Load Address               /3.0a/ 
    EC.DNL  DS      1           ; Device Not Loaded                  /3.0a/ 
    EC.DNP  DS      1           ; Device Not Locked in Memory        /3.0a/ 
    EC.DFM  DS      1           ; Device is Fixed in Memory          /3.0a/ 
    EC.IDF  DS      1           ; Illegal Date Format                /3.0a/ 
    EC.ITS  DS      1           ; Illegal Time Format                /3.0a/ 
    EC.CNR  DS      1           ; System Clock Not Resident          /3.0a/ 
    EC.SDR  DS      1           ; System Disk is Reset               /3.0a/ 
    EC.LDO  DS      1           ; Line Buffer Overflow               /3.0a/ 
    EC.CUI  DS      1           ; Can't Unlink from Interrupt Vector /3.0a/ 
    EC.PNG  DS      1           ; Permission Not Given               /3.0a/ 
    ....................................................................... 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-69 
    ================    ==================================       ========== 
 
    HDOS SYMBOL VALUES  
    ================== 
 
    This section contains a list of split-octal values for the HDOS symbols 
    discussed in this document.  These values are  presented  as  a  double 
    check,  so  you  can  compare  them  to  the  values generated when you 
    assemble the common decks.  Once again, it is important  that  you  use 
    the  common  decks and use symbolic values, rather than using the octal 
    values directly.   
     
    ECDEF Symbol Definitions  
    ------------------------ 
     EC.CNA = 000004A           EC.FNO = 000011A          EC.NCV = 000050A 
    *EC.CNR = 000064A           EC.FNR = 000034A          EC.NEW = 000021A 
    *EC.CUI = 000067A           EC.FOD = 000043A          EC.NOS = 000051A 
     EC.DDA = 000027A           EC.FUC = 000013A          EC.NPM = 000044A 
    *EC.DFM = 000061A           EC.HIN = 000000A          EC.NRD = 000010A 
     EC.DIF = 000017A           EC.1CN = 000016A          EC.NVM = 000042A 
     EC.DIW = 000035A          *EC.IDF = 000062A          EC.OTL = 000053A 
     EC.DNI = 000045A           EC.IDN = 000006A          EC.RF  = 000022A 
    *EC.DNL = 000057A           EC.IFC = 000020A         *EC.SDR = 000065A   
    *EC.DNP = 000060A           EC.IFN = 000007A          EC.UNA = 000036A 
     EC.DNR = 000046A          *EC.ILA = 000056A          EC.UND = 000015A 
     EC.DNS = 000005A           EC.ILC = 000003A          EC.UUN = 000033A 
     EC.DSC = 000047A           EC.ILO = 000040A          EC.VPM = 000041A 
     EC.EOF = 000001A           EC.ILR = 000012A          EC.WF  = 000023A 
     EC.EOM = 000002A           EC.ILV - 000037A          EC.WP  = 000025A 
     EC.FAO = 000031A           EC.IOI = 000052A          EC.WFV = 000024A 
     EC.FAP = 000026A           EC.IS  = 000032A                           
    *EC.FIX = 000055A          *EC.ITS = 000063A                           
     EC.FL  = 000030A          *EC.LAD = 000054A                           
     EC.FNF = 000014A          *EC.LBO = 000066A                           
      
    * New for HDOS 3.0 
    ..................................................................... 
 
    HOSDEF Symbol Definitions  
 
    -------------------------                                              
                                                                            
     .CHFLG  =  000060A        .EXIT  =  000000A        .PRINT  =  000003A 
     .CLEAR  =  000055A       *.GDA   =  000013A        .READ   =  000004A 
     .CLEARA =  000045A        .LINK  =  000040A        .RENAME =  000051A 
     .CLOSE  =  000046A       *.LOADD =  000062A        .RESET  =  000204A 
     .CLRCO  =  000007A        .LOADO =  000010A       *.RESMNS =  000250A  
     .CONSL  =  000006A       *.LOG   =  000177A        .SCIN   =  000001A 
    *.CRC16  =  000013A        .MONMS =  000202A        .SCOUT  =  000002A 
     .CTLC   =  000041A        .MOUNT =  000200A        .RESMNS =  000250A 
     .DAD    =  000207A        .NAME  =  000054A        .SETTOP =  000052A 
     .DECODE =  000053A        .OPENC =  000045A       *.TASK   =  000101A 
     .DELETE =  000050A        .OPENR =  000042A       *.TDU    =  000122A 
     .DMNMS  =  000203A        .OPENU =  000044A        .VERS   =  000011A  
     .DMOUN  =  000201A        .OPENW =  000043A        .WRITE  =  000005A 
     .ERROR  =  000057A        .POSIT =  000047A 
                                                                            
      CO.FLG  =  000001A        CS.FLG  = 000200A        CSL.CHR =  000001A 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-70 
    ================    ==================================       ========== 
 
    HDOS SYMBOL VALUES  
    ================== 
 
    HOSDEF Symbol Definitions (Cont) 
    -------------------------------- 
 
      CSL.ECH =  000200A        CSL.WRP = 000002A        CTP.2SB =  000010A 
      CTP.BKM =  000002A        CTP.BKS = 000200A        CTP.ML1 =  000040A 
      EC.DDA  =  000027A        EC.DIF  = 000017A        EC.DIW  =  000035A 
        
      EC.CNA  =  000004A        EC.FOD  = 000043A        EC.NRD  =  000010A 
      EC.CNR  =  000064A        EC.FUC  = 000013A        EC.NTF  =  000311A 
      EC.CUI  =  000067A        EC.ICN  = 000016A        EC.NTM  =  000003A 
      EC.DDA  =  000027A        EC.IDF  = 000062A        EC.NVM  =  000042A 
      EC.DFM  =  000061A        EC.IDN  = 000017A        EC.OTL  =  000053A 
      EC.DIF  =  000017A        EC.IFC  = 000020A        EC.PNG  =  000070A 
      EC.DIW  =  000035A        EC.IFN  = 000007A        EC.RF   =  000022A 
      BC.DNI  =  000045A        EC.ILA  = 000056A        EC.SDR  =  000065A 
      EC.DNL  =  000057A        EC.ILC  = 000003A        EC.TAA  =  000301A 
      EC.DNP  =  000060A        EC.ILO  = 000040A        EC.TCA  =  000305A 
      EC.DNR  =  000046A        EC.ILR  = 000012A        EC.TIF  =  000304A 
      EC.DNS  =  000005A        EC.ILV  = 000037A        EC.TNA  =  000302A 
      EC.DSC  =  000047A        EC.IOI  = 000052A        EC.TNF  =  000307A 
      EC.EOF  =  000001A        EC.IS   = 000032A        EC.TSN  =  000036A 
      EC.EOM  =  000002A        EC.ITF  = 000300A        EC.TUN  =  000303A 
      EC.FAO  =  000031A        EC.ITS  = 000063A        EC.UNA  =  000036A 
      EC.FAP  =  000026A        EC.LAD  = 000054A        EC.UND  =  000015A 
      EC.FIX  =  000055A        EC.LB0  = 000066A        EC.UUN  =  000033A 
      EC.FL   =  000030A        EC.NCV  = 000050A        EC.VPM  =  000041A 
      EC.FNF  =  000014A        EC.NEM  = 000021A        EC.WF   =  000023A 
      EC.FNO  =  000011A        EC.NOS  = 000051A        EC.WP   =  000025A 
      EC.FNR  =  000034A        EC.NPM  = 000044A        EC.WPV  =  000024A 
 
                                I.CONFL = 000004A        I.CONTY =  000001A 
      I.CONWI =  000003A        I.CSLMD = 000000A        I.CUSOR =  000002A 
      S.DATC  =  040310A        S.DATE  = 040277A        S.HIMEM =  040316A 
      S.OMAX  =  040324A        S.SYSM  = 040320A        S.USRM  =  040322A 
 
    * New for HDOS 3.02 
    ....................................................................... 
 
    HOSEQU Symbol Definitions  
    ------------------------- 
    USERFWA = 42200A 
    STACK   = 42200A 
 
    CO.FLG  = 000001A          CTP.MLO = 000020A         I.CUSOR = 000002A 
     
    CS.FLG  = 000200A          CTP.TAB = 000001A         S.DATC  = 040310A 
    CSL.CHR = 000001A          CTP.2SB = 000010A         S.DATE  = 040277A 
    CSL.ECH = 000200A          I.CONFL = 000004A         S.HIMEM = 040316A 
    CSL.WRP = 000002A          I.CONTY = 000001A         S.OMAX  = 040324A 
    CTP.BKM = 000002A          I.CONWI = 000003A         S.SYSM  = 040320A 
    CTP.BKS = 000200A          I.CSLMD = 000000A         S.USRM  = 040322A 
    CTP.MLI = 000040A 
    ************************************************************************ 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-71 
    ================    ==================================       ========== 
 
                             PART 7 - PROLOGUE.SYS 
                             +++++++++++++++++++++ 
 
    A PROLOGUE.SYS is a special program generated in Assembly Language. 
 
    Appendix  13-A  contains  an example of the HDOS "PROLOGUE.SYS" feature 
    incorporated into assembly language source code. 
 
    When  HDOS  is started at the BOOT command, it will attempt to transfer 
    control to SY0:PROLOGUE.SYS.  If such a file cannot be  found,  control 
    is  transferred  to  "SYSCMD.SYS."   The  use of a PROLOGUE.SYS sets up 
    special automatic tasking parameters at bootup time,  such  as  loading 
    device  drivers,  or  starting  menu  programs  in  MBASIC  or Assembly 
    Language.  If the  processing  of  your  PROLOGUE.SYS  program  is  not 
    desired  at  boot  time,  just  simply  type  IGNORE  when HDOS states: 
    <BOOT><B>?  instead of the usual <RTN>. 
    *********************************************************************** 
 
                         PART 8 - PROGRAMMING EXAMPLE 
                         ++++++++++++++++++++++++++++ 
 
    Refer to pages 13-72 thru 13-76 for typical programming examples. 
 
                                 ** CAUTION ** 
              The  following  files,  being  typical  source code 
              files, extend beyond the  normal  80  column  line! 
              They  cannot  be either viewed by the standard text 
              editor, nor can they be printed at the normal 10 or 
              12  CPI.   Therefore,  you  must  take the measures 
              indicated below. 
 
    There are two options: (1) This material may be monitored on the screen 
    using an HDOS editor such as EDIT19 which permits viewing of  the  file 
    contents  extending  beyond  80  columns.   (2)  You  can print out the 
    following files on a line printer, but you must use a 17 CPI instead of 
    the customary 10 or 12 CPI. 
               
    (1) Screen Option: 
    ------------------ 
    To  scroll  the  screen so that it goes off the left side, while in the 
    SCREEN mode of EDIT19, Version 3.10, hit the ENTER key  and  type  LEFT 
    60<RTN>.   This  will cause your screen to move 60 columns to the left, 
    and you will be able to see the hidden part of the listing.  To  return 
    the screen to normal, once more hit the ENTER key and type LEFT 0<RTN>. 
    If your version of EDIT19 is earlier than 3.10, substitute the  command 
    "DISCARD" for "LEFT" as indicated above.  The same technique is used. 
 
    (2) Print Option: 
    ----------------- 
    Set  your  printer  according  to  the  following settings and print as 
    usual.  You will receive a smaller printout,  but  the  entire  listing 
    will be visible on the page. CPI=17, LPI=8, FORM=88, PAGE=80, LMARG 15. 
    *********************************************************************** 
 
 
 



CHAPTER THIRTEEN     HDOS PROGRAMMERS' REFERENCE MANUAL          PAGE 13-72                
================     ==================================          ========== 
                      APPENDIX 13-A: PROGRAMMING EXAMPLES 
                     +++++++++++++++++++++++++++++++++++ 
 
Menu Prologue for MBASIC - Listing 1:  
===================================== 
 
                     00002   ***     MENU Prologue 
                     00003   * 
                     00004   *       SOURCE: The HEATH Company 
                     00005   * 
                     00006   *       This Prologue: 
                     00007   *               Loads Device Drivers (If Present) 
                     00008   *                       LP: 
                     00009   *                       LT: 
                     00010   *                       LD: 
                     00011   *                       AT: 
                     00012   *               Runs MBASIC establishing 5 file buffers 
                     00013   *               Runs the MBASIC program "MENU.BAS" 
                     00014   * 
                     00015   *       Note:   The command line may be easily modified to 
                     00016   *               accomodate other files, etc., by changing 
                     00017   *               the line pushed on the stack at "PROB." 
                     00018   * 
                     00019  
042.200              00020           XTEXT   ASCII 
042.200              00049           XTEXT   HOSDEF 
000.205              00117           XTEXT   HOSEQU 
                     00123 
030.252              00124   $MOVE   EQU     30252A    These are routines in the H17 ROM                        
031.136              00125   $TYPTX  EQU     31136A 
                     00126 
                     00127                           
042.200              00128           ORG     USERFWA 
                     00129                                     
042.200              00130   START   EQU     * 
                     00131                             
                     00132                *       Load the device drivers 
                     00133            
042.200  041 027 043 00134   LOAD1   LXI     H,PROAA 
042.203  377 062     00135           SCALL   .LOADD               Load the device driver 
042.205  332 226 042 00136           JC      LOAD2                No load, skip message 
042.210  315 136 031 00137           CALL    $TYPTX 
042.213  114 120 072 00138           DB      'LP: Loaded',ENL 
                     00139           
042.226  041 033 043 00140   LOAD2   LXI     H,PROAB 
042.231  377 062     00141           SCALL   .LOADD             
042.233  332 254 042 00142           JC      LOAD3 
042.236  315 136 031 00143           CALL    $TYPTX   
042.241  114 104 072 00144           DB      'LD: Loaded',ENL 
                     00145            
042.254  041 037 043 00146   LOAD3   LXI     H,PROAC         
042.257  377 062     00147           SCALL   .LOADD 
042.261  332 302 042 00148           JC      LOAD4 
042.264  315 136 031 00149           CALL    $TYPTX 
042.267  114 124 072 00150           DB      'LT: Loaded',ENL 
                     00151            
042.302  041 043 043 00152   LOAD4   LXI     H,PROAD 
042.305  377 062     00153           SCALL   .LOADD 
042.307  332 330 042 00154           JC      PSTACK 
042.312  315 136 031 00155           CALL    $TYPTX 
042.315  101 124 072 00156           DB      'AT: Loaded',ENL 
042.330  041 000 000 00157    
                     00158   * Push pseudo command line on user stack for MBASIC to find 
                     00159    
042.330  041 000 000 00160   PSTACK  LXI     H,0 
042.333  071         00161           DAD     SP            *    HL = current stack value 
000.012              00162           SET     PROBE-PROB+1                                              
042.334  021 366 377 00163           LXI     D,-,     * DE = - (Number of bytes to push) 
042.337  031         00164           DAD     D 
042.340  371         00165           SPHL                       Reserve the stack space 



CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL           PAGE 13-73                
================    ==================================           ==========                
 
                   APPENDIX 13-A: - PROGRAMMING EXAMPLES (Cont) 
                   ++++++++++++++++++++++++++++++++++++++++++++ 
 
Menu Prologue for MBASIC - Sample 1 (Cont) 
========================================== 
 
                     00166            
042.341  001 012 000 00167           LXI     B,PROBE-PROB+1 
042.021  021 047 043 00168           LXI     D,PROB 
042.347  315 252 030 00169           CALL    $MOVE                  Move the stuff onto the stack 
                     00170 
                     00171   *       Link to MBASIC 
                     00172 
042.352  041 061 043 00173           LXI     H,PROC 
042.355  377 040     00174           SCALL   .LINK                  Try to run MBASIC 
                     00175 
042.357  315 136 031 00176           CALL    $TYPTX 
042.362  007 105 122 00177           DB      BELL,'ERROR - Unable to execute MBASIC',ENL 
                     00178 
043.024  257         00179   EXIT    XRA     A 
043.025  377 000     00180           SCALL   .EXIT                  Normal EXIT 
                     00181   
043.027  114 120 072 00182   PROAA   DB      'LP:',0 
043.033  114 104 072 00183   PROAB   DB      'LD:',0 
043.037  114 124 072 00184   PROAC   DB      'LT:',0 
043.043  101 124 072 00185   PROAD   DB      'AT:',0 
                     00186 
043.047  040 115 105 00187   PROB    DB      'MENU/F:5',0 
043.060              00188   PROBE   EQU     *-1 
                     00189            
043.061  123 131 060 00190   PROC    DB      'SY0:MBASIC.ABS',0 
                     00191            
043.100  000         00192           END     START 
 
00192 Statements Assembled 
32007 Bytes Free 
No Errors Detected 
 
Example 1: Menu Prologue for MBASIC [B] 
----------------------------------- 
 
                     00002   ***     MENU Prologue 
                     00003   * 
                     00004   *       SOURCE: The HEATH Company 
                     00005   * 
                     00006   *       This Prologue: 
                     00007   *               Loads Device Drivers (If Present) 
                     00008   *                       LP: 
                     00009   *                       LT: 
                     00010   *                       LD: 
                     00011   *                       AT: 
                     00012   *               Runs MBASIC establishing 5 file buffers 
                     00013   *               Runs the MBASIC program "MENU.BAS" 
                     00014   * 
                     00015   *       Note:   The command line may be easily modified to 
                     00016   *               accomodate other files, etc., by changing 
                     00017   *               the line pushed on the stack at "PROB."                              
                     00018   * 
                     00019  
042.200              00020           XTEXT   ASCII 
042.200              00049           XTEXT   HOSDEF 
000.205              00117           XTEXT   HOSEQU 
                     00123 
                     00124 
042.200              00125           ORG     USERFWA 
                     00126 
042.200              00127   START   EQU     * 
 
 



CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL           PAGE 13-74                
================    ==================================           ==========                
                      
                     00128 
                     00129   *       Load the device drivers 
                     00130 
042.200  041 027 043 00131   LOAD1   LXI     H,PROAA 
042.203  377 062     00132           SCALL   .LOADD                  LOAD DEVICE DRIVER 
042.205  332 226 042 00133           JC      LOAD2                   ERROR LOADING LP: 
042.210  315 136 031 00134           CALL    $TYPTX 
042.213  114 120 072 00135           DB      'LP: LOADED',ENL 
                     00136 
042.226  041 033 043 00137   LOAD2   LXI     H,PROAB 
042.231  377 062     00138           SCALL   .LOADD 
042.233  332 254 042 00139           JC      LOAD3 
042.236  315 136 031 00140           CALL    $TYPTX 
042.241  114 104 072 00141           DB      'LD: LOADED',ENL 
                     00142 
042.254  041 037 043 00143   LOAD3   LXI     H,PROAC 
042.257  377 062     00144           SCALL   .LOAD 
042.261  332 302 042 00145           JC      LOAD4 
042.264  315 136 031 00146           CALL    $TYPTX 
042.267  114 124 072 00147           DB      'LT: LOADED',ENL        
                     00148 
042.342  041 043 043 00149   LOAD4   LXI     H,PROAD 
042.305  377 062     00150           SCALL   .LOAD 
042.307  332 330 042 00151           JC      PSTACK 
042.312  315 136 031 00152           CALL    $TYPTX 
042.315  101 124 072 00153           DB      'AT:' LOADED',ENL 
                     00154 
                     00155   *       Push pseudo command line on the user stack for MBASIC to find 
                     00156 
042.330  041 000 000 00157   PSTACK  LXI     H,0 
042.333  071         00158           DAD     SP                     HL = current stack value 
000.012              00159   *       SET     PROBE-PROB+1 
042.334  021 366 377 00160           LXI     D,_.                   DE = - ( Number of bytes to 
push ) 
042.337  031         00161           DAD     D                       
042.340  371         00162           SPHL                           Reserve the stack space 
                     00163 
042.341  001 012 000 00164           LXI     B,PROBE-PROB+1 
042.344  021 047 043 00165           LXI     D,PROB 
042.347  315 252 030 00166           CALL    $MOVE            Move the stuff into the stack space 
                     00167 
                     00168   *       Link to MBASIC                   
                     00169 
042.352  041 061 043 00170           LXI     H,PROC 
042.355  377 040     00171           SCALL   .LINK                  Try to run MBASIC                             
                     00172 
042.357  335 136 031 00173           CALL    $TYPTX 
042.362  007 105 122 00174           DB      BELL,'ERROR - Unable to Execute MBASIC',ENL 
                     00175 
043.024  257         00176   EXIT    XRA     A 
043.025  377 000     00177           SCALL   .EXIT                  Normal EXIT 
                     00178 
043.027  114 120 072 00179   PROAA   DB      'LP:',0 
043.033  114 104 072 00180   PROAB   DB      'LD:',0 
043.037  114 124 072 00181   PROAC   DB      'LT:',0 
043.043  101 124 072 00182   PROAD   DB      'AT:',0 
                     00183 
043.047  040 115 105 00184   PROB    DB      ' MENU/F:5',0 
043.060              00185   PROBE   DB      *-1 
                     00186 
043.061  123 131 060 00187   PROC    DB      'SY0:MBASIC.ABS',0 
                     00188 
043.100              00189           XTEXT   $TYPTX 
043.100              00207           XTEXT   $MOVE 
043.100  000         00232           END     START 
 
00232 Statements Assembled 
18320 Bytes Free 
No Errors Detected                                                                                       



CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL           PAGE 13-75               
================    ==================================           ==========                
 
                     APPENDIX 13-A: PROGRAMMING EXAMPLES (Cont) 
                     ++++++++++++++++++++++++++++++++++++++++++ 
                                                            
                                                                                                                  
Example 2: Prologue for a One-Drive System     
------------------------------------------ 
 
                     00002   ***     PROLOGUE.H89 - PROLOGUE FOR A ONE DRIVE HDOS SYSTEM 
                     00003   * 
                     00004   *       SOURCE: The HEATH Company 
                     00005   * 
                     00006   *       THIS PROLOGUE AUTOMATICALLY RESETS DRIVE SY0: SO THAT THE 
                     00007   *       USER MAY INSERT ANOTHER DISK. 
                     00008   * 
                     00009 
042.200              00010           XTEXT   ASCII 
042.200              00039           XTEXT   HOSDEF 
000.205              00107           XTEXT   HOSFQU 
                     00113 
042.200              00114           ORG     USERFWA 
                     00115 
042.200  041 243 042 00116   START   LXI     H,CCINT                                                              
042.203  076 003     00117           MVI     A,CTLC 
042.205  377 041     00118           SCALL   .CTLC                  SET UP CONTROL-C PROCESSING 
                     00119 
042.207  076 377     00120           MVI     A,377Q 
042.211  377 055     00121           SCALL   .CLEAR                 CLOSE THE CHANNEL THAT WE CAME 
IN ON 
042.213  076 000     00122           
042.215  377 010     00123           
042.217  332 271 042 00124           
042.222  076 001     00125           
042.224  337 010     00126           
042.226  332 271 042 00127           
042.231  041 261 042 00128           LXI     H,PROB 
042.234  377 062     00129           SCALL   .LOADD                 LOAD LP.DVD 
042.236  041 265 042 00130           LXI     H,PROC 
042.241  377 062     00131           SCALL   .LOAD                  LOAD AT.DVD 
                     00132 
042.243  041 254 042 00133   CCINT   LXI     H,PROA 
042.246  377 204     00134           SCALL   .RESET 
                     00135 
042.250              00136   EXIT    EQU     * 
042.250  076 001     00137           MVI     A,1 
042.252  377 000     00138           SCALL   .EXIT                  EXIT AND ABORT 
                     00139 
042.254  123 131 060 00140   PROA    DB      'SY0:',0 
042.261  114 120 072 00141   PROB    DB      'LP:',0 
042.265  101 124 072 00142   PROC    DB      'AT:',0 
                     00143 
042.271  046 012     00144   ERROR   MVI     H,NL 
042.273  377 057     00145           SCALL   .ERROR 
042.275  303 250 042 00146           JMP     EXIT 
                     00147 
042.300              00148           XTEXT   $TYPTX 
                     00166 
o42.300  000         00167           END     START 
 
00167 Statements Assembled 
18390 Bytes Free 
No Errors Detected 
 
*************************************************************************************************** 
 
 
 
 
 
 



CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL           PAGE 13-76             
================    ==================================           ==========                
 
                     APPENDIX 13-A: PROGRAMMING EXAMPLES (Cont) 
                     ++++++++++++++++++++++++++++++++++++++++++ 
                                                                                           
Example 3: Prologue for a 3-drive System:      
----------------------------------------- 
 
PROLOGUE.H17 - PROLOGUE FOR A THREE-DRIVE SYSTEM 
 
 
                     00002   ***     PROLOGUE.H17 - PROLOGUE FOR A THREE DRIVE HDOS SYSTEM 
                     00003   * 
                     00004   *       SOURCE: 1980, HEATH Company 
                     00005   * 
                     00006   *       THIS PROLOGUE IS TO BE RUN UPON BOOTUP OF A THREE DRIVE 
SYSTEM. 
                     00007   *       IT AUTOMATICALLY MOUNTS THE DISK IN SY1: AND SY2:. 
                     00008   * 
                     00009 
042.200              00010           XTEXT   ASCII 
042.200              00039           XTEXT   HOSDEF 
000.205              00107           XTEXT   HOSEQU 
                     00113 
042.200              00114           ORG     USERFWA 
                     00115 
042.200              00116   START   EQU     * 
                     00117 
                     00118   *       Initialize Control-C processing 
                     00119 
042.200  041 221 042 00120           LXI     H,CCINT 
042.203  076 003     00121           MVI     A,CTLC 
042.205  377 041     00122           SCALL   .CTLC                  Set up Control-C Processing 
                     00123 
                     00124   *       Mount the Disks 
                     00125 
042.207  041 225 042 00126           LXI     H,PROA 
042.212  377 200     00127           SCALL   .MOUNT 
                     00128 
042.214  041 232 042 00129           LXI     H,PROB                 Mount SY2: 
042.217  377 200     00130           SCALL   .MOUNT                 (Delete for a 2 drive system.) 
                     00131 
                     00132   *       EXIT 
                     00133 
042.221  076 001     00134   CCINT   MVI     A,1 
042.223  377 000     00135           SCALL   .EXIT                  EXIT and ABORT 
                     00136 
042.225  123 131 061 00137   PROA    DB      'SY1:',0 
042.232  123 131 062 00138   PROB    DB      'SY2:',0 
                     00139 
042.237  000         00140           END     START 
 
00140 Statements Assembled 
18431 Bytes Free 
No Errors Detected 
 
*********************************************************************************************** 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-77 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                    HDOS Device Drivers Programmers' Guide 
                    ++++++++++++++++++++++++++++++++++++++ 
 
                                      by          
    Al Dallas (70250,637), 
    Dale Lamm (70555,302), and     With Permission from the Heath Company 
    Tom Jorgenson (70120,153)      Originally published in REMark #20. 
    Richard Musgrave               Modified for HDOS 3.0 
                                                                     
    VERSION 1.2                                                
 
    Introduction 
    ~~~~~~~~~~~~ 
    What  is a device driver?  Under HDOS, a device driver is a relocatable 
    program (usually less than 3K) which  the  operating  system  loads  in 
    order  to communicate with external devices.  When programmers speak of 
    HDOS as a "high-level" or sophisticated operating system,  one  of  the 
    things  they have in mind is this device-independence, which makes HDOS 
    adaptable to just about any peripheral equipment. 
 
    Originally,  device drivers were a method of providing software support 
    for the Heath line of printers.  The console and  disk  device  drivers 
    were  built-in to HDOS, because 1) they constitute a minimum system, 2) 
    their functions are  more  sophisticated  than  those  of  printers  or 
    punches,  and 3) it was assumed that end users would not need access to 
    them. Users, it seems, have surprised quite a few with their knowledge, 
    programming  ability,  and  above  all,  their  desire  for  access  to 
    everything about their computer.  Heath's introduction of  the  H47  8" 
    disk   drives   demonstrated   a   need  for  greater  flexibility  for 
    mass-storage devices as well as printers.  The result was  version  2.0 
    of  HDOS,  which allows device drivers for "mass storage devices", such 
    as disk drives. 
 
    Obviously, a device driver is necessary in order to use HDOS and system 
    utilities with  a  peripheral  device.   A  functioning  device  driver 
    incorporates  the  entire  system; i.e., SYSCMD's COPY and CAT commands 
    will work with the new device, as will PIP and  even  MBASIC  (provided 
    the  driver  is loaded first).  This is very powerful, as it amounts to 
    "patching" the entire operating system and high-level languages to suit 
    potentially  unique  external  equipment.   It  also  opens the door to 
    psuedo-device driver development, such as a software clock. 
 
    We  assume  the  reader  has  a  good  knowledge  of  assembly language 
    programming techniques.  The relocatable  aspect  of  the  driver  code 
    coupled  with  the  numerous system communication parameters, flags and 
    "magic" addresses make device drivers challenging to  the  uninitiated. 
    Registered  owners  of  HDOS  2.0  have several Software Tools at their 
    disposal -- Heath supplies several device drivers in source  code  form 
    along with a plethora of .ACM files describing system equates and other 
    useful data. 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-78 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
  
    Environment 
    ~~~~~~~~~~~ 
    The  basic  HDOS  Memory  Map includes HDOS tables and data resident in 
    high memory, device driver space below that, and user code below  that. 
    Device drivers must be LOADed at the command level (by SYSCMD) in order 
    to allocate space permanently.  Loading from within a program (by using 
    the  .LOADD  system  call)  does  not 'lock' the driver in memory.  The 
    routine to do that is explained later. 
 
    At  boot-time,  HDOS  builds  a  Device Table in memory by scanning the 
    Directory for two-letter files with the .DVD extension.   It  reads  in 
    each file's header and checks that it is flagged as a device driver, in 
    an attempt to keep prying hands from creating illicit  device  drivers. 
    HDOS  must  be re-booted to re-build this table, so remember to re-boot 
    after assembling, debugging, or renaming a device  driver.   Curiously, 
    the  device table includes the physical sector of the device driver and 
    therefore deleting a .DVD file on SY0:  and  then  referencing  it  can 
    confuse  things badly.  HDOS has verified that a valid .DVD file exists 
    at a particular sector which the GRT now flags  as  available  for  new 
    files  --  prudent  programmers  will  avoid  this  situation by simply 
    re-booting after all creation, deletion or change  of  device  drivers. 
    Note  also that device drivers on disks other than SY0: are not "known" 
    to the system because they are not included in the table. 
     
    User  programs  access  any  new devices just the same as typical Heath 
    devices.  Performing an .OPENW with HL pointing to 'CK:' as the name is 
    just  as  valid as 'AT:' as the name, though what the driver chooses to 
    do with the data it is sent may be totally different.  To  better  lace 
    the  ties  with  the  operating  system,  HDOS informs the driver as it 
    performs each step.  For instance, a MOUNT CK: command causes  HDOS  to 
    first  load  the  device  driver,  then  check device ready status, and 
    finally mount the device.  At each step, as HDOS finishes what  it  has 
    to  do,  the  driver  code  is  entered and the appropriate function is 
    requested, so that the driver code is informed of the action.  The  SY: 
    driver,  for example, doesn't care about the OPEN command -- it returns 
    'no error' to HDOS, where the real work is  done  (setting  up  tables, 
    flags,  etc.).   However,  an  LP: device cannot be mounted, so if this 
    function is requested, the driver must flag an Illegal  Function  error 
    upon return.  MBASIC is even simpler.  Any device can be used as a data 
    sink, provided its driver defines it  as  capable  of  WRITE,  and  the 
    driver was first LOADed from the command mode.  Just 'OPEN "O",1,"DV:", 
    and start PRINTing data to #1. 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-79 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    PIC Header 
    ~~~~~~~~~~ 
    PIC  stands  for Position Independent Code, probably the biggest hurdle 
    to overcome for the potential device driver programmer.  Device Drivers 
    are,  for all intents and purposes ORG'd at address 6.  Why 6 and not 0 
    in a minute.  When  HDOS  loads  the  driver  into  memory,  its  exact 
    location will vary based on a number of factors including the amount of 
    RAM in the computer.  Therefore, HDOS must  relocate  (change  all  the 
    addresses)  in  the  driver  before  running (entering) it, so that the 
    various JMPs and CALLs know where they're  going.   To  keep  track  of 
    which  bytes need relocation, the assembler treats PIC code differently 
    and generates a relocation table of bytes at  the  end  of  the  actual 
    program.   Routines in HDOS process this table and change the necessary 
    addresses. 
 
    Binary  files  in HDOS are stored with a header, or descriptor, to flag 
    the file type and note the starting and entry addresses and the  length 
    of  code.   For  this  purpose, Heath has supplied the PICDEF.ACM file, 
    which (starting at 0) generates a  six-byte  header,  and  creates  the 
    offset mentioned above.  The header format is: 
 
              Byte    Value     Description 
              ~~~~    ~~~~~     ~~~~~~~~~~~ 
               0      377Q      Binary File Flag 
               1        1       File Type = PIC 
              2,3               Length of Code + Rel Table 
              4,5               Address of Start of Rel Table 
 
    These  are the actual bytes -- assembly language (as opposed to machine 
    language) programmers do not refer to them directly.  It  is  important 
    to  refer  to  actual  values  and absolute addresses by their symbolic 
    names because the code is much more easily adapted to  future  releases 
    (it  also  helps  reduce  a  common source of errors).  The only way to 
    learn these techniques is by observing examples -- and the Heath device 
    drivers  and  XTEXTs  are especially good.  Insert the PICDEF.ACM as an 
    XTEXT last thing before the first actual program instructions, followed 
    by CODE PIC in the opcode and operand fields.  The CODE PIC pseudo must 
    come before the start of the program (so that the entire  program  will 
    be  relocatable),  but  after all the external definitions (such as H17 
    ROM addresses) which are not to be relocated. 
 
    The  INIT  program  supplied  with HDOS is capable of initializing just 
    about  any  mass-storage  device  when   passed   certain   parameters. 
    MAKMSD.ABS  is  a  program  to  concatenate  your  xx.DVD  file  with a 
    xxINIT.SYS  file  containing  these  parameters   and   device-specific 
    initialization routines. One format for the xxINIT.SYS file is: 
     
            512-byte Read-Only Boot Driver (org'd at 42200A) 
 
            Sub-Functions 
                    Media Initialization 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-80 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    Pic Header (Cont) 
    ~~~~~~~~~~~~~~~~~ 
            Volume Parameters 
                    Cluster Sizes 
                    Directory Offsets 
 
    Studying  the SYINIT and DDINIT examples distributed with HDOS 2.0 will 
    better explain how  these  files  must  be  configured,  but  there  is 
    considerable latitude. 
 
    The first 17 bytes of the file constitute the device header, defined as 
    follows: 
 
             Byte    Value     Description 
             ~~~~    ~~~~~     ~~~~~~~~~~~ 
              0       307Q     Device Driver Flag 
              1                Device Capabilities Byte 
              2                Mounted Units Mask 
              3                Maximum Number of Units 
              4-11             Unit Capabilities for 0 - 7 
              12      307Q     Device Driver Flag (if device will take 
                                 Set options) 
              13-14            Pointer to INIT code (set by MAKMSD) 
              15      307Q     Device Driver Flag (if driver is specific 
                                 to HDOS 3.0) 
              16               Set Preamble Size 
 
    Bear  in mind that these are the actual bytes, not the symbolic values. 
    It  is  dangerous  to  ignore  the   Heath   XTEXTs,   because   future 
    compatibility  requires  their use.  The actual bytes are shown here as 
    an aid to understanding what the XTEXTs accomplish.  The Device  Driver 
    flag  is apparently just an arbitrary 11000111 pattern used to validate 
    the driver code.  The Device Capability Byte is defined: 
 
             Bit:    7 6 5 4 3 2 1 0 
 
              0      Directory-Type Device 
              1      Capable of Read 
              2      Capable of Write 
              3      Capable of Random-Access 
              4      Capable of Character Mode 
 
    These  capability  codes are defined in the DEVDEF.ACM file supplied by 
    Heath.  The Mounted Units Mask is typically defined as 0  for  variable 
    numbers  of  units,  or  1 for devices with only one unit.  The Maximum 
    Number of Units is 8 (0..7) for any device, but  your  driver  can  set 
    this  to  any  value  between  1  and 8.  For each valid unit, the unit 
    capability is flagged as explained above,  and  each  invalid  unit  is 
    flagged  with a zero.  These 13 bytes are used directly in building the 
    Device Table entry in HDOS.  Another 20 bytes  are  reserved  by  Heath 
    prior  to  the Set Entry Point, by use of the symbolic SET Entry Point, 
    DVD.STE. 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-81 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    Set Entry 
    ~~~~~~~~~ 
    The SET.ABS program is used to patch device driver files, among several 
    other things.  The address 53Q is considered the SET entry  point,  and 
    the  next  469  bytes  are reserved for SET processing.  To assure that 
    these important addresses are maintained, Heath device drivers make use 
    of  the error-checking abilities of ASM to flag an error if the correct 
    address is not produced.  DVD.STE is defined  as  53Q,  and  this  code 
    follows the header bytes: 
 
            .       SET     025Q     (SET is used as an ASM psuedo here) 
                    ERRNZ   *-. 
                    DS      DVD.STE-. 
 
            SETN    EQU     * 
                    ERRNZ   *-DVD.STE 
 
    A  'P' error is generated while assembling the program if this critical 
    address (SETN) is not 53Q,  but  the  technique  allows  the  value  of 
    DVD.STE  to  be  changed  at any time, reassembling, and preserving the 
    intent of the code.  An undocumented feature of the  2.0  Assembler  is 
    the  ability to turn relocation on and off, and therefore legally SET a 
    value to the Origin pointer (*), thus: 
 
                    CODE    -REL     Turn Relocation Off 
            .       SET     * 
                    CODE    +REL     Turn Relocation On 
                    DS      DVD.ENT-. 
 
    These   procedures  are  not  mandatory,  they  simply  represent  good 
    programming practice, make the code easier to update,  and  easier  for 
    others to work on. 
     
    The  SET  program loads the device driver into a convenient location in 
    memory and relocates the first  512  bytes  (the  Header  and  the  SET 
    processor).   It  then  enters the driver's SET portion, passing a unit 
    number parameter in A, and a pointer to the rest of the command line in 
    DE.   From  here,  your  program  can do anything you want, except that 
    memory values thus updated must be in the part of the code that was not 
    relocated.   Only  this  portion  is  read back to the disk by SET when 
    done, to  save  having  to  un-relocate  the  set  code.   Rather  than 
    free-wheeling,  however,  due  to  the limited space for set functions, 
    most Heath drivers make use of routines in the SET.ABS  program  itself 
    to  process  the various options.  These useful routines are documented 
    in Appendix C. 
 
    The primary routine, $SOP, is the Set Option Processor.  $SOP is called 
    with BC pointing to the command line, DE pointing to a processor table, 
    and  HL  pointing to an option table.  $SOP matches the command line to 
    an option in the table, uses the index found in this table to fetch the 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-82 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    SET Entry (Cont) 
    ~~~~~~~~~~~~~~~~ 
    processor  (sub-routine) address, and then jumps to that processor with 
    HL pointing to any additional data in the option table and BC  pointing 
    to  the  rest  of  the  command  line.   The option table is defined as 
    follows: 
 
            DW      End of Table Address 
            DB      Number of Data Bytes following option 
            DB      'SEARCH STRIN','G'+200Q 
            DB      Index into Processor Table (8 Bit) 
            DB      Additional Data Bytes (N - 1) 
            DB      'NEXT STRIN','G'+200Q 
 
            DB      0       (End of Table) 
 
            The processor table lists routines: 
 
            DW      HELP 
            DW      FLAG... etc. 
 
    Refer  to  the  Heath  Device Drivers for the assembly language methods 
    used to implement these  tables  and  provide  for  modification  ease, 
    documentation, and compatibility with future releases. 
     
    SET commands should include a HELP command which prints a list of valid 
    commands.  Typically, SET commands will either set  a  flag  bit  in  a 
    variable somewhere, or change a value.  To assist these operations, the 
    SET.ABS program includes the $PBF and $PBV routines.  Both routines are 
    compatible  with $SOP, so that the FLAG or VAL processors listed in the 
    processor table need only jump to $PBF  or  $PBV.   The  difference  is 
    evident  in  the  option table data structure.  $PBF expects at least 5 
    data bytes following the option string and $PBV expects 6. 
     
            $PBV Data Bytes: 
               DB   Default Radix (2,8,10) 
               DB   Minimum Value 
               DB   Maximum Value 
               DW   Address of Variable 
 
            $PBF Data Bytes: 
               DB   Mask (Bits to Alter) 
               DB   Bit Pattern to Set 
               DW   Address of Variable 
               DB   0 (if 6 data bytes are used) 
 
    $PBV  is quite sophisicated.  The Default Radix is used unless the user 
    specifies B, D, Q, etc.  after the value.  $PBF uses a  fail-safe  mask 
    just  as  the  .CONSL  SCALL does (see the System Programmer's Guide to 
    HDOS).  The remaining SET routines are described in the new  SETCAL.ACM 
    included as Appendix C. 
     



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-83 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    Driver Entry 
    ~~~~~~~~~~~~ 
    Starting  at  DVD.ENT  (2000A,  typically), the remainder of the device 
    driver code is just that -- device driver.  HDOS enters at this address 
    with  (A) equal to a Device Communication code as defined in DDDEF.ACM. 
    If (A) exceeds DC.MAX, the driver must flag an Illegal  Request  error. 
    Functions  which  are  logical  for the device in question (Write for a 
    printer, for example)  must  be  directed  to  appropriate  processors. 
    However, inappropriate functions must return errors to HDOS.  In a gray 
    area between are functions which are not erroneous,  but  at  the  same 
    time  require  no  processing  by  the  driver.  These functions simply 
    return no error to HDOS. 
     
    READ enters with a byte count in BC (typically a multiple  of  256),  a 
    buffer  address  in  DE  (to  which the data must be read), and a block 
    number in HL.  A block number is  equal  to  a  logical  sector  number 
    (i.e.,  320  as opposed to Track 32, Sector 0).  A serial device simply 
    ignores any value in HL. 
     
    WRITE  is  the  same  as  READ, except that DE points to the data to be 
    written out to the device. 
     
    READ REGARDLESS is anachronistic.  It involves reading the label sector 
    on  the  disk, disregarding volume number protection.  Chances are good 
    your driver can either map it to READ, return no  error,  or  return  a 
    Device Not Suitable error without processing it at all. 
     
    OPENR  opens a file for read.  Disk drivers typically ignore all OPENs, 
    but a tape device driver might use OPENR as a signal to rewind  a  data 
    tape. 
     
    OPENW  opens  a  file  for write.  The LP: device driver, for instance, 
    uses this routine to initialize and prepare the device, a function that 
    would probably be handled by READY if the driver had been first written 
    under 2.0. 
 
    OPENU  opens  a  file  for update (random read/write).  You most likely 
    will not have to deal with this, in that  the  really  tricky  part  is 
    handled by HDOS. 
     
    CLOSE  presents  a  good opportunity to dump a buffer out to a printer, 
    but disk drivers typically ignore it. 
     
    ABORT cancels the current operation.  The SY: driver resets the device, 
    seeks  track zero, and exits with no error flagged.  LP: flags a Device 
    Driver Abort error before leaving, however. 
     
    MOUNT is used by the SY: driver to set up volume protection and to seek 
    track  zero.   (Register  L = the volume number at entry).  LP: ignores 
    this routine. 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-84 
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    Driver Entry (Cont) 
    ~~~~~~~~~~~~~~~~~~~ 
    LOAD  is  used  by SY: to initialize constants in system RAM, re-vector 
    obsolete ROM code, etc. This is a new function for 2.0. 
     
    READY is another function added for 2.0.  Your code should perform some 
    test  to  verify that your device is ready and return no error to HDOS. 
    'C' set indicates that the device is not ready, and HDOS  will  provide 
    the  loop  -- this way, HDOS remains cognizant of interrupt requests as 
    opposed to hanging up in your routine. 
     
    The  following  functions  added  in  HDOS  3.0.  Refer to the supplied 
    device driver source code for descriptions and examples. 
 
                Update Set Parameters 
                Unload Device Driver 
                Interrupt Service 
                Device Specific Function 
 
    Often, a device driver may want, under certain circumstances,  to  load 
    itself  permanently  in  memory.   The  following  code from SYSCMD.SYS 
    explains the simple process. 
 
            LHLD    S.SYSM          Update System FWA 
            SHLD    S.RFWA 
            LHLD    AIO.DTA         Get Device Table Address 
            LXI     D,DEV.REX       Offset to Residency Flag 
            DAD     D 
            MOV     A,M 
            ORI     DR.PR           Set Flag = Perm. Resident 
            MOV     M,A 
 
    These  symbols  are  defined in the DEVDEF.ACM, ESINT.ACM and ESVAL.ACM 
    files.  This  works  because  HDOS  has  variable  pointers  which  are 
    addressing  our  device  driver as it is entered.  If the code is to be 
    locked, this routine must be called before  any  other  device  I/O  is 
    attempted.   In  fact,  it is usually not a good idea to perform system 
    calls from within the device driver, because it was entered  using  the 
    system call process which is only partially re-entrant. 
     
    You may want to include a LON G pseudo in your code just before the end 
    to direct the assembler to list the relocation  table.   Heath  drivers 
    typically  include  a  patch  area  here as well.  With PIC code, entry 
    begins at PIC.COD, so there is no need for  an  operand  with  the  END 
    statement. 
     
 
    Summary 
    ~~~~~~~ 
    Writing  or  modifying  a  device  driver  should  not  be  beyond  the 
    capabilities of any assembly language  programmer.   Looking  at  naked 
 



    CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL        PAGE 13-85 
    ================   ==================================        ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    Summary (Cont) 
    ~~~~~~~~~~~~~~ 
    Heath  driver code can be confusing due to the large number of symbolic 
    values assigned in .ACM files elsewhere, but studying these examples is 
    the  best  way  to  learn about device drivers.  Remember to define all 
    external (non-relocating) addresses before using the CODE  PIC  psuedo, 
    and  to  confine  the variable accessed by SET to addresses higher than 
    DVD.ENT. 
     
    This guide represents Al Dallas' study of device drivers and  the  HDOS 
    Version  1.6  source  code  listings,  along  with many suggestions and 
    helpful guidance of two HDOS wizards,  Dale  Lamm  and  Tom  Jorgenson. 
    There  are no warranties, express or implied and Heath Company takes no 
    responsibility for the data herein. 
 
 
    APPENDIX A 
    Minimum XTEXTs 
                    
    DDDEF   .ACM       Device Driver Communication Flags 
    DEVDEF  .ACM       Capability Flags, etc. 
    DVDDEF  .ACM       Driver Header Equates 
    ECDEF   .ACM       Error Code Definitions 
    ESINT   .ACM       For Direct HDOS operations only 
    ESVAL   .ACM       Direct operations only 
    PICDEF  .ACM       PIC Format 
    SETCAL  .ACM       Routines in SET.ABS 
 
 
    APPENDIX B 
    Typical Driver Layout 
 
    0 - PIC.COD     PIC Header 
    PIC.COD - 20    Driver Header 
    21 - 42         Reserved 
    DVD.STE -       SET Code 
    DVD.ENT-1              Entry Processor 
                           Processor Routines 
                           Processor Table 
                           Option Table 
    DVD.ENT - ?     Driver Code 
                           Entry Processor 
                           Processor Routines 
                           Sub-Routines 
                           Data Area 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-86    
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    APPENDIX C 
    SETCAL.ACM 
 
    SETCAL  SPACE   4,10 
    **      SETCAL - ROUTINES IN SET.ABS 
    * 
 
    $SNA    SPACE   3,10 
    **      SNA - SCAN TO NEXT ARGUMENT 
    *       SNA IS CALLED TO SKIP OVER BLANKS 
    * 
 
 
    APPENDIX C 
    SETCAL.ACM (Cont) 
 
    *       ENTRY:  (BC) = LINE POINTER 
    *       EXIT:   (BC) UPDATED 
    *               'Z' SET IF AT END OF LINE 
    *       USES:   A,F,B,C 
    $SNA    EQU     42201A 
 
    $DCS    SPACE   3,10 
    **      DCS - DELIMIT CHARACTER STRING 
    * 
    *       ENTRY:  (BC) = LINE POINTER 
    *       EXIT:   (BC) UPDATED 
    *               (DE) = ADDR FIRST STRING CHAR 
    *               (HL) = ADDR LAST STRING CHAR 
    *               (A) = STRING LENGTH 
    *               'Z' SET IF STRING EMPTY 
 
 
    APPENDIX C 
    SETCAL.ACM (Cont) 
 
    *       USES:   ALL 
    $DCS    EQU     42204A 
 
    $CNA    SPACE   3,10 
    *       CNA - CONVERT NUMERIC ARGUMENT 
    *       CNA CONVERTS ARGUMENT IN COMMAND LINE TO 
    *       A BINARY VALUE 
    * 
    *       ENTRY:  (BC) = LINE POINTER 
    *               (A) = DEFAULT RADIX 
    *       EXIT:   (BC) = UPDATED 
    *               (HL) = VALUE 
    *               'C' SET IF ERROR 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-87    
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    APPENDIX C 
    SETCAL.ACM (Cont) 
 
    *       USES:   ALL 
    $CNA    EQU     42207A 
 
    $FST    SPACE   3,10 
    **      FST - FIND IN SERIAL TABLE 
    *       FST SEARCHES A SERIAL TABLE FOR A 
    *       SPECIFIC KEY 
    * 
    *       ENTRY:  (HL) = ADDR OF TABLE 
    *               (DE) = ADDR OF SEARCH KEY 
    *       EXIT:   (DE) = UNCHANGED 
    *               'Z' SET IF MATCH FOUND 
    *       USES:   A,F,H,L 
    $FST    EQU     42212A 
    $TBLS   SPACE   3,10 
    **      TBLS - TABLE SEARCH 
    *       TABLE FORMAT: 
    *       DB      KEY1,VAL1 
    *       *       * 
    *       *       * 
    *       DB      KEYN,VALN 
    *       DB      0 
 
    * 
    *       ENTRY:  (A) = PATTERN 
    *               (HL) = ADDR OF TABLE 
    *       EXIT:   (A) = PATTERN IF FOUND 
    *               'Z' SET IF FOUND 
    *       USES:   A,F,H,L 
    $TBLS   EQU     42215A 
 
    $WTBLS  SPACE   3,10 
    **      WTBLS - WORD TABLE SEARCH 
    *       LOOK-UP WORD VALUE USING 1-BYTE KEY 
    *       TABLE FORMAT: 
    *       DB      KEY1 
    *       DW      VAL1 
    *       *       * 
    *       *       * 
    *       DB      KEYN 
    *       DW      VALN 
    *       DB      0 
    * 
    *       ENTRY:  (A) = PATTERN 
    *               (HL) = ADDR OF TABLE 
    *       EXIT:   (A) = PATTERN IF FOUND 
    *               'Z' SET IF FOUND 
    *       USES:   A,F,H,L 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-88    
    ================    ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers Programmers' Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
    APPENDIX C 
    SETCAL.ACM (Cont) 
 
    $WTBLS  EQU     42220A 
 
    $LBD    SPACE   3,10 
    **      LBD - LOOK UP BAUD RATE DIVISOR 
    * 
    *       ENTRY:  (DE) = BINARY BAUD RATE 
    *       EXIT:   'Z' SET IF VALID BAUD RATE 
    *               (HL) = DIVISOR 
    *       USES:   A,F,D,E,H,L 
    $LBD    EQU     42223A 
 
    $SOP    SPACE   3,10 
    **      SOP - SET OPTION PROCESSOR 
    * 
    *       ENTRY:  (BC) = LINE POINTER 
    *               (DE) = PROCESSOR TABLE ADDRESS 
    *               (HL) = OPTION TABLE ADDRESS 
    *       EXIT:   (RET) TO PROCESSOR IF NO ERROR 
    *               (BC) = UPDATED 
    *               (HL) = NEXT AVAILABLE DATA BYTE 
    *       USES:   ALL 
    $SOP    EQU     42226A 
 
    $PBF    SPACE   3,10 
    **      PBF - PROCESS BYTE FLAG 
    * 
    *       ENTRY:  (HL) = ADDR OF TABLE VECTOR 
    *       EXIT:   'C' SET IF ERROR 
    *       USES:   ALL 
    $PBF    EQU     42231A 
 
    $PBV    SPACE   3,10 
    **      PBV - PROCESS BYTE VALUE 
    * 
    *       ENTRY:  (BC) = NEXT CHAR ADDRESS 
    *               (HL) = TABLE VECTOR INDEX 
    *       EXIT:   (BC) UPDATED 
    *               'C' SET IF ERROR 
    *       USES:   ALL 
    $PBV    EQU     42234A 
 
    *********************************************************************** 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-89 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
                         
*       APPENDIX D 
*       CK.DVD By Dale Lamm 
* 
*       TITLE   'Super-Simple Super-Small CK.DVD' 
*       STL     'Version 2.1  11-Jun-81  D. Lamm' 
*       This  begins  an  elementary  example of a "device driver", in this 
*       case, a real-time clock.  For the sake of simplicity, no XTEXTs are 
*       used.  Instead, all required symbol definitions are included in the 
*       main body of the source code (this file). 
*       SPACE   7 
 
DVDFLV  EQU     0C7H            THIS FLAGS TO HDOS AS A DEVICE DRIVER 
DVD.ENT EQU     200H            STANDARD DEVICE DRIVER ENTRY POINT 
DC.MAX  EQU     11              ELEVEN DRIVER FUNCTIONS CURRENTLY SUPPORTED 
DT.CR   EQU     00000010B       FLAG BIT; CAPABLE OF READS 
DT.CW   EQU     00000100B       FLAG BIT; CAPABLE OF WRITES 
EC.EOF  EQU     01H             ERROR CODE; END OF FILE 
EC.FNO  EQU     09H             ERROR CODE; CHANNEL NOT OPEN 
EC.ILR  EQU     0AH             ERROR CODE; ILLEGAL REQUEST 
EC.FAO  EQU     19H             ERROR CODE; FILE ALREADY OPEN 
UIVEC   EQU     201FH           HDOS UIVEC TABLE FROM MTR-88 
$TBRA   EQU     193EH           ROM TABLE BRANCH ROUTINE 
NL      EQU     0AH             HDOS NEWLINE CHARACTER 
CAL     EQU     -1-500          CLOCK CALIBRATION; 500 TICKS=1 SECOND 
        SPACE   3 
        CODE    PIC 
$       EQU     *+DVD.ENT-6     NEED TO DEFINE DVD.ENT AS A RELOCATABLE SYMBOL 
        DB      DVDFLV          STICK IN THE DEVICE DRIVER FLAG 
        DB      DT.CR+DT.CW     MAKE IT CAPABLE OF READS AND WRITES 
        DB      1               MOUNTED UNIT MASK 
        DB      1               MAXIMUM NUMBER OF UNITS 
        DB      DT.CR+DT.CW     SUB-CAPABILITY IS SAME AS UNIT CAPABILITY 
        DS      7               DON'T CARE ABOUT UNITS 2-8 SUB-CAPABILITY 
        DB      0               NO SET OPTIONS AVAILABLE 
        DS      $-*             RESERVE SPACE UP TO DRIVER'S ENTRY POINT 
        STL     'DRIVER ENTRY POINT' 
        EJECT 
***     CK.DVD  PROCESS ENTRY POINT 
* 
*       ENTRY:  (A)     = PROCESS CODE 
*               (BC)    = BYTE COUNT 
*               (DE)    = DATA BUFFER ADDRESS 
* 
*       EXIT:   (PSW)   = CARRY CLEAR IF NO ERROR 
*                       = CARRY SET IF ERROR; ERROR CODE IN (A) 
* 
*       USES:   DEPENDS ON FUNCTION CALLED 
* 
* 
* 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-90 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
START   EQU     *               HDOS COMES HERE EVERY TIME DRIVER IS CALLED 
        CPI     DC.MAX          SEE IF REQUESTED FUNCTION IS UNDEFINED 
        JNC     ILLEGAL         IF SO, TREAT AS ILLEGAL REQUEST 
        CALL    $TBRA           LET THE TABLE BRANCH ROUTINE FIND CORRECT JUMP 
        DB      READ-*          FNCTN 0= READ FROM DEVICE 
        DB      WRITE-*         FNCTN 1= WRITE TO DEVICE 
        DB      IGNORE-*        FNCTN 2= READ REGARDLESS 
        DB      OPREAD-*        FNCTN 3= OPEN FOR READS 
        DB      OPWRITE-*       FNCTN 4= OPEN FOR WRITES 
        DB      ILLEGAL-*       FNCTN 5= OPEN FOR UPDATES 
        DB      CLOSE-*         FNCTN 6= CLOSE CHANNEL TO DEVICE 
        DB      CLOSE-*         FNCTN 7= ABORT; TREAT AS CLOSE 
        DB      ILLEGAL-*       FNCTN 8= MOUNT DEVICE 
        DB      LOAD-*          FNCTN 9= LOAD DEVICE 
        DB      IGNORE-*        FNCTN 10= EXAMINE DEVICE READY STATUS 
        STL     'DOCUMENTATION' 
        EJECT 
 
*       When  HDOS  calls  up a device driver, the accumulator contains the 
*       function that HDOS wants the driver to perform.   In  HDOS  version 
*       2.0, there are eleven possible functions.  The clock driver ignores 
*       some, treats others  as  illegal,  and  processes  the  rest.   The 
*       routine  at  label  "Start"  uses  the  supplied function number to 
*       branch into the proper handler, via the ROM routine  called  "Table 
*       Branch,"  or  $TBRA for short.  It is up to the individual function 
*       processors to handle errors that occur within a processor. 
*            
*       In  general,  if a device driver returns with a set carry bit, HDOS 
*       assumes that an error occured.  The single case here where an error 
*       is  when  reading  from  the  clock.   An  "End of File" error must 
*       happen, or HDOS will continue to read until you  abort  the  driver 
*       with CTRL-C. 
*        
*       The  "Load"  processor  is special in that it can only happen once. 
*       When you type "Load CK:" from the  HDOS  command  mode,  HDOS  will 
*       check  that  the driver's address is in the device table, which was 
*       built upon boot-up.  If so, it spools the driver code  into  memory 
*       and  enters at the label called "Load".  The load function places a 
*       detour in HDOS's normal TICCNT interrupt path which causes  control 
*       to   branch  to  the  label  called  "Clock"  every  TICCNT  (2  ms 
*       intervals).  The routine called "Clock" will determine whether  500 
*       of  these  TICCNTs  have  occured,  and  if  so,  will  update  the 
*       time-of-day held in the storage area labeled "Timebuf."  The "Read" 
*       and  "Write" functions are the only functions that pull data out of 
*       the buffer or insert data into the buffer.    
* 
 
 
 
 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-91 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
*       After  the Load Processor is finished patching internal vectors, it 
*       returns control to HDOS.   The  operating  system  then  flags  the 
*       device  driver  as  being  permanent in memory.  Further "Load CK:" 
*       commands are ignored by HDOS.  If they were not, the  system  would 
*       crash  as  soon  as the "Load" processor trys to patch vectors that 
*       have already been patched.  No provision is made  to  "Unload"  the 
*       driver  after  it  has  been  made  permanent.   The  CPU  overhead 
*       associated with maintaining the correct time-of-day is minimal, and 
*       you  will  not  notice  any degradation in CPU execution speed in a 
*       practical sense. 
*        
*       The  "Illegal"  function  is  branched  to  when  HDOS  issues   an 
*       impossible  or  meaningless  command  to  the driver.  The "Ignore" 
*       function does just that ...  ignore.  It is called when the command 
*       is meaningless, yet otherwise harmless. 
*            
*       If  either  the  "Read" or "Write" function is executed, they first 
*       determine whether there is already file I/O in  progress  determine 
*       whether  there  is  already file I/O in progress for the respective 
*       function.  If that is the case, an error is returned and the second 
*       invocation  of  "Read" or "Write" is ignored.  The "Close" function 
*       resets  both  the  "Read"  and  "Write"  functions  status   flags. 
*       Channels  open  on CK.DVD must be closed before new channels can be 
*       opened on  the  clock  driver.   
*       EJECT  
* 
*       Another point that bears explanation is the "Xfercnt" storage cell, 
*       used during writes to the clock's buffer.  Since we have no way  of 
*       knowing  for  sure  how many bytes the caller wants to stick in the 
*       clock buffer, we have to have a means of limiting insertions  to  a 
*       specific number of bytes, in this case, eight. 
* 
*       When  Basic  writes  to  a file, it usually sends along enough null 
*       characters to make the file writes multiples of 256 bytes.   If  we 
*       simply moved the supplied bytes into the time buffer and beyond, we 
*       would likely crash whatever was loaded in memory  above  the  clock 
*       driver (usually another driver).  During writes to the time buffer, 
*       a running total of how many bytes have already  been  sent  to  the 
*       buffer  is  kept  in  "Xfercnt".   As soon as eight bytes have been 
*       written, the remainder are simply eaten up and not used. 
* 
*       The "Xfercnt" is reset to eight when the clock driver is once again 
*       opened for writes. 
*            
*       Another  case  for  possible  trouble is when the clock is open for 
*       reads and the caller requests but one byte.  If we let  the  caller 
*       get  the  time  out of the buffer in this fashion, chances are that 
*       the time will change in between single byte transfers.  That is why 
*       the "Read" function processor checks to make certain that more than 
*       eight bytes have been requested.  For  the  sake  of  Basics  "line 
* 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-92 
     ================  ==================================        ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
*       input"  function,  we always send a "newline" immediately after the 
*       current time-of-day.  If the caller requests more than nine  bytes, 
*       it  is  treated  to  a barrage of nulls until its appetite has been 
*       satisfied, or until a full 256  bytes  have  been  sent,  whichever 
*       comes  first.   Basic  will  ask  for 256 bytes at a time, but user 
*       programs or PIP will ask for varied amounts of  bytes.   After  the 
*       requested number of bytes, including nulls, have been supplied, the 
*       "Read" processor returns with the carry bit set,  and  an  "End  of 
*       File" error code in the accumulator. 
             
*       At  the  end  of  this listing are two Benton Harbor Basic routines 
*       that allow you to read or write to the clock.  It is possible, from 
*       the  HDOS  command  mode,  to do the same.  If you want to see what 
*       time it is, type "COPY TT:=CK:", or more simply, "PIP CK:". 
      
*       If you want to set the clock from the command mode, type this: 
*       COPY CK:=TT:      [carriage return] 
*       12:34:56          [or whatever] 
*       CTL-D 
* 
*       Note  that  anything  beyond  eight  characters  is  ignored by the 
*       "Write" processor inside the clock driver. 
*        
*       Experienced assembly language programmers will have no  problem  in 
*       getting the current time from the driver, or updating the time from 
*       their special programs.  The driver is small as far as drivers  go, 
*       only about 300 bytes of memory are given up to it. 
*        
*       Note  finally that ANY interrupt driven clock will lose time if the 
*       interrupts are turned off for some reason, such  as  SY:  accesses. 
*       The  value  of  the  CAL  factor  has been chosen to yield accurate 
*       timekeeping only if the SY:'s are not heavily used  and  the  CPU's 
*       clock frequency is exact. 
             
            STL     'CK.DVD FUNCTION PROCESSORS' 
            EJECT 
ILLEGAL EQU     *            COME HERE IF ILLEGAL DRIVER FUNCTION REQUESTED 
        MVI     A,EC.ILR     PUT THE "ILLEGAL REQUEST" ERROR CODE IN (A) 
        STC                  SO HDOS KNOWS AN ERROR OCCURRED 
        RET                  TO WHOMEVER CALLED THE DRIVER 
        SPACE   3,9 
IGNORE  EQU     *            COME HERE TO IGNORE A REQUESTED FUNCTION 
        XRA     A            CLEAR THE CARRY BIT 
        RET                  TO WHOMEVER CALLED THE DRIVER 
        SPACE   3,9 
LOAD    EQU     *            COME HERE WHEN USER TYPES "LOAD CK:" 
        LHLD    UIVEC+1      GET THE HDOS "TICCNT" VECTOR 
        SHLD    CLKRET+1     INSTALL AT END OF OUR CLOCK ROUTINE 
        LXI     H,CLOCK      GET OUR CLOCK'S START ADDRESS 
        SHLD    UIVEC+1      REPLACE THE HDOS "TICCNT" VECTOR 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-93 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
        XRA     A            CLEAR THE CARRY BIT 
        RET                  RETURN, SHOWING NO ERROR 
        SPACE   3,9 
OPREAD  EQU     *            FLAG TO DEVICE THAT A CHANNEL IS OPEN ON IT 
        LDA     RSTAT        FETCH OUR READ STATUS FLAG 
        ORA     A            SEE IF ALREADY OPEN FOR READS 
        JZ      OPREAD1      NOT OPEN, SO SKIP NEXT 
        MVI     A,EC.FAO     PUT "FILE ALREADY OPEN" ERROR CODE IN (A) 
        STC                  TELL HDOS WE HAVE AN ERROR 
        RET 
OPREAD1 MVI     A,-1         PUT A 0FFH IN READ STATUS FLAG CELL 
        STA     RSTAT        THIS FLAGS THE DEVICE NOW OPEN 
        XRA     A            CLEAR CARRY BIT 
        RET 
        SPACE   3,9 
OPWRITE EQU     *            FLAG TO DEVICE THAT A CHANNEL IS OPEN ON IT 
        LDA     WSTAT        FETCH OUR WRITE STATUS FLAG 
        ORA     A            SEE IF ALREADY OPEN FOR WRITES 
        JZ      OPWRIT1      NOT OPEN, SO SKIP NEXT 
        MVI     A,EC.FAO     PUT "FILE ALREADY OPEN" ERROR CODE IN (A) 
        STC                  TELL HDOS WE HAVE AN ERROR 
        RET 
OPWRIT1 MVI     A,-1         PUT A 0FFH IN WRITE STATUS FLAG CELL 
        STA     WSTAT        THIS FLAGS THE DEVICE NOW OPEN 
        MVI     A,8          PUT MAXIMUM BYTE XFER COUNT IN HOLD PLACE 
        STA     XFERCNT 
        LXI     H,TEMPBUF    POINT AT FIRST ADDRESS IN TEMPORARY BUFFER 
 
        SHLD    BUFPTR       SAVE IT IN POINTER HOLDING PLACE 
        XRA     A            CLEAR CARRY BIT 
        RET 
        SPACE   3,9 
CLOSE   EQU     *            FLAG DEVICE DISCONNECTED FROM ACTIVE CHANNELS 
        XRA     A            ZERO (A) 
        STA     RSTAT        RESET "OPEN FOR READ" FLAG, IF SET 
        STA     WSTAT        RESET "OPEN FOR WRITE" FLAG, IF SET 
        RET                  WITH A CLEAR CARRY BIT 
        SPACE   3,9 
MOVE    EQU     *            MOVE (BC) BYTES FROM ((HL)) TO ((DE)) 
        MOV     A,B          SEE IF BYTE COUNTER AT ZERO 
        ORA     C 
        RZ                   ALL FINISHED; (DE)=NEXT *TO* ADDRESS 
        MOV     A,M          FETCH BYTE TO BE MOVED 
        STAX    D            WRITE BYTE VIA (DE) 
        INX     H            BUMP *FROM* LOCATION 
        INX     D            BUMP *TO* POINTER 
        DCX     B            DECREMENT BYTE COUNTER 
     B  JMP     MOVE         LOOP UNTIL (BC) DECREMENTED TO ZERO 
        STL     'CK.DVD WRITE PROCESSOR' 
        EJECT 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-94 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
***     CK.DVD  WRITE PROCESSOR 
* 
*       ENTRY:  (BC)    = BYTE COUNT; MUST BE EQUAL TO OR GREATER  
*                         THAN EIGHT. 
*               (DE)    = BUFFER ADDRESS; WHERE NEW TIME STRING IS  
*                         COMING FROM. 
*       EXIT:   (PSW)   = CARRY CLEAR IF NO ERROR 
*                       = CARRY SET IF ERROR; EXIT THROUGH "ILLEGAL" 
* 
*       USES:   ALL 
* 
* 
WRITE   EQU     *            COME HERE WHEN CALLER WANTS TO WRITE TO DVD 
        LDA     WSTAT        FIRST, SEE IF WE'RE OPEN FOR WRITES 
        ORA     A 
        MVI     A,EC.FNO     PREPARE OURSELVES FOR "CHANNEL NOT OPEN" ERROR 
        STC 
        RZ                   RETURN IF CHANNEL WAS NOT PREVIOUSLY OPENED 
WRITE1  MOV     A,B          SEE IF BYTE COUNT AT ZERO 
        ORA     C 
        RZ                   RETURN WITH CLEAR CARRY; TIME IN "TEMPBUF" 
        LDA     XFERCNT      SEE HOW MANY BYTES WE'VE WRITTEN SO FAR 
        ORA     A            SEE IF MAXIMUM NUMBER WRITTEN INTO "TEMPBUF" 
        JZ      WRITE2       EIGHT BYTES WRITTEN; NOW MOVE TO REAL BUFFER 
        DCR     A            ADJUST TRANSFER COUNT 
        STA     XFERCNT      UPDATE TRANSFER COUNT 
        LHLD    BUFPTR       GET POINTER INTO "TEMPBUF" 
        LDAX    D            FETCH CHARACTER TO BE WRITTEN INTO "TEMPBUF" 
        MOV     M,A          PLACE CHARACTER IN "TEMPBUF" 
        INX     H            POINT TO NEXT POSITION IN BUFFER 
        SHLD    BUFPTR       UPDATE POINTER INTO "TEMPBUF" 
        INX     D            BUMP POINTER INTO SOURCE FIELD 
        DCX     B            DECREMENT BYTE COUNTER 
        JMP     WRITE1       TRY AND TRANSFER SOME MORE CHARACTERS 
WRITE2  LXI     H,TEMPBUF    SOURCE FOR MOVE 
        LXI     D,TIMEBUF    DESTINATION OF MOVE 
        LXI     B,8          HOW MANY TO MOVE 
        DI                   DON'T WANT "TICCNTS" TO MESS US UP ! 
        CALL    MOVE         PUT TIME IN THE REAL "TIMEBUF" 
        EI                   ENABLE ALL INTERRUPTS 
        RET                  CARRY CLEARED; (BC)=ZERO 
        SPACE   3 
 
*       This  looks  kludgy, first writing the time into a temporary buffer 
*       then putting it into the actual time buffer, but if a user  program 
*       for  some  reason  only  transfers  one byte at a time, we risk the 
*       chance of a TICCNT updating the actual buffer while we are  writing 
*       into it.  The time is moved into the actual buffer only after eight 
*       bytes have been placed into the temporary buffer.   
*       STL 'CK.DVD READ PROCESSOR'       
*       EJECT 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-95 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
***     CK.DVD  READ PROCESSOR 
* 
*       ENTRY:  (BC)    = BYTES REQUESTED; MUST BE AT LEAST NINE 
*               (DE)    = BUFFER ADDRESS; WHERE TIME STRING GETS PLACED 
* 
*       EXIT:   (PSW)   = CARRY SET; EOF ERROR IF GOOD READ 
*                         ELSE; EXIT THROUGH "ILLEGAL" 
*               (BC)    = UNUSED BYTE COUNT (NORMALLY ZERO) 
*               (DE)    = ADDRESS OF NEXT BYTE TO BE READ (IF ANY) 
* 
*       USES:   ALL 
* 
* 
* 
READ    EQU     *           COME HERE WHEN CALLER WANTS TO READ TIME OF DAY 
 
        LDA     RSTAT       FIRST, SEE IF WE'RE OPEN FOR READS 
        ORA     A 
        MVI     A,EC.FNO    PREPARE OURSELVES FOR "CHANNEL NOT OPEN" ERROR 
        STC 
        RZ                  RETURN IF CHANNEL NOT PREVIOUSLY OPENED 
        MOV     A,C         CHECK FOR REQUEST OF AT LEAST NINE BYTES 
        CPI     9 
        JNC     READ1       IF (C) GREATER THAN OR EQUAL TO NINE 
        MOV     A,B         SEE IF A MULTIPLE OF 256 BYTES REQUESTED 
        ORA     A 
        JZ      ILLEGAL     CAN'T SUPPLY LESS THAN NINE BYTES ! 
READ1   PUSH    B           SAVE BYTE COUNTER 
        LXI     B,9         FORCE DEFAULT MOVE OF NINE BYTES 
        LXI     H,TIMEBUF   WHERE TIME STRING IS COMING FROM 
        DI                  IN CASE A "TICCNT" BOTCHES THINGS UP ! 
        CALL    MOVE        GIVE THE STRING TO THE CALLER OF THE DVD 
        EI                  TURN ALL INTERRUPTS BACK ON 
        POP     B           RESTORE BYTE COUNTER 
        LXI     H,-9        ACCOUNT FOR BYTES ALREADY SENT TO CALLER 
        DAD     B           (HL) EQUAL TO NUMBER OF BYTES TO PAD OUT 
        MOV     B,H         PUT UNUSED BYTE COUNT IN (BC) 
        MOV     C,L 
        MVI     L,9         ACCOUNT FOR BYTES ALREADY SENT TO CALLER 
READ2   MOV     A,B         SEE IF DONE PADDING OUT THE BUFFER 
        ORA     C           (BC)=ZERO IF DONE 
        JZ      READ3       FINISHED, SO EXIT 
        XRA     A           ZERO (A) 
        STAX    D           WRITE A NULL INTO THE BUFFER 
        DCX     B           DECREMENT BYTE COUNTER 
        INX     D           BUMP BUFFER POINTER 
        INR     L           BUMP THE MODULO 256 BYTE COUNTER 
        JZ      READ3       EXIT IF 256 BYTES HAVE BEEN SENT TO CALLER 
        JMP     READ2       ELSE; EXIT IF (BC) REACHES ZERO FIRST 
REBD3   MVI     A,EC.EOF    RETURN WITH "END OF FILE" ERROR 
        STC                 TELL HDOS WE HAVE AN "ERROR" 
        RET 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-96 
     ================   ==================================       ========== 
                                                                           
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
*       PIP will demand thousands of bytes, but we'll just give it 256 maximum! 
        STL     'CK.DVD TICCNT ENTRY POINT' 
        EJECT 
***     CK.DVD  TICCNT ENTRY POINT 
* 
*       ENTRY:  EVERY TICCNT (2 MILLISECOND INTERVALS) 
* 
*       EXIT:   TO NORMAL HDOS TICCNT PROCESSOR 
*               TIME IN "TIMEBUF" UPDATED IF A NEW SECOND 
* 
*       USES:   ALL; HDOS SAVES IT'S OWN REGISTERS 
* 
* 
* 
CLOCK   EQU     *           COME HERE EVERY "TICCNT" AND UPDATE THE TIME 
        LHLD    TICKS       RETRIEVE OUR OWN PRIVATE "TICKER" 
        INX     H           ADD ONE MORE TICK 
        SHLD    TICKS       UPDATE OUR PRIVATE "TICKER" 
        LXI     B,CAL       GET CALIBRATION FACTOR 
        DAD     B           WILL CREATE A (CY) IF "TICKS"=500 DECIMAL 
        JNC     CLKRET      NOT TIME FOR A NEW SECOND, SO RETURN 
        SHLD    TICKS       (HL) WAS ZERO, RESET PRIVATE "TICKER" 
        MVI     C,'0'       PUT AN ASCII ZERO IN REGISTER (C) 
 
INRS    LXI     H,TIMEBUF+7 POINT AT UNITS SECONDS 
        INR     M           BUMP IT 
        MOV     A,M 
        CPI     '9'+1       OVERFLOW ? 
        JM      CLKRET      NO, SO RETURN 
        MOV     M,C         RESET UNITS SECONDS 
INRTS   DCX     H           POINT AT TENS SECONDS 
        INR     M           BUMP IT 
        MOV     A,M 
        CPI     '6'         OVERFLOW ? 
        JM      CLKRET      NO, SO RETURN 
        MOV     M,C         RESET TENS SECONDS 
INRM    DCX     H           POINT AT THE COLON 
        DCX     H           POINT AT UNITS MINUTES 
        INR     M           BUMP IT 
        MOV     A,M 
        CPI     '9'+1       OVERFLOW ? 
        JM      CLKRET      NO, SO RETURN 
        MOV     M,C         RESET UNITS MINUTES 
INRTM   DCX     H           POINT AT TENS MINUTES 
        INR     M           BUMP IT 
        MOV     A,M 
        CPI     '6'         OVERFLOW ? 
        JM      CLKRET      NO, SO RETURN 
        MOV     M,C         RESET TENS MINUTES 
INRH    DCX     H           POINT AT THE COLON 
        DCX     H           POINT AT UNITS HOURS 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-97 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
        INR     M           BUMP IT 
        MOV     A,M 
        CPI     '4'         OVERFLOW ? 
        JM      CLKRET      NO, SO RETURN 
INRH1   DCX     H           POINT AT TENS HOURS 
        MOV     A,M 
        CPI     '2'         IS IT 24 AND NOT 14 OR 04 ? 
        JM      INRH2       STILL MORE TO CHECK 
        MOV     M,C         RESET TENS HOURS 
        INX     H           POINT AT UNITS HOURS 
        MOV     M,C         RESET UNITS HOURS 
        JMP     CLKRET      (IT WAS MIDNIGHT) 
INRH2   INX     H           POINT AT UNITS HOURS 
        MOV     A,M 
        CPI     '9'+1       OVERFLOW ? 
        JM      CLKRET      NO, SO RETURN 
        MOV     M,C         RESET UNITS HOURS 
INRTH   DCX     H           POINT AT TENS HOURS 
        INR     M           BUMP IT 
        SPACE   3,9 
CLKRET  EQU     *           NOW CONTINUE ON WITH HDOS CLOCK INT. ROUTINE 
        JMP     0           NEW ADDRESS INSTALLED AT "LOAD" TIME 
        SPACE   3,9 
***     CK.DVD  STORAGE AREAS 
* 
* 
TICKS   DW      0           THIS IS OUR PRIVATE "TICK COUNTER" 
TIMEBUF DB      '00:00:00'  CORRECT TIME OF DAY MAINTAINED HERE, IN ASCII 
BUFEND  DB      NL          TIME STRING ALWAYS TERMINATED WITH A "NEWLINE" 
RSTAT   DB      0           HOLD PLACE FOR "OPEN FOR READ" STATUS FLAG 
WSTAT   DB      0           HOLD PLACE FOR "OPEN FOR WRITE" STATUS FLAG 
XFERCNT DB      0           HOLD PLACE FOR COUNT OF BYTES TRANSFERED 
BUFPTR  DW      0           HOLD PLACE FOR POINTER INTO "TEMPBUF" 
TEMPBUF DB      '00:00:00'  TEMPORARY BUFFER DURING "WRITE" PROCESSING 
        SPACE   3,9 
*       Another note for the astute programmer: 
* 
*       This  driver,  as  does  all Heath drivers except the disk drivers, 
*       will allow you to read or write  any  number  of  bytes  you  want. 
*       Contrary  to  what  the  System  Programmer's  Guide  says,  I/O to 
*       non-storage  devices  need  not  be  in  multiples  of  256  bytes. 
*       Realizing  this fact makes it easier to get data one character at a 
*       time from a device  or  into  a  device.   Programs  will  be  more 
*       efficient,  memory wise, if they do not have to maintain a 256 byte 
*       buffer just to handle small I/O tasks.  Be aware that this may  not 
*       be the case with drivers not coming from Heath Company. 
*       STL     'BENTON HARBOR BASIC EXAMPLES' 
*       EJECT 
 
 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-98 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
*       00010 REM       READ CLOCK FROM BENTON HARBOR BASIC 
*       00020 REM       11-JUN-81   DALE LAMM 
*       00030 OPEN "CK:" FOR READ AS FILE #1 
*       00040 INPUT #1,;T$ 
*       00050 PRINT T$ 
*       00060 CLOSE #1 
*       00070 GOTO 10 
* 
*       The  above  merely  opens  a channel on the clock driver for reads, 
*       then reads the current time-of-day, and then  closes  the  channel. 
*       The program repeats until the control-C key is struck. 
        SPACE   6 
*       00010 REM       WRITE NEW TIME TO CLOCK FROM BENTON HARBOR BASIC 
*       00020 REM       11-JUN-81   DALE LAMM 
*       00030 OPEN "CK:" FOR WRITE AS FILE #1 
*       00040 INPUT "WHAT TIME IS IT NOW ?  ";T$ 
*       00050 PRINT #1,T$ 
*       00060 CLOSE #1 
*       00070 OPEN "CK:" FOR READ AS FILE #1 
*       00080 INPUT #1,;T$ 
*       00090 PRINT "VERIFYING... CLOCK NOW READS "T$ 
*       00100 CLOSE #1 
*       00110 END  
* 
*       The  example  above  demonstrates  how a new time-of-day may be put 
*       into the clocks buffer.  The clock remains running, and keeps  time 
*       using the just installed time string as the base. 
*        
*       Note  that  no  error  checking is done by the actual clock driver. 
*       Whatever characters are inserted into the clocks buffer will be the 
*       new base for timekeeping.  Likewise, you may use whatever character 
*       suits your fancy to delimit the hours, minutes, and seconds. 
*        
*       The newly  entered  time-of-day  is  read  back  to  the  user  for 
*       verification.   Only  the  first  eight characters in T$ are loaded 
*       into the  drivers  buffer.   There  must  be  at  least  eight  new 
*       characters  written into the buffer, else, the new time-of-day will 
*       be meaningless.  Since Basic pads out writes to a file with  nulls, 
*       it is not possible to use Basic to update only the first two digits 
*       in the clock drivers buffer. 
*       STL     'PIC TABLE' 
        EJECT 
        LON     G               TURN ON THE PIC TABLE LISTER 
        END 
 
*************************************************************************** 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-99 
     ================   ==================================       ========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
        TITLE   'Special Null Device Driver' 
        STL     'Version 1.0  18-Sep-81' 
***     NULL DEVICE DRIVER 
* 
*       by: Dale Lamm 
* 
*       The  purpose  of  this  program  is  to  aid  the assembly language 
*       programmer  who  is  having  a  hard  time  making   his   programs 
*       communicate  with  device drivers, and to provide some clues to the 
*       file operations of HDOS. 
* 
* 
*       After  assembly,  put it on a bootable disk and re-boot.  Then, try 
*       the following: 
* 
*       PIP ND:=TT:             <CTL-D to get out> 
*       PIP TT:=ND: 
*       PIP ND:=*.*/S 
*       PIP LP:=ND: 
*       PIP ND:=ND: 
*       LOAD ND: 
*       MOUNT ND:               <will show an error> 
* 
* 
*       It is interesting to watch when PIP requests gobs of bytes from ND: 
*       and to watch BH Basic do file I/O on ND:. 
*        
*       Note that because of the way in which console output  is  performed 
*       by  ND.DVD  that you must have either an H-8-4 card or an H-89.  In 
*       both cases, the console must be on port 350Q.  Also,  all  register 
*       values are displayed in hexadecimal. 
*        
*       If  you  have  a program which communicates with device drivers and 
*       cannot seem to get it to work, the ND.DVD will verify that you  are 
*       passing  the  right  numbers back and forth and are using the right 
*       SYSCALLS. 
* 
*       STL     'External Definitions and Header' 
*       EJECT 
USERFWA EQU     2280H 
 
        XTEXT   DDDEF 
        XTEXT   PICDEF 
        XTEXT   DEVDEF 
        XTEXT   DVDDEF 
        XTEXT   SETCAL 
        XTEXT   U8250 
 
 
 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL      PAGE 13-100 
     ================   ==================================      =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
NL      EQU     0AH             SOME ASCII CHARACTERS... 
CR      EQU     0DH 
LF      EQU     0AH 
BELL    EQU     07H 
 
$TYPTX  EQU     195EH           SOME ROM ROUTINES... 
$TBRA   EQU     193EH 
 
EC.EOF  EQU     1               ERROR CODE; END OF FILE 
EC.DNS  EQU     5               ERROR CODE; DEVICE NOT SUITABLE 
 
        CODE    PIC 
 
        DB      DVDFLV          DEVICE DRIVER FLAG VALUE 
        DB      DT.CW+DT.CR     DEVICE CAPABILITY; READ AND WRITE 
        DB      00000001B       MOUNTED UNIT MASK 
        DB      1               ONLY 1 UNIT 
        DB      DT.CW+DT.CR     UNIT ZERO; CAPABLE OF READ AND WRITE 
        DS      7               UNITS 1-7;  IGNORED 
        DB      DVDFLV          SET OPTIONS ARE AVAILABLE 
        DW      0               NO INIT CODE             
 
        CODE    -REL      
        DS      DVD.STE-* 
        CODE    +REL 
        STL     'SET Entry Point' 
        EJECT 
***     SET CODE ENTRY POINT 
* 
* 
*       Only SET option is 'HELP' 
* 
* 
SETNTR  EQU     * 
        ERRNZ   *-DVD.STE 
 
        CALL    $TYPTX 
 
        DB      NL,NL,NL 
        DB      'This is nothing more than a special NULL DEVICE',NL 
        DB      'driver for the express purpose of exploring PIP',NL 
        DB      'and other programs which communicate with DVDs.',NL,NL 
        DB      'To see it work, just try reading or writing to',NL 
        DB      'it. Every time any DVD function is encountered',NL 
        DB      'by this special driver, it will type on the screen',NL 
        DB      'an explanation of what is going on.',NL,NL,NL,NL+80H 
 
        XRA     A               CLEAR CARRY 
        RET 
 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL      PAGE 13-101 
     ================   ==================================      =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
        CODE    -REL 
        DS      DVD.ENT-* 
        CODE    +REL 
        STL     'Main-Line Code' 
        EJECT 
***     NULL DVD ENTRY POINT 
* 
*       ENTRY   (A) = PROCESS CODE 
*               (BC) = BYTE COUNT (USUALLY) 
*               (DE) = MEMORY ADDRESS (USUALLY) 
*       EXIT    'C' CLEAR IF OK 
*               'C' SET IF ERROR 
*                (A) = ERROR CODE 
* 
* 
ND.DVD  EQU     *               ENTRY POINT 
        ERRNZ   *-DVD.ENT 
        SHLD    HLSAV           SAVE (HL) FOR 'REGDIS' 
        PUSH    H               SAVE (HL) 
        CPI     DC.MAX          FUNCTION LEGAL ? 
        JNC     NSUIT           NOPE; TREAT AS 'DEVICE NOT SUITABLE' 
        CALL    $TBRA           ENTER PROCESSOR VIA 'TABLE BRANCH' 
        DB      NREAD-*         READ 
        DB      NWRITE-*        WRITE 
        DB      NREADR-*        READR 
        DB      NOPNR-*         OPENR 
        DB      NOPNW-*         OPENW 
        DB      NOPNU-*         OPENU 
        DB      NCLOS-*         CLOSE 
        DB      NABRT-*         ABORT 
        DB      NMOUN-*         MOUNT 
        DB      NLOAD-*         LOAD 
        DB      NRDY-*          READY 
        SPACE   3,9 
***     NREAD - READ FROM NULL DEVICE 
* 
* 
NREAD   EQU     *               READ FROM NULL DEVICE 
        LXI     H,MESG1         POINT TO TEXT 
 
NREAD1  CALL    TYPMES          TYPE IT 
        CALL    REGDIS          DISPLAY ALL REGISTERS 
        XRA     A               MAKE A 'NULL' 
        MOV     L,A             INITIALIZE 'BYTE COUNTER' 
 
NREAD2  STAX    D               WRITE THE 'NULL' TO WHOMEVER 
        INX     D               NEXT BUFFER POSITION 
        DCX     B               DECREMENT 'BYTE COUNTER' 
        DCR     L               256 NULLS ? 
        JNZ     NREAD2          NOPE; LOOP UNTIL DONE 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL      PAGE 13-102 
     ================   ==================================      =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
        POP     H               RESTORE (HL) 
        MVI     A,EC.EOF        'END OF FILE ERROR' 
        STC                     SAY 'ERROR' 
        RET 
        SPACE   3,9 
***     NWRITE - WRITE TO NULL DEVICE 
* 
* 
NWRITE  EQU     *               WRITE TO NULL DEVICE 
        LXI     H,MESG2         POINT TO TEXT 
        ERRNZ   EXIT-*          FALL THROUGH TO 'EXIT'; RETURN 
        SPACE   3,9 
 
***     EXIT - GENERAL EXIT FROM FUNCTION PROCESSORS 
* 
* 
EXIT    EQU     *               GENERAL EXIT FROM PROCESSORS 
        CALL    TYPMES          TYPE MESSAGE POINTED BY (HL) 
        CALL    REGDIS          DISPLAY ALL REGISTERS 
        POP     H               RESTORE (HL) 
        XRA     A               CLEAR (CY) 
        MOV     B,A             CLEAR 'BYTE COUNT' 
        MOV     C,A 
        RET 
        SPACE   3,9 
***     NREADR - READ REGARDLESS FROM NULL DEVICE 
* 
* 
NREADR  EQU     *               READ REGARDLESS FROM NULL DEVICE 
        LXI     H,MESG3         POINT TO TEXT 
        JMP     NREAD1          LET THE 'READ' PROCESSOR FINISH UP 
        SPACE   3,9 
***     NOPNR - OPEN FOR READS FROM NULL DEVICE 
* 
* 
NOPNR   EQU     *               OPEN FOR READS FROM NULL DEVICE 
        LXI     H,MESG4         POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NOPNW - OPEN FOR WRITES TO NULL DEVICE 
* 
* 
NOPNW   EQU     *               OPEN FOR WRITES TO NULL DEVICE 
        LXI     H,MESG5         POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NOPNU - OPEN FOR UPDATES TO NULL DEVICE 
* 
* 
 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL      PAGE 13-103 
     ================   ==================================      =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
NOPNU   EQU     *               OPEN FOR UPDATES TO NULL DEVICE 
        LXI     H,MESG6         POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NCLOS - CLOSE FILES ON NULL DEVICE 
* 
* 
NCLOS   EQU     *               CLOSE FILES ON NULL DEVICE 
        LXI     H,MESG7         POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NABRT - ABORT OPERATIONS ON NULL DEVICE 
* 
* 
NABRT   EQU     *               ABORT OPERATIONS ON NULL DEVICE 
        LXI     H,MESG8         POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NMOUN - MOUNT NULL DEVICE 
* 
* 
NMOUN   EQU     *               MOUNT NULL DEVICE 
        LXI     H,MESG9         POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NLOAD - LOAD NULL DEVICE DRIVER INTO MEMORY 
* 
* 
NLOAD   EQU     *               LOAD NULL DEVICE DRIVER 
        LXI     H,MESG10        POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NRDY - EXAMINE READY STATUS OF NULL DEVICE 
* 
* 
NRDY    EQU     *               EXAMINE READY STATUS OF NULL DEVICE 
 
        LXI     H,MESG11        POINT TO TEXT 
        JMP     EXIT            LET 'EXIT' FINISH UP 
        SPACE   3,9 
***     NSUIT - UNSUITABLE FUNCTION REQUEST RECEIVED 
* 
* 
NSUIT   EQU     *               UNSUITABLE FUNCTION REQUESTED 
        STA     PSWSAV          SAVE ILLEGAL FUNCTION CODE 
        LXI     H,MESG12        POINT TO TEXT 
        CALL    TYPMES          TYPE IT 
        LDA     PSWSAV          RESTORE ILLEGAL FUNCTION CODE 
        CALL    NUMOUT          PRINT THE ILLEGAL FUNCTION CODE 
        LXI     H,MESG13        DO A CR,LF 
        CALL    TYPMES 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL      PAGE 13-104 
     ================   ==================================      =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
        POP     H               RESTORE (HL) 
        MVI     A,EC.DNS        'DEVICE NOT SUITABLE ERROR' 
        STC                     SAY 'ERROR' 
        RET 
        SPACE   3,9 
        STL     'Subroutines' 
        EJECT 
***     TYPMES - TYPE MESSAGE POINTED BY (HL) UNTIL NULL; THEN RETURN 
* 
* 
TYPMES  EQU     *               TYPE MESSAGE POINTED BY (HL) 
        MOV     A,M             GET CHARACTER 
        ANI     01111111B       STRIP PARITY; RAISE FLAGS 
        RZ                      ALL DONE 
        CALL    TCH             TYPE CHARACTER 
        INX     H               NEXT CHARACTER 
        JMP     TYPMES 
        SPACE   3,9 
***     REGDIS - FORMATTED DUMP OF (BC), (DE), AND (HL) REGISTERS 
* 
* 
REGDIS  EQU     *               DISPLAY PRIMARY REGISTERS 
        LXI     H,MESG14        PRINT (BC) 
        CALL    TYPMES 
        MOV     A,B             GET (B) 
        CALL    NUMOUT          PRINT HEX VALUE 
        MOV     A,C             GET (C) 
        CALL    NUMOUT          PRINT HEX VALUE 
 
        LXI     H,MESG15        PRINT (DE) 
        CALL    TYPMES 
        MOV     A,D             GET (D) 
        CALL    NUMOUT          PRINT HEX VALUE 
        MOV     A,E             GET (E) 
        CALL    NUMOUT          PRINT HEX VALUE 
 
        LXI     H,MESG16        PRINT (HL) 
        CALL    TYPMES 
        LHLD    HLSAV           GET ORIGINAL (HL) 
        MOV     A,H             GET (H) 
        CALL    NUMOUT          PRINT HEX VALUE 
        MOV     A,L             GET (L) 
        CALL    NUMOUT          PRINT HEX VALUE 
 
        LXI     H,MESG13        DO A CR,LF 
        JMP     TYPMES          PRINT; THEN RETURN 
        SPACE   3,9 
***     NUMOUT - PRINT (A) AS ASCII HEXADECIMAL 
* 
* 
 
 



     CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL      PAGE 13-105 
     ================   ==================================      =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
NUMOUT  EQU     *               PRINT (PSW) AS ASCII HEXADECIMAL 
        PUSH    PSW             SAVE BYTE VALUE 
        RAR                     ROTATE UPPER INTO LOWER NIBBLE 
        RAR 
        RAR 
        RAR 
        CALL    NUM1            PRINT THE LOWER NIBBLE 
        POP     PSW             RESTORE BYTE VALUE 
        ERRNZ   NUM1-*          FALL THROUGH TO 'NUM1'; RETURN 
 
NUM1    ANI     00001111B       MASK ONLY LOWER NIBBLE 
        ADI     90H 
        DAA 
        ACI     40H 
        DAA 
        ERRNZ   TCH-*           FALL THROUGH TO 'TCH'; RETURN 
        SPACE   3,9 
***     TCH - TYPE CHARACTER TO H-8-4 OR H-89 CONSOLE UART 
* 
* 
TCH     EQU     *               TYPE CHARACTER TO UART 
        PUSH    PSW             SAVE CHARACTER 
 
TCH1    IN      SC.ACE+UR.LSR   LOOK AT LINE STATUS 
        ANI     UC.THE          XMTR HOLDING REGISTER EMPTY ? 
        JZ      TCH1            NOPE; LOOP UNTIL EMPTY 
 
        POP     PSW             RESTORE CHARACTER 
        OUT     SC.ACE+UR.THR   SEND TO UART 
        RET 
        SPACE   3,9 
***     DATA AREAS 
* 
* 
HLSAV   DW      0               SAVE FOR (HL) 
PSWSAV  DB      0               SAVE FOR (PSW) 
 
MESG1   DB      CR,LF,BELL,'Reading from ND: device:',CR,LF,0 
MESG2   DB      CR,LF,BELL,'Writing to ND: device:',CR,LF,0 
MESG3   DB      CR,LF,BELL,'Reading regardless from ND: device',CR,LF,0 
MESG4   DB      CR,LF,BELL,'Opening ND: for reads:',CR,LF,0 
MESG5   DB      CR,LF,BELL,'Opening ND: for writes:',CR,LF,0 
MESG6   DB      CR,LF,BELL,'Opening ND: for updates:',CR,LF,0 
MESG7   DB      CR,LF,BELL,'Closing files on ND: device:',CR,LF,0 
MESG8   DB      CR,LF,BELL,'Aborting ND: device:',CR,LF,0 
MESG9   DB      CR,LF,BELL,'Mounting ND: device:',CR,LF,0 
MESG10  DB      CR,LF,BELL,'Loading ND: device driver:',CR,LF,0 
MESG11  DB      CR,LF,BELL,'Checking ND: ready status:',CR,LF,0 
MESG12  DB      CR,LF,BELL,'Illegal ND: function request: (A)= ',0 
 
 
 



    CHAPTER THIRTEEN   HDOS PROGRAMMERS' REFERENCE MANUAL       PAGE 13-106 
    ================   ==================================       =========== 
 
                                APPENDIX 13-B: 
                 HDOS Device Drivers' Programming Guide (Cont) 
                 +++++++++++++++++++++++++++++++++++++++++++++ 
 
MESG13  DB      CR,LF,0 
MESG14  DB      '(BC) = ',0 
MESG15  DB      '   (DE) = ',0 
MESG16  DB      '   (HL) = ',0 
   END 
 
***************************************************************************** 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-107 
    ================    =================================       ===========  
 
 
                        APPENDIX 13-C: CONVERSION CHART 
                        +++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
      0       0      0   00000000  ^@  NUL  NOP 
      1       1      1   00000001  ^A  SOH  LXI     B,ADDRESS 
      2       2      2   00000010  ^B  STX  STAX    B 
      3       3      3   00000011  ^C  ETX  INX     B 
 
      4       4      4   00000100  ^D  EOT  INR     B 
      5       5      5   00000101  ^E  ENQ  DCR     B 
      6       6      6   00000110  ^F  ACK  MVI     B,BYTE 
      7       7      7   00000111  ^G  BEL  RLC 
 
      8      10      8   00001000  ^H  BS   ****    NOT USED BY 8080 
      9      11      9   00001001  ^I  HT   DAD     B 
     10      12      A   00001010  ^J  LF   LDAX    B 
     11      13      B   00001011  ^K  VT   DCX     B 
 
     12      14      C   00001100  ^L  FF   INR     C 
     13      15      D   00001101  ^M  CR   DCR     C 
     14      16      E   00001110  ^N  SO   MVI     C,BYTE 
     15      17      F   00001111  ^O  SI   RRC 
 
     16      20     10   00010000  ^P  DLE  ****    NOT USED BY 8080 
     17      21     11   00010001  ^Q  DC1  LXI     D,ADDRESS 
     18      22     12   00010010  ^R  DC2  STAX    D 
     19      23     13   00010011  ^S  DC3  INX     D 
 
 
     20      24     14   00010100  ^T  DC4  INR     D 
     21      25     15   00010101  ^U  NAK  DCR     D 
     22      26     16   00010110  ^V  SYN  MVI     D,BYTE 
     23      27     17   00010111  ^W  ETB  RAL 
 
     24      30     18   00011000  ^X  CAN  ****    NOT USED BY 8080 
     25      31     19   00011001  ^Y  EM   DAD     D 
     26      32     1A   00011010  ^Z  SUB  LDAX    D 
     27      33     1B   00011011  ^[  ESC  DCX     D 
 
     28      34     1C   00011100  ^\  FS   INR     E 
     29      35     1D   00011101  ^]  GS   DCR     E 
     30      36     1E   00011110  ^^  RS   MVI     E,BYTE 
     31      37     1F   00011111  ^_  US   RAR 
 
     32      40     20   00100000     SPACE ****    NOT USED BY 8080 
     33      41     21   00100001   !       LXI     H,ADDRESS 
     34      42     22   00100010   "       SHLD    ADDRESS 
     35      43     23   00100011   #       INX     H 
 
 
 
    
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-108 
    ================    =================================       ===========  
 
 
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
 
    ---     ---     ---  --------  -------  ----------- 
     36      44     24   00100100   $       INR     H 
     37      45     25   00100101   %       DCR     H 
     38      46     26   00100110   &       MVI     H,BYTE 
     39      47     27   00100111   ' TICK  DAA 
 
     40      50     28   00101000   (       ****    NOT USED BY 8080 
     41      51     29   00101001   )       DAD     H 
     42      52     2A   00101010   *       LHLD    ADDRESS 
     43      53     2B   00101011   +       DCX     H 
 
     44      54     2C   00101100   , COMMA INR     L 
     45      55     2D   00101101   - HYPHN DCR     L 
     46      56     2E   00101110   .       MVI     L,BYTE 
     47      57     2F   00101111   /       CMA 
 
     48      60     30   00110000   0       ****    NOT USED BY 8080 
     49      61     31   00110001   1       LXI     SP,ADDRESS 
     50      62     32   00110010   2       STA     ADDRESS 
     51      63     33   00110011   3       INX     SP 
 
     52      64     34   00110100   4       INR     M 
     53      65     35   00110101   5       DCR     M 
     54      66     36   00110110   6       MVI     M,BYTE 
     55      67     37   00110111   7       STC 
 
     56      70     38   00111000   8       ****    NOT USED BY 8080 
     57      71     39   00111001   9       DAD     SP 
     58      72     3A   00111010   :       LDA     ADDRESS 
     59      73     3B   00111011   ;       DCX     SP 
 
     60      74     3C   00111100   <       INR     A 
     61      75     3D   00111101   =       DCR     A 
     62      76     3E   00111110   >       MVI     A,BYTE 
     63      77     3F   00111111   ?       CMC 
 
     64     100     40   01000000   @       MOV     B,B 
     65     101     41   01000001   A       MOV     B,C 
     66     102     42   01000010   B       MOV     B,D 
     67     103     43   01000011   C       MOV     B,E 
 
     68     104     44   01000100   D       MOV     B,H 
     69     105     45   01000101   E       MOV     B,L 
     70     106     46   01000110   F       MOV     B,M 
     71     107     47   01000111   G       MOV     B,A 
 
 
 
     
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-109 
    ================    =================================       ===========  
 
                                                                              
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
     72     110     48   01001000   H       MOV     C,B 
     73     111     49   01001001   I       MOV     C,C 
     74     112     4A   01001010   J       MOV     C,D 
     75     113     4B   01001011   K       MOV     C,E 
 
     76     114     4C   01001100   L       MOV     C,H 
     77     115     4D   01001101   M       MOV     C,L 
     78     116     4E   01001110   N       MOV     C,M 
     79     117     4F   01001111   O       MOV     C,A 
 
     80     120     50   01010000   P       MOV     D,B 
     81     121     51   01010001   Q       MOV     D,C 
     82     122     52   01010010   R       MOV     D,D 
     83     123     53   01010011   S       MOV     D,E 
   
     84     124     54   01010100   T       MOV     D,H 
     85     125     55   01010101   U       MOV     D,L 
     86     126     56   01010110   V       MOV     D,M 
     87     127     57   01010111   W       MOV     D,A 
 
     88     130     58   01011000   X       MOV     E,B 
     89     131     59   01011001   Y       MOV     E,C 
     90     132     5A   01011010   Z       MOV     E,D 
     91     133     5B   01011011   [       MOV     E,E 
 
     92     134     5C   01011100   \       MOV     E,H 
     93     135     5D   01011101   ]       MOV     E,L 
     94     136     5E   01011110   ^       MOV     E,M 
     95     137     5F   01011111   _ U.L.  MOV     E,A 
 
     96     140     60   01100000   `       MOV     H,B 
     97     141     61   01100001   a       MOV     H,C 
     98     142     62   01100010   b       MOV     H,D 
     99     143     63   01100011   c       MOV     H,E 
 
    100     144     64   01100100   d       MOV     H,H 
    101     145     65   01100101   e       MOV     H,L 
 
    102     146     66   01100110   f       MOV     H,M 
    103     147     67   01100111   g       MOV     H,A 
 
    104     150     68   01101000   h       MOV     L,B 
    105     151     69   01101001   i       MOV     L,C 
    106     152     6A   01101010   j       MOV     L,D 
    107     153     6B   01101011   k       MOV     L,E 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-110 
    ================    =================================       ===========  
 
 
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
    108     154     6C   01101100   l       MOV     L,H 
    109     155     6D   01101101   m       MOV     L,L 
    110     156     6E   01101110   n       MOV     L,M 
    111     157     6F   01101111   o       MOV     L,A 
 
    112     160     70   01110000   p       MOV     M,B 
    113     161     71   01110001   q       MOV     M,C 
    114     162     72   01110010   r       MOV     M,D 
    115     163     73   01110011   s       MOV     M,E 
 
    116     164     74   01110100   t       MOV     M,H 
    117     165     75   01110101   u       MOV     M,L 
    118     166     76   01110110   v       HLT 
    119     167     77   01110111   w       MOV     M,A 
 
    120     170     78   01111000   x       MOV     A,B 
    121     171     79   01111001   y       MOV     A,C 
    122     172     7A   01111010   z       MOV     A,D 
    123     173     7B   01111011   {       MOV     A,E 
 
    124     174     7C   01111100   |       MOV     A,H 
    125     175     7D   01111101   }       MOV     A,L 
    126     176     7E   01111110   ~       MOV     A,M 
    127     177     7F   01111111   DEL     MOV     A,A 
 
    128     200     80   10000000   [^@ ]   ADD     B 
    129     201     81   10000001   [^A ]   ADD     C 
    130     202     82   10000010   [^B ]   ADD     D 
    131     203     83   10000011   [^C ]   ADD     E 
 
    132     204     84   10000100   [^D ]   ADD     H 
    133     205     85   10000101   [^E ]   ADD     L 
    134     206     86   10000110   [^F ]   ADD     M 
    135     207     87   10000111   [^G ]   ADD     A 
 
    136     210     88   10001000   [^H ]   ADC     B 
    137     211     89   10001001   [^I ]   ADC     C 
    138     212     8A   10001010   [^J ]   ADC     D 
    139     213     8B   10001011   [^K ]   ADC     E 
 
    140     214     8C   10001100   [^L ]   ADC     H 
    141     215     8D   10001101   [^M ]   ADC     L 
    142     216     8E   10001110   [^N ]   ADC     M 
    143     217     8F   10001111   [^O ]   ADC     A 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-111 
    ================    =================================       ===========  
 
 
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
    144     220     90   10010000   [^P ]   SUB     B 
    145     221     91   10010001   [^Q ]   SUB     C 
    146     222     92   10010010   [^R ]   SUB     D 
    147     223     93   10010011   [^S ]   SUB     E 
 
    148     224     94   10010100   [^T ]   SUB     H 
    149     225     95   10010101   [^U ]   SUB     L 
    150     226     96   10010110   [^V ]   SUB     M 
    151     227     97   10010111   [^W ]   SUB     A 
 
    152     230     98   10011000   [^X ]   SBB     B 
    153     231     99   10011001   [^Y ]   SBB     C 
    154     232     9A   10011010   [^Z ]   SBB     D 
    155     233     9B   10011011   [^[ ]   SBB     E 
 
    156     234     9C   10011100   [^\ ]   SBB     H 
    157     235     9D   10011101   [^] ]   SBB     L 
    158     236     9E   10011110   [^^ ]   SBB     M 
    159     237     9F   10011111   [^_ ]   SBB     A 
 
    160     240     A0   10100000   [   ]   ANA     B 
    161     241     A1   10100001   [ ! ]   ANA     C 
    162     242     A2   10100010   [ " ]   ANA     D 
    163     243     A3   10100011   [ # ]   ANA     E 
 
    164     244     A4   10100100   [ $ ]   ANA     H 
    165     245     A5   10100101   [ % ]   ANA     L 
    166     246     A6   10100110   [ & ]   ANA     M 
    167     247     A7   10100111   [ ' ]   ANA     A 
 
    168     250     A8   10101000   [ ( ]   XRA     B 
    169     251     A9   10101001   [ ) ]   XRA     C 
    170     252     AA   10101010   [ * ]   XRA     D 
    171     253     AB   10101011   [ + ]   XRA     E 
 
    172     254     AC   10101100   [ , ]   XRA     H 
    173     255     AD   10101101   [ - ]   XRA     L 
    174     256     AE   10101110   [ . ]   XRA     M 
    175     257     AF   10101111   [ / ]   XRA     A 
 
    176     260     B0   10110000   [ 0 ]   ORA     B 
    177     261     B1   10110001   [ 1 ]   ORA     C 
    178     262     B2   10110010   [ 2 ]   ORA     D 
    179     263     B3   10110011   [ 3 ]   ORA     E 
 
 
 
 
  
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-112 
    ================    =================================       ===========  
 
 
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
    180     264     B4   10110100   [ 4 ]   ORA     H 
    181     265     B5   10110101   [ 5 ]   ORA     L 
    182     266     B6   10110110   [ 6 ]   ORA     M 
    183     267     B7   10110111   [ 7 ]   ORA     A 
 
    184     270     B8   10111000   [ 8 ]   CMP     B 
    185     271     B9   10111001   [ 9 ]   CMP     C 
    186     272     BA   10111010   [ : ]   CMP     D 
    187     273     BB   10111011   [ ; ]   CMP     E 
 
    188     274     BC   10111100   [ < ]   CMP     H 
    189     275     BD   10111101   [ = ]   CMP     L 
    190     276     BE   10111110   [ > ]   CMP     M 
    191     277     BF   10111111   [ ? ]   CMP     A 
 
    192     300     C0   11000000   [ @ ]   RNZ 
    193     301     C1   11000001   [ A ]   POP     B 
    194     302     C2   11000010   [ B ]   JNZ     ADDRESS 
    195     303     C3   11000011   [ C ]   JMP     ADDRESS 
 
    196     304     C4   11000100   [ D ]   CNZ     ADDRESS 
    197     305     C5   11000101   [ E ]   PUSH    B 
    198     306     C6   11000110   [ F ]   ADI     BYTE 
    199     307     C7   11000111   [ G ]   RST     0 
 
    200     310     C8   11001000   [ H ]   RZ 
    201     311     C9   11001001   [ I ]   RET 
    202     312     CA   11001010   [ J ]   JZ      ADDRESS 
    203     313     CB   11001011   [ K ]   ****    NOT USED BY 8080 
 
    204     314     CC   11001100   [ L ]   CZ      ADDRESS 
    205     315     CD   11001101   [ M ]   CALL    ADDRESS 
    206     316     CE   11001110   [ N ]   ACI     BYTE 
    207     317     CF   11001111   [ O ]   RST     1 
 
    208     320     D0   11010000   [ P ]   RNC 
    209     321     D1   11010001   [ Q ]   POP     D 
    210     322     D2   11010010   [ R ]   JNC     ADDRESS 
    211     323     D3   11010011   [ S ]   OUT     BYTE 
 
    212     324     D4   11010100   [ T ]   CNC     ADDRESS 
    213     325     D5   11010101   [ U ]   PUSH    D 
    214     326     D6   11010110   [ V ]   SUI     BYTE 
    215     327     D7   11010111   [ W ]   RST     2 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-113 
    ================    =================================       ===========  
 
 
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
    216     330     D8   11011000   [ X ]   RC 
    217     331     D9   11011001   [ Y ]   ****    NOT USED BY 8080 
    218     332     DA   11011010   [ Z ]   JC      ADDRESS 
    219     333     DB   11011011   [ [ ]   IN      BYTE 
 
    220     334     DC   11011100   [ \ ]   CC      ADDRESS 
    221     335     DD   11011101   [ ] ]   ****    NOT USED BY 8080 
    222     336     DE   11011110   [ ^ ]   SBI     BYTE 
    223     337     DF   11011111   [ _ ]   RST     3 
 
    224     340     E0   11100000   [ ` ]   RPO 
    225     341     E1   11100001   [ a ]   POP     H 
    226     342     E2   11100010   [ b ]   JPO     ADDRESS 
    227     343     E3   11100011   [ c ]   XTHL 
 
    228     344     E4   11100100   [ d ]   CPO     ADDRESS 
    229     345     E5   11100101   [ e ]   PUSH    H 
    230     346     E6   11100110   [ f ]   ANI     BYTE 
    231     347     E7   11100111   [ g ]   RST     4 
 
    232     350     E8   11101000   [ h ]   RPE 
    233     351     E9   11101001   [ i ]   PCHL 
    234     352     EA   11101010   [ j ]   JPE     ADDRESS 
    235     353     EB   11101011   [ k ]   XCHG 
 
    236     354     EC   11101100   [ l ]   CPE     ADDRESS 
    237     355     ED   11101101   [ m ]   ****    NOT USED BY 8080 
    238     356     EE   11101110   [ n ]   XRI     BYTE 
    239     357     EF   11101111   [ o ]   RST     5 
 
    240     360     F0   11110000   [ p ]   RP 
    241     361     F1   11110001   [ q ]   POP     PSW 
    242     362     F2   11110010   [ r ]   JP      ADDRESS 
    243     363     F3   11110011   [ s ]   DI 
 
    244     364     F4   11110100   [ t ]   CP      ADDRESS 
    245     365     F5   11110101   [ u ]   PUSH    PSW 
    246     366     F6   11110110   [ v ]   ORI     BYTE 
    247     367     F7   11110111   [ w ]   RST     6 
 
    248     370     F8   11111000   [ x ]   RM 
    249     371     F9   11111001   [ y ]   SPHL 
    250     372     FA   11111010   [ z ]   JM      ADDRESS 
    251     373     FB   11111011   [ { ]   EI 
 
 
 
   
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-114 
    ================    =================================       ===========  
 
 
                    APPENDIX 13-C: CONVERSION CHART (Cont) 
                    ++++++++++++++++++++++++++++++++++++++ 
 
    DEC     OCT     HEX   BINARY    ASCII   8080 OPCODE 
    ---     ---     ---  --------  -------  ----------- 
    252     374     FC   11111100   [ | ]   CM      ADDRESS 
    253     375     FD   11111101   [ } ]   ****    NOT USED BY 8080 
    254     376     FE   11111110   [ ~ ]   CPI     BYTE 
    255     377     FF   11111111   [DEL]   SCALL   .SCIN   ;ANY VALID 
                                                             SYSTEM CALL 
    *********************************************************************** 
 
     



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-115 
    ================    =================================       =========== 
 
 
                             APPENDIX 13-D: MEMORY 
                             +++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
                   Heath Disk Operating System - Version 3.0 
    ----------------------------------------------------------------------- 
 
    000.060  0030   VERS    EQU     3*16+0  Version 3.0 
 
    ----------------------------------------------------------------------- 
        **    HDOS BASE PAGE DEFINITION 
    ----------------------------------------------------------------------- 
 
    000.000  0000   HOSBASE EQU     0 
 
    000.000  0000   B.INT0  DS      3       System Interrupt 
 
    000.003  0003   S.LABEL DS      2       Label Buffer FWA 
 
    000.005  0005   S.FMASK DS      1       Feature Mask 
 
    000.003  0003   F.CLK   EQU     00000011B   System clock speed 
    000.000  0000   F.2MHZ  EQU     00000000B    2 MHz 
    000.001  0001   F.4MHZ  EQU     00000001B    4 MHz 
 
    000.014  000C   F.MACH  EQU     00001100B   System type 
    000.000  0000   F.H8    EQU     00000000B    H8 
    000.004  0004   F.H89   EQU     00000100B    H89 
    000.010  0008   F.Z100  EQU     00001000B    Z-100 
    000.014  000C   F.OMACH EQU     00001100B    PC, ETC. 
 
    000.060  0030   F.TERM  EQU     00110000B   Terminal type 
    000.000  0000   F.TTY   EQU     00000000B    Dumb TTY 
    000.020  0010   F.H19   EQU     00010000B    H19 
 
    000.300  00C0   F.CPU   EQU     11000000B   CPU type 
    000.000  0000   F.8080  EQU     00000000B    8080 
    000.100  0040   F.8085  EQU     01000000B    8085 
    000.200  0080   F.Z80   EQU     10000000B    Z-80 
    000.300  00C0   F.OCPU  EQU     11000000B    HD64180, V20, ETC. 
 
    000.006  0006   S.LWA   DS      2       First free byte following HDOS 
 
    000.010  0008   B.INT1  DS      3       Clock Interrupt 
 
    000.013  000B   S.REV   DS      1       HDOS Revision # 
    000.014  000C           DS      2       HDOS Assembly Date 
    000.016  000E           DS      2       HDOS Assembly Time 
 
    000.020  0010   B.INT2  DS      3       Available 
 
    000.023  0013   PRIDEV  DS      4       Primary device name 
    000.027  0017           DS      1 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-116 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
        **    HDOS BASE PAGE DEFINITION (Cont) 
    ----------------------------------------------------------------------- 
 
    000.030  0018   B.INT3  DS      3       Available 
 
    000.033  001B   ALTDEV  DS      4       Alternate device name 
    000.037  001F           DS      1 
 
    000.040  0020   B.INT4  DS      3       Available 
 
    000.043  0023   LSTDEV  DS      4       List device name 
    000.047  0027           DS      1                                       
 
    000.050  0028   B.INT5  DS      3       Available 
 
    000.053  002B   S.DLY   DS      3       Jump to delay routine 
    000.053  002B   .DLY    EQU     * 
 
    000.056  002E   S.USER  DS      1       Active USER Area (ASCII) 
    000.057  002F   S.UMASK DS      1       Active USER Mask (bit pattern) 
 
    000.060  0030   B.INT6  DS      3       Available 
 
    000.063  0033   S.TFWA  DS      2       Task Table FWA  \3.02\ 
    000.065  0035   S.TFLG  DS      1       Bit flags for task resident  
                                              status 
 
    000.066  0036   S.UNIT  DS      1       Holding place for line printer 
                                              unit 
    000.067  0037   S.KEY$  DS      1       Holding place for ASK 
 
    000.070  0038   B.INT7  DS      3       SCALL Interrupt 
 
    000.073  003B   B.SCALL DS      3       JMP directly to SCALL processor 
      
    000.076  003E   CSLIBUF DS      2       Console Type-Ahead Buffer FWA 
 
    000.100  0040   BATNAME DS      17      Complete Batch File Name 
    000.121  0051   BATSEC  DS      1       Current Sector Index 
    000.122  0052   BATGNS  DS      2       Batch File FGN & LGN 
 
    000.124  0054   BATBUF  DS      2       Batch Buffer FWA 
    000.126  0056   BATPTR  DS      2       Pointer into BATBUF 
 
    000.130  0058   SUBBUF  DS      2       Substitution Buffer FWA 
 
    000.132  005A   S.PATH  DS      2       System Path Buffer FWA 
 
    000.134  005C   S.PRMT  DS      2       System Prompt Buffer FWA 
    000.136  005E   S.EDLIN DS      2       Line Editor Buffer FWA 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-117 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
        **    HDOS BASE PAGE DEFINITION (Cont) 
    ----------------------------------------------------------------------- 
 
    000.140  0060   S.COUNT DS      1       Batch Counter Byte 
    000.141  0061   S.SHIFT DS      1       Batch Shift Count 
    000.142  0062   S.BITS  DS      1       Batch BIT Flags 
 
    000.143  0063           DS      1       Used by Pre-Load 
    000.144  0064           DS      1       Used by Pre-Load 
    000.145  0065   S.XFLAG DS      1       Aux. SYSCMD Control Flags 
 
    000.001  0001   S.HALT  EQU     00000001B   HALT Command has been given 
    000.002  0002   S.SPC   EQU     00000010B   Show PIP Command before 
                                                  executing 
    000.004  0004   *       EQU     00000100B 
    000.010  0008   *       EQU     00001000B 
    000.020  0010   *       EQU     00010000B 
    000.040  0020   *       EQU     00100000B 
    000.100  0040   S.DSF   EQU     01000000B   Permission to use /DSF in 
                                                  PIP 
    000.200  0080   S.ULTRA EQU     10000000B   Ultra ROM is present 
 
    000.146  0066   B.NMI   DS      3       NMI handler vector 
    000.151  0069   B.NMIFL DS      1       NMI flag (0=no NMI's occured) 
 
    000.152  006A   S.DFBLK DB      'SY0ABS'   Resident Default Block 
 
    000.160  0070   S.CVEC  DS      5*3     console SCALL vectors 
 
    000.160  0070           DS      3       Vector to .scin. 
    000.163  0073           DS      3       Vector to .scout. 
    000.166  0076           DS      3       Vector to .print. 
    000.171  0079           DS      3       Vector to .consl. 
    000.174  007C           DS      3       Vector to .clrco. 
 
    000.177  007F   S.FLAG  DS      1       SYSCMD Control Flags 
 
    000.001  0001   S.SYSCM EQU     00000001B   SYSCMD.SYS is in memory 
    000.002  0002   S.VFLG  EQU     00000010B   VERIFY mode is on           
    000.004  0004   S.ECHO  EQU     00000100B   ECHO mode is off 
    000.010  0008   S.BATCH EQU     00001000B   BATCH mode is on 
    000.020  0010   S.EXITC EQU     00010000B   Display exit code on 
                                                  re-entry 
    000.040  0020   S.BREAK EQU     00100000B   Break off current operation 
    000.100  0040   S.TABUF EQU     01000000B   Type-Ahead Buffer stuffed 
                                                  by user 
 
    000.200  0080   S.INIT  EQU     10000000B   SYSCMD INIT has been done 
 
    000.200  0080   B.END   EQU     * 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-118 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
        **    HDOS 3.0 Operating System Resident Code 
    ----------------------------------------------------------------------- 
 
    000.200  0080   FWA OF HDOS CODE 
    ::: :::  :::: 
    026.156  166E   LWA OF HDOS CODE 
 
    026.157  166F           DS      1 
 
    ----------------------------------------------------------------------- 
 *     Super 89 Pre-Load Module Resident Code 
    ----------------------------------------------------------------------- 
 
    026.160  1670   FWA of Code 
    ::: :::  :::: 
    027.377  17FF   LWA of Code 
 
    ----------------------------------------------------------------------- 
        **    H17 ROM Code which is retained by HDOS 3.0 
    ----------------------------------------------------------------------- 
 
    030.000  1800           DS      3       Vector to S.FASER 
    030.003  1803           DS      45      Obsolete Code (Memory 
                                              Diagnostic) 
 
    030.060  1830           DS      354     ROM Subroutines ($TYPTX,  
                                              etc.) 
    031.222  1992           DS      62      H17 Driver ROM Code 
    031.320  19D0           DS      8       EIGHT CONSTANT ZEROS 
    031.330  19D8           DS      421     H17 Driver ROM Code 
    033.175  1B7D           DS      30      Relocation Code ($REL. & $REL) 
    033.233  1B9B           DS      101     H17 Driver ROM Code 
 
    ----------------------------------------------------------------------- 
        **    HDOS 3.0 Buffers 
    ----------------------------------------------------------------------- 
 
    034.000  1C00           DS      256     SYSTEM LABEL BUFFER 
    035.000  1D00           DS      256     BATCH BUFFER 
    036.000  1E00           DS      101     SUBSTITUTION BUFFER 
    036.145  1E65           DS      101     PATH BUFFER 
    036.312  1ECA           DS      101     PROMPT BUFFER 
    037.057  1F2F           DS      101     COMMAND LINE EDITOR BUFFER 
    037.224  1F94           DS      101     TYPE-AHEAD BUFFER 
    037.371  1FF9           DS      7       Unused 
    040.000  2000   .START  EQU     40000A  START DUMP ADDRESS 
    040.002  2002   .IOWRK  EQU     40002A  IN OR OUT INSTRUCTION 
    040.005  2005   .REGI   EQU     40005A  DISPLAYED REGISTER INDEX 
    040.006  2006   .DSPROT EQU     40006A  PERIOD FLAG BYTE 
    040.007  2007   .DSPMOD EQU     40007A  DISPLAY MODE 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-119 
    ================    =================================       =========== 
          
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
    
    ----------------------------------------------------------------------- 
        **    RAM CELLS USED BY OLD MONITOR CODE & HDOS 
    ----------------------------------------------------------------------- 
 
    040.010  2008   .MFLAG  EQU     40010A  USER OPTION BYTE                
 
    ----------------------------------------------------------------------- 
 *     USER OPTION BITS 
 *     These bits are set in cell .MFLAG 
    ----------------------------------------------------------------------- 
 
    000.200  0080   UO.HLT  EQU     10000000B   DISABLE HALT PROCESSING 
    000.100  0040   UO.NFR  EQU     01000000B   NO REFRESH OF FRONT PANEL 
    000.002  0002   UO.DDU  EQU     00000010B   DISABLE DISPLAY UPDATE 
    000.001  0001   UO.CLK  EQU     00000001B   ALLOW PRIVATE INTERRUPT 
                                                  PROCESSING 
 
    040.011  2009   .CTLFLG EQU     40011A  PANEL CONTROL BYTE 
    040.013  200B   .ALEDS  EQU     40013A  ABUSS LEDS 
    040.021  2011   .DLEDS  EQU     40021A  DBUSS LEDS 
    040.024  2014   .ABUSS  EQU     40024A  ABUSS REGISTER 
    040.027  2017   .CRCSUM EQU     40027A  CRCSUM WORD 
    040.031  2019   .TPERRX EQU     40031A  TAPE ERROR EXIT VECTOR 
    040.033  201B   .TICCNT EQU     40033A  CLOCK TICK COUNTER 
    040.035  201D   .REGPTR EQU     40035A  REGISTER POINTER 
    040.037  201F   .UIVEC  EQU     40037A  USER INTERRUPT VECTORS 
 
    040.037  201F           DS      3  CLOCK        Int 1 = .UIVEC 
    040.042  2022           DS      3  SINGLE STEP  Int 2 = .UIVEC+3 
    040.045  2025           DS      3  KEYBOARD     Int 3 = .UIVEC+6 
    040.050  2028           DS      3  H37          Int 4 = .UIVEC+9 
    040.053  202B           DS      3  MODEM        Int 5 = .UIVEC+12 
    040.056  202E           DS      3  CLOCK89      Int 6 = .UIVEC+15 
    040.061  2031           DS      3  SCALL        Int 7 = .UIVEC+18 
 
    040.064  2034   .NMIRET DS      2       H88/H89 NMI Return Address 
    040.066  2036   .CTL2FL DS      1       OP2.CTL Control Byte 
 
    040.067  2037           DS      9       Reserved 
 
    ----------------------------------------------------------------------- 
        **    HDOS SYSTEM RAM WORKSPACE 
    ----------------------------------------------------------------------- 
 
    040.100  2040           ORG     040100A   FREE SPACE FROM PAM-8 
 
    040.100  2040           DS      8       JUMP TO SYSTEM EXIT 
 
    040.100  2040           XRA     A 
    040.101  2041           STA     SYSMODE   162BH in HDOS 3.0a 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-120 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
  
   ----------------------------------------------------------------------- 
        **    HDOS SYSTEM RAM WORKSPACE (Cont) 
    ----------------------------------------------------------------------- 
 
    040.104  2044           MVI     A,1 
    040.106  2046           SCALL   .EXIT 
 
    ---------------------------------------------------------------------- 
 *     D.CON - DISK CONSTANTS 
    ---------------------------------------------------------------------- 
 
    040.110  2048   D.CON   DS      16      DISK CONSTANTS 
 
    040.110  2048   D.XITA  DS      2       HEAD UNSETTLE & MOTOR ON TIMES 
    040.112  204A   D.WRITA DS      1       GUARDBAND COUNT FOR WRITE 
    040.113  204B   D.WRITB DS      1       NUMBER OF ZERO CHARS AFTER 
                                              HOLE EDGE 
 
    040.114  204C   D.WRITC DS      1       TWO CHAR DELAY BEFORE WRITING 
    040.115  204D   D.MAIA  DS      1       TRACK-TO-TRACK STEP TIMES 
    040.116  204E   D.LPSA  DS      1       NUMBER OF TRIES FOR CORRECT 
                                              SECTOR 
    040.117  204F   D.SDPA  DS      1       70 MILLISECOND WAIT FOR HEAD 
                                              SETTLE 
 
    040.120  2050   D.SDPB  DS      1       1 SECOND WAIT FOR MOTOR ON 
    040.121  2051   D.STSA  DS      1       MS/2 TO WAIT FOR INDEX HOLE 
    040.122  2052   D.STSB  DS      1       MS/2 TO WAIT PAST INDEX HOLE 
 
    040.123  2053   D.WHDA  DS      1       UDLY COUNT FOR HOLE DEBOUNCE 
    040.124  2054   D.WNHA  DS      1       UDLY COUNT FOR HOLE DEBOUNCE 
    040.125  2055   D.WSCA  DS      1       LOOP COUNT FOR 25 CHARS 
 
    040.126  2056   D.ERTS  DS      2       TRACK AND SECTOR OF LAST DISK 
                                              ERRORS 
    ----------------------------------------------------------------------- 
 *     SYSTEM DISK VECTORS 
    -----------------------------------------------------------------------      
 
    040.130  2058   SYDD    EQU     *       SYSTEM DISK ENTRY POINT 
    040.130  2058   D.VEC   DS      24*3    SYSTEM ROM ENTRY VECTORS 
 
    040.130  2058   D.SYDD  DS      3       SYSTEM DISK DEVICE DRIVER 
    040.133  205B   D.MOUNT DS      3       MOUNT NEW DEVICE 
    040.136  205E   D.XOK   DS      3       EXIT WITH ALL OK FLAG 
    040.141  2061   D.ABORT DS      3       ABORT ANY ACTIVE I/O 
    040.144  2064   D.XIT   DS      3       EXIT 
    040.147  2067   D.READ  DS      3       READ FROM DISK 
    040.152  206A   D.READR DS      3       READ REGARDLESS OF VOLUME 
                                            PROTECTION 
     
 
   



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-121 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
        *     SYSTEM DISK VECTORS (Cont) 
    ----------------------------------------------------------------------- 
 
    040.155  206D   D.WRITE DS      3       WRITE TO DISK 
    040.160  2070   D.CDE   DS      3       COUNT DISK ERRORS 
    040.163  2073   D.DTS   DS      3       DECODE TRACK & SECTOR 
    040.166  2076   D.SDT   DS      3       SEEK DESIRED TRACK 
    040.171  2079   D.MAI   DS      3       MOVE DISK ARM IN ONE TRACK 
    040.174  207C   D.MAO   DS      3       MOVE DISK ARM OUT ONE TRACK 
    040.177  207F   D.LPS   DS      3       LOCATE PROPER SECTOR 
    040.202  2082   D.RDB   DS      3       READ BYTE FROM DISK 
    040.205  2085   D.SDP   DS      3       SET DEVICE PARAMETERS 
    040.210  2088   D.STS   DS      3       SKIP THIS SECTOR 
    040.213  208B   D.STZ   DS      3       SEEK TRACK ZERO 
    040.216  208E   D.UDLY  DS      3       MICROSECOND DELAY 
    040.221  2091   D.WSC   DS      3       WAIT SYNC CHARACTER 
    040.224  2094   D.WSP   DS      3       WRITE SYNC PATTERN 
    040.227  2097   D.WNB   DS      3       WRITE NEXT BYTE 
    040.232  209A   D.ERRT  DS      3       ERROR TEST LOOP 
    040.235  209D   D.DLY   DS      3       DELAY BY FRONT PANEL CLOCK 
 
    ----------------------------------------------------------------------- 
        *     D.RAM - DISK RAM WORK AREA 
   *     Zeroed upon booting up 
    ----------------------------------------------------------------------- 
 
    040.240  20A0   D.RAM   DS      31      SYSTEM ROM WORK AREA 
 
    040.240  20A0   D.TT    DS      1       TARGET TRACK (CURRENT 
                                              OPERATION) 
    040.241  20A1   D.TS    DS      1       TARGET SECTOR (CURRENT 
                                              OPERATION) 
 
    040.242  20A2   D.DVCTL DS      1       DEVICE CONTROL BYTE 
 
    040.243  20A3   D.DLYMO DS      1       MOTOR ON DELAY COUNT 
    040.244  20A4   D.DLYHS DS      1       HEAD SETTLE DELAY COUNTER 
                                 
    040.245  20A5   D.TRKPT DS      2       ADDRESS IN D.DRVTB FOR TRACK 
                                              NUMBER 
 
    040.247  20A7   D.VOLPT DS      2       ADDRESS IN D.DRVTB FOR VOLUME 
                                              NUMBER 
 
    040.251  20A9   D.DRVTB DS      2*4     TRACK AND VOLUME NUMBER FOR 
                                              4 DRIVES 
 
    040.261  20B1   D.HECNT DS      1       HARD ERROR COUNT 
    040.262  20B2   D.SECNT DS      2       SOFT ERROR COUNT 
    040.264  20B4   D.OECNT DS      1       OPERATION ERROR COUNT 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-122 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
 *     GLOBAL DISK ERROR COUNTERS 
    ----------------------------------------------------------------------- 
 
    040.265  20B5   D.ERR   DS      0      *BEGINNING OF ERROR BLOCK   
    040.265  20B5   D.E.MDS DS      1      *MISSING DATA SYNC           
    040.266  20B6   D.E.HSY DS      1      *MISSING HEADER SYNC                
    040.267  20B7   D.E.CHK DS      1      *DATA CHECKSUM             
    040.270  20B8   D.E.HCK DS      1      *HEADER CHECKSUM           
    040.271  20B9   D.E.VOL DS      1      *WRONG VOLUME NUMBER        
    040.272  20BA   D.E.TRK DS      1      *BAD TRACK SEEK            
    040.273  20BB   D.ERRL  DS      0      *LIMIT OF ERROR COUNTERS   
 
    NOTE: *INDICATES THAT THESE COUNTERS ARE NOT USED BY HDOS 3.0. 
 
    ----------------------------------------------------------------------- 
 *     I/O OPERATION COUNTS 
    ----------------------------------------------------------------------- 
 
    040.273  20BB   D.OPR   DS      2       NUMBER OF READS 
    040.275  20BD   D.OPW   DS      2       NUMBER OF WRITES 
 
    000.037  001F   D.RAML  EQU     *-D.RAM 
 
 *     S.VAL - SYSTEM VALUES 
 *     These values are set and maintained by the system 
 
    040.277  20BF   S.VAL   DS      36      SYSTEM VALUES 
 
    040.277  20BF   S.DATE  DS      9       SYSTEM DATE (IN ASCII) 
    040.310  20C8   S.DATC  DS      2       CODED DATE 
    040.312  20CA   S.TIME  DS      3       TIME FROM MIDNIGHT (IN BCD) 
    040.315  20CD   S.CLKTR DS      1       CLOCK TASK RESIDENT FLAG 
 
    040.316  20CE   S.HIMEM DS      2       HARDWARE HIGH MEMORY ADDRESS 
 
    040.320  20D0   S.SYSM  DS      2       FWA RESIDENT SYSTEM 
 
    040.322  20D2   S.USRM  DS      2       LWA USER MEMORY 
 
    ----------------------------------------------------------------------- 
 *  CAUTION - The next two bytes used to be "S.OMAX". Older 
 *  application programs may have referenced it for setting top of 
 *  memory with ".SETTOP".  DO NOT use this word for anything now. 
      *  In this way, it should always contain zero and should be 
             harmless. 
    ----------------------------------------------------------------------- 
 
    040.324  20D4           DS      2       Reserved  \3.0a\ 
 
 
    
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-123 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
  
    ----------------------------------------------------------------------- 
 *     The following cells should be modified/read ONLY 
 *     via the .CONSL SCALL 
    ----------------------------------------------------------------------- 
 
    000.000  0000   I.CSLMD EQU     0       S.CSLMD IS FIRST BYTE 
    040.326  20D6   S.CSLMD DS      1       CONSOLE MODE 
 
    000.200  0080   CSL.ECH EQU     10000000B   SUPPRESS ECHO 
    000.004  0004   CSL.RAW EQU     00000100B   Raw Mode I/O 
    000.002  0002   CSL.WRP EQU     00000010B   WRAP LINES AT WIDTH 
    000.001  0001   CSL.CHR EQU     00000001B   OPERATE IN CHARACTER MODE 
 
    000.001  0001   I.CONTY EQU     1       S.CONTY IS 2ND BYTE 
    040.327  20D7   S.CONTY DS      1       CONSOLE TYPE FLAGS 
 
    000.200  0080   CTP.BKS EQU     10000000B   TERMINAL PROCESSES 
                                                  BACKSPACES 
    000.100  0040   CTP.FF  EQU     01000000B   Terminal Processes 
                                                  Form-Feed 
    000.040  0020   CTP.MLI EQU     00100000B   MAP LOWER CASE TO UPPER 
                                                  ON INPUT 
    000.020  0010   CTP.MLO EQU     00010000B   MAP LOWER CASE TO UPPER 
                                                  ON OUTPUT 
    000.010  0008   CTP.2SB EQU     00001000B   TERMINAL NEEDS TWO STOP 
                                                  BITS 
    000.004  0004   CTP.HHS EQU     00000100B   Terminal uses hdwr 
                                                  handshake 
    000.002  0002   CTP.BKM EQU     00000010B   MAP BKSP (UPON INPUT) TO 
                                                  RUBOUT 
    000.001  0001   CTP.TAB EQU     00000001B   TERMINAL SUPPORTS TAB 
                                                  CHARACTERS 
 
    000.002  0002   I.CUSOR EQU     2       S.CUSOR IS 3RD BYTE 
    040.330  20D8   S.CUSOR DS      1       CURRENT CURSOR POSITION 
 
    000.003  0003   I.CONWI EQU     3       S.CONWI IS 4TH BYTE 
    040.331  20D9   S.CONWI DS      1       CONSOLE WIDTH 
 
    000.004  0004   I.CONFL EQU     4       S.CONFL IS 5TH BYTE 
    040.332  20DA   S.CONFL DS      1       CONSOLE FLAGS 
 
    000.001  0001   CO.FLG  EQU     00000001B   CTL-O FLAG 
    000.200  0080   CS.FLG  EQU     10000000B   CTL-S FLAG 
 
    040.333  20DB   S.CAADR DS      2       ADDRESS FOR ABORT PROCESSING 
                    *                       (GREATER THAN 256 IF VALID) 
    040.335  20DD   S.CCTAB DS      6       ADDR FOR CTL-A, CTL-B, CTL-C 
                                              PROCESSING 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-124 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
 *     S.INT - SYSTEM INTERNAL WORKAREA 
 *     These cells are referenced by main code, and 
 *     MUST therefore reside in fixed low memory 
    ----------------------------------------------------------------------- 
 
    040.343  20E3   S.INT   DS      115     SYSTEM INTERNAL WORK AREAS 
 
    ----------------------------------------------------------------------- 
 *     CONSOLE STATUS FLAGS 
    ----------------------------------------------------------------------- 
 
    040.343  20E3   S.CDB   DS      1       CONSOLE DESCRIPTOR BYTE 
    000.000  0000   CDB.H85 EQU     00000000B 
    000.001  0001   CDB.H84 EQU     00000001B 
    040.344  20E4   S.BAUD  DS      2       [0-14]  H8-4 BAUD RATE, =0 IF 
                                               H8-5 
        *                               [15]    =1 IF BAUD RATE => 
                                                   2 STOP BITS 
 * Baud Rate Divisor 
 * --------- -------------------- 
 * 38400  000.003  0003h    3 
 * 19200  000.006  0006h    6 
 *  9600  000.014  000Ch   12 
 *  4800  000.030  0018h   24 
 *  2400  000.060  0030h   48 
 *  1200  000.140  0060h   96 
 *   600  000.300  00C0h  192 
 *   300  001.200  0180h  384 
 *   150  003.000  0300h  768 
 *   110  004.027  0417h 1047 
 *    75  006.000  0600h 1536 
 
      *       NOTE:   A clever way to equate baud rate to divisor is  
      *               found by knowing that <divisor>*<baud>/10=11520 
                                                         
 *     TABLE ADDRESS WORDS 
 
    040.346  20E6   S.DLINK DS      2       ADDRESS OF DATA IN HDOS CODE 
     
    -------------------------------------------------------------------- 
 *     HDOS MONITOR PRIVATE RAM AREA DEFINITIONS 
 *     Pointed to by S.DLINK 
    -------------------------------------------------------------------- 
 
    000.000  0000   M.SYSM  DS      1       SYSCALL ITERATION COUNT 
    000.001  0001           DS      1       STAND-ALONE FLAG (OBSOLETE) 
    000.002  0002   M.CSL   DS      2       Address of console data area 
    000.004  0004   M.SUNI  DS      1       SYSTEM UNIT NUMBER 
    000.005  0005   M.SYDD  DS      2       SYSTEM DEVICE DRIVER 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-125 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
 *  CAUTION - The next two bytes used to be "S.OFWA". Older 
 *  application programs may have referenced it for something 
 *  to do with the obsolete overlay table.  DO NOT use this word 
 *  for anything now.  In this way, it should always contain zero 
 *  and should be harmless. 
    ---------------------------------------------------------------------- 
 
    040.350  20E8           DS      2       Reserved  \3.02\ 
 
    040.352  20EA   S.CFWA  DS      2       FWA CHANNEL TABLE 
    040.354  20EC   S.DFWA  DS      2       FWA DEVICE TABLE 
    040.356  20EE   S.RFWA  DS      2       FWA RESIDENT HDOS CODE 
 
    ----------------------------------------------------------------------- 
 *     DEVICE DRIVER DELAYED LOAD FLAGS 
    ----------------------------------------------------------------------- 
 
    040.360  20F0   S.DDLDA DS      2       DRIVER LOAD ADDRESS 
  *   (HIGH BYTE=0 IF NO LOAD PENDING) 
    040.362  20F2   S.DDLEN DS      2       CODE LENGTH IN BYTES 
    040.364  20F4   S.DDGRP DS      1       GROUP NUMBER FOR DRIVER 
    040.365  20F5           DS      1       HOLD PLACE 
    040.366  20F6   S.DDDTA DS      2       DEVICE'S ADDRESS IN DEVLST 
                                              +DEV.RES 
    040.370  20F8   S.DDOPC DS      1       OPEN OPCODE PENDEDING 
 
    040.371  20F9           DS      13      Reserved 
 
    ----------------------------------------------------------------------- 
 *     SYSCALL PROCESSING WORK AREAS 
    ----------------------------------------------------------------------- 
 
    041.006  2106   S.CACC  DS      1       (ACC) UPON SYSCALL 
    041.007  2107   S.CODE  DS      1       SYSCALL INDEX IN PROGRESS 
 
    ----------------------------------------------------------------------- 
 *     JUMPS TO ROUTINES IN RESIDENT HDOS CODE 
    ----------------------------------------------------------------------- 
 
    041.010  2108   S.JUMPS DS      0       START OF DUMP VECTORS 
    041.010  2108   S.SDD   DS      3       JUMP TO STAND-IN DEVICE DRIVER 
    041.013  210B   S.FASER DS      3       JUMP TO FATSERR (FATAL SYSTEM 
                                              ERROR) 
    041.016  210E   S.DIREA DS      3       JUMP TO DIREAD (DISK FILE READ) 
    041.021  2111   S.FCI   DS      3       JUMP TO FCI (FETCH CHANNEL INFO) 
    041.024  2114   S.SCI   DS      3       JUMP TO SCI (STORE CHANNEL INFO) 
    041.027  2117   S.GUP   DS      3       JUMP TO GUP (GET UNIT POINTER) 
 
    041.032  211A   S.MOUNT DS      1       <>0 IF THE SYSTEM DISK IS 
                                               MOUNTED 
    041.033  211B           DS      1       Reserved 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-126 
    ================    =================================       =========== 
      
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
        *     JUMPS TO ROUTINES IN RESIDENT HDOS CODE (Cont) 
    ----------------------------------------------------------------------- 
 
    041.034  211C   S.BOOTF DS      1       BOOT FLAGS 
    000.001  0001   BOOT.P  EQU     00000001B   EXECUTE PROLOGUE UPON BOOT 
 
    041.035  211D           DS      3       Reserved 
 
    ----------------------------------------------------------------------- 
 **    ACTIVE I/O AREA 
    ----------------------------------------------------------------------- 
 *     THE AIO.XXX AREA CONTAINS INFORMATION ABOUT THE I/O OPERATION 
 *     CURRENTLY BEING PERFORMED. THE INFORMATION IS OBTAINED FROM 
 *     THE CHANNEL TABLE, AND WILL BE RESTORED THERE WHEN DONE. 
 * 
 *     NORMALLY, THE AIO.XXX INFORMATION WOULD BE OBTAINED DIRECTLY 
 *     FROM VARIOUS SYSTEM TABLES VIA POINTER REGISTERS. SINCE THE 
 *     8080 HAS NO GOOD INDEXED ADDRESSING, THE DATA IS MANUALLY 
 *     COPIED INTO THE AIO.XXX CELLS BEFORE PROCESSING, AND 
 *     BACKDATED AFTER PROCESSING. 
 
    041.040  2120   AIO.VEC DS      3       JUMP INSTRUCTION 
    041.041  2121   AIO.DDA EQU     *-2     DEVICE DRIVER ADDRESS 
    041.043  2123   AIO.FLG DS      1       FLAG BYTE 
    041.044  2124   AIO.GRT DS      2       ADDRESS OF GROUP RESERV TABLE 
    041.046  2126   AIO.SPG DS      1       SECTORS PER GROUP 
    041.047  2127   AIO.CGN DS      1       CURRENT GROUP NUMBER 
    041.050  2128   AIO.CSI DS      1       CURRENT SECTOR INDEX 
    041.051  2129   AIO.LGN DS      1       LAST GROUP NUMBER 
    041.052  212A   AIO.LSI DS      1       LAST SECTOR INDEX 
    041.053  212B   AIO.DTA DS      2       DEVICE TABLE ADDRESS 
    041.055  212D   AIO.DES DS      2       DIRECTORY SECTOR 
    041.057  212F   AIO.DEV DS      2       DEVICE CODE 
    041.061  2131   AIO.UNI DS      1       UNIT NUMBER (0-7) 
 
    041.062  2132   AIO.DIR DS      DIRELEN   DIRECTORY ENTRY 
 
    041.111  2149   AIO.CNT DS      1       SECTOR COUNT 
    041.112  214A   AIO.EOM DS      1       END OF MEDIA FLAG 
    041.113  214B   AIO.EOF DS      1       END OF FILE FLAG 
    041.114  214C   AIO.TFP DS      2       TEMP FILE POINTERS 
    041.116  214E   AIO.CHA DS      2       ADDRESS OF CHANNEL BLOCK 
                                              (IOC.DDA) 
 
    041.120  2150   S.BDA   DS      1       Boot Device Address 
                                              (Setup by ROM) 
    041.121  2151   S.SCR   DS      2       SYSTEM SCRATCH AREA ADDRESS 
    041.123  2153           DS      3       Reserved 
    041.126  2156   S.OSI   DS      1       Operating system index 
    041.127  2157   S.OSO   DS      1       Operating system occurance 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-127 
    ================    =================================       =========== 
 
                         APPENDIX 13-D: MEMORY (Cont) 
                         ++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
        **    ACTIVE I/O AREA (Cont) 
    ----------------------------------------------------------------------- 
 
    041.130  2158   S.OSZ   DS      3       Operating system sector zero 
 
    041.133  215B           DS      11      Reserved 
 
    041.146  2166   S.SOVR  DS      2       STACK OVERFLOW WARNING 
    041.150  2168           DS      42200A-*   SYSTEM STACK 
    001.032  011A   STACKL  EQU     *-S.SOVR   STACK SIZE 
 
    042.200  2280   STACK   EQU     *       LWA+1 SYSTEM STACK 
    042.200  2280   USERFWA EQU     *       USER FWA 
 
                    *************************************** 
                    *************************************** 
                    **                                   ** 
                    **  USERFWA - User Code Starts HERE  ** 
                    **                                   ** 
                    *************************************** 
                    *************************************** 
 
    *********************************************************************** 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-128 
    ================    =================================       =========== 
 
                     APPENDIX 13-E: DIRECTORY ENTRY FORMAT 
                     +++++++++++++++++++++++++++++++++++++ 
  
   ----------------------------------------------------------------------- 
    DIRECTORY ENTRY FORMAT 
    ----------------------------------------------------------------------- 
    000.377  00FF   DF.EMP  EQU     377Q    ENTRY EMPTY 
    000.376  00FE   DF.CLR  EQU     376Q    ENTRY EMPTY, REMAINDER ALSO 
                                              CLEAR 
 
    000.000  0000   DIR.NAM DS      8       NAME 
    000.010  0008   DIR.EXT DS      3       EXTENSION 
    000.013  000B   DIRIDL  EQU     *       file identification length 
 
    000.013  000B   DIR.CTH DS      1       creation time (BCD hours) 
    000.014  000C   DIR.CTM DS      1       creation time (BCD minutes) 
 
    000.015  000D   DIR.NOA DS      1       number of accesses 
    000.016  000E   DIR.FLG DS      1       FLAGS 
    000.017  000F   DIR.USR DS      1       user area mask 
    000.020  0010   DIR.FGN DS      1       FIRST GROUP NUMBER 
    000.021  0011   DIR.LGN DS      1       LAST GROUP NUMBER 
    000.022  0012   DIR.LSI DS      1       LAST SECTOR INDEX (IN LAST 
                                              GROUP) 
    000.023  0013   DIR.CRD DS      2       CREATION DATE 
    000.025  0015   DIR.ACD DS      2       last access date 
 
    000.027  0017   DIRELEN EQU     *       DIRECTORY ENTRY LENGTH 
 
    ----------------------------------------------------------------------- 
    DIRECTORY FILE FLAGS 
    ----------------------------------------------------------------------- 
    000.200  0080   DIF.SYS EQU     10000000B   System file 
    000.100  0040   DIF.LOC EQU     01000000B   Locked from flag changes 
    000.040  0020   DIF.WP  EQU     00100000B   Write protected 
    000.020  0010   DIF.CNT EQU     00010000B   Contiguous file 
    000.010  0008   DIF.ARC EQU     00001000B   File archive attribute 
    000.004  0004   DIF.BAD EQU     00000100B   File is damaged 
    000.002  0002   DIF.DL  EQU     00000010B   Locked against delete 
    000.001  0001   DIF.USR EQU     00000001B   User-defined 
 
    ----------------------------------------------------------------------- 
    DIRECTORY BLOCK FORMAT 
    ----------------------------------------------------------------------- 
    000.000  0000   DIS.ENT EQU     *       FIRST ENTRY ADDRESS 
 
    000.000  0000           DS      22*DIRELEN   22 DIRECTORY ENTRYS PER 
                                                    BLOCK 
    001.372  01FA           DS      1       0 BYTE = END OF ENTRYS IN THIS 
                                                    BLOCK 
 
    001.373  01FB           ORG     512-5   AT END OF BLOCK 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-129 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    DIRECTORY BLOCK FORMAT (Cont) 
    ----------------------------------------------------------------------- 
 
    001.373  01FB   DIS.ENL DS      1       LENGTH OF EACH ENTRY (=DIRELEN) 
    001.374  01FC   DIS.SEC DS      2       BLOCK # OF THIS BLOCK, 
    001.376  01FE   DIS.LNK DS      2       BLOCK # OF NEXT BLOCK,=0 IF LAST 
 
    ----------------------------------------------------------------------- 
    DIRECTORY DEVICE FORMAT DEFINITION 
    ----------------------------------------------------------------------- 
    000.000  0000   DDF.BOO DS      9       2K BOOT PROGRAM 
    000.011  0009   DDF.BOL EQU     *       LENGTH OF BOOT 
    000.011  0009   DDF.LAB DS      1       LABEL SECTOR 
    000.012  000A   DDF.USR DS      0       BEGINNING OF OPEN SPACE          
 
    ----------------------------------------------------------------------- 
    DISK LABEL SECTOR FORMATS 
    ----------------------------------------------------------------------- 
    000.000  0000   LAB.SER DS      1       SERIAL NUMBER OF VOLUME 
    000.001  0001   LAB.IND DS      2       INITIALIZATION DATE 
    000.003  0003   LAB.DIS DS      2       SECTOR NUMBER OF 1ST DIRECTORY 
                                              SECTOR 
    000.005  0005   LAB.GRT DS      2       INDEX OF GRT SECTOR 
    000.007  0007   LAB.SPG DS      1       SECTORS PER GROUP 
 
    000.000  0000   LAB.DAT EQU     0       DATA VOLUME ONLY 
    000.001  0001   LAB.SYS EQU     1       SYSTEM VOLUME 
    000.002  0002   LAB.NOD EQU     2       VOLUME HAS NO DIRECTORY 
 
    000.010  0008   LAB.VLT DS      1       VOLUME TYPE 
    000.011  0009   LAB.VER DS      1       VERSION OF INIT17 THAT INITED 
                                              DISK 
 
    000.012  000A   LAB.RGT DS      2       RGT sector number 
 
    000.014  000C   LAB.VPR EQU     *       Volume dependant data 
    000.014  000C   LAB.SIZ DS      2       Volume Size (Bytes/256) 
    000.016  000E   LAB.PSS DS      2       Physical Sector Size 
    000.020  0010   LAB.VFL DS      1       Volume dependant Flags 
    000.001  0001   VFL.NSD EQU     00000001B   Number of Sides:  1 => 2 
    000.002  0002   VFL.DTD EQU     00000010b   96 tracks per inch 
    000.004  0004   VFL.FIX EQU     00000100b   Media is fixed 
    000.005  0005   LAB.VPL EQU     *-LAB.VPR   Length of volume dependant 
                                                  data 
 
    000.021  0011           DS      5-LAB.VPL   Reserved 
 
    000.021  0011   LAB.LAB DS      60      LABEL 
    000.074  003C   LAB.LBL EQU     *-LAB.LAB   LABEL LENGTH 
    000.115  004D           DS      2       Reserved for 0 bytes 
 
  



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-130 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    DISK LABEL SECTOR FORMAT                         
    ----------------------------------------------------------------------- 
 
    000.117  004F   LAB.AUX EQU     *       Auxiliary Data 
    000.117  004F   LAB.SPT DS      1       Sectors per Track 
    000.120  0050   LAB.LVN DS      2       long volume number 
    000.003  0003   LAB.AXL EQU     *-LAB.AUX   Length of Aux. Data 
 
    ----------------------------------------------------------------------- 
    DEVICE TABLE ENTRIES 
    ----------------------------------------------------------------------- 
    000.000  0000   DEV.NAM DS      2       DEVICE NAME 
    000.000  0000   DV.EL   EQU     00000000B   END OF DEVICE LIST FLAG 
    000.001  0001   DV.NU   EQU     00000001B   DEVICE ENTRY NOT IN USE 
 
    000.002  0002   DEV.RES DS      1       DRIVER RESIDENCE CODE 
    000.001  0001   DR.IM   EQU     00000001B   DRIVER IN MEMORY 
    000.002  0002   DR.PR   EQU     00000010B   DRIVER PERMANENTLY RESIDENT 
    000.004  0004   DR.FX   EQU     00000100B   Driver FIXED in memory 
    000.010  0008   DR.UNL  EQU     00001000B   Driver unload pending 
                    *       EQU     00010000B 
    000.340  00E0   DR.SPL  EQU     11100000B   SET preamble length mask 
 
    000.003  0003   DEV.JMP DS      1       JMP TO PROCESSOR 
    000.004  0004   DEV.DDA DS      2       DRIVER ADDRESS 
    000.006  0006   DEV.FLG DS      1       FLAG BYTE 
    000.001  0001   DT.DD   EQU     00000001B   DIRECTORY DEVICE 
    000.002  0002   DT.CR   EQU     00000010B   CAPABLE OF READ OPERATION    
    000.004  0004   DT.CW   EQU     00000100B   CAPABLE OF WRITE OPERATION 
    000.010  0008   DT.RN   EQU     00001000B   Capable of random access 
    000.020  0010   DT.CH   EQU     00010000B   Capable of character mode 
    000.040  0020   DT.FX   EQU     00100000B   Media is Fixed 
    000.100  0040   DT.P3   EQU     01000000B   Media is Pre-3.0 
    000.200  0080   DT.UL   EQU     10000000B   Requires Unload Notification 
 
    000.007  0007   DEV.MUM DS      1       MOUNTED UNIT MASK 
    000.010  0008   DEV.MNU DS      1       MAXIMUM NUMBER OF UNITS 
    000.011  0009   DEV.UNT DS      2       ADDRESS OF UNIT SPECIFIC DATA 
                                              TABLE 
 
    000.013  000B   DEV.DVL DS      2       DRIVER BYTE LENGTH 
    000.015  000D   DEV.DVG DS      1       DRIVER ROUTINE GROUP ADDRESS 
 
    000.016  000E   DEVELEN EQU     *       DEVICE TABLE ENTRY LENGTH 
 
    ----------------------------------------------------------------------- 
    UNIT SPECIFIC DEVICE DATA TABLE ENTRIES 
    ----------------------------------------------------------------------- 
    000.000  0000   UNT.FLG DS      1       UNIT SPECIFIC  *DEV.FLG* 
    000.001  0001   UNT.SPG DS      1       Sectors Per Group 
    000.002  0002   UNT.GRT DS      2       ADDRESS OF GRT (IF DT.DD) 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-131 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    UNIT SPECIFIC DEVICE DATA TABLE ENTRIES (Cont) 
    ----------------------------------------------------------------------- 
 
    000.004  0004   UNT.GTS DS      2       GRT SECTOR NUMBER 
    000.006  0006   UNT.DIS DS      2       DIRECTORY FIRST SECTOR NUMBER 
 
    000.010  0008   UNT.SIZ EQU     *       SIZE OF UNIT SPECIFIC DATA ENTRY 
 
    ----------------------------------------------------------------------- 
    DEVICE DRIVER EQUIVALENCES  
    ----------------------------------------------------------------------- 
    000.307  00C7   DVDFLV  EQU     307Q    DEVICE DRIVER FLAG VALUE 
 
    000.006  0006           ORG     PIC.COD   STARTS AT PIC CODE AREA 
 
    000.006  0006   DVD.DVD DS      1       MUST BE DVDFLV, IDENTIFIES AS 
                                              DRIVER 
    000.007  0007   DVD.CAP DS      1       DEVICE CAPABILITY FLAG 
    000.010  0008   DVD.MUM DS      1       MOUNTED UNITS MASK 
    000.011  0009   DVD.MNU DS      1       MAXIMUM NUMBER OF UNITS 
    000.012  000A   DVD.UFL DS      8       UNIT CAPABILITY FLAGS FOR 
                                              DRIVER UNITS 0-7 
    000.022  0012   DVD.SET DS      1       = DVDFLV IF DRIVER WILL TAKE 
                                                SET OPTIONS 
    000.023  0013   DVD.INP DS      2       Pointer to Init Code 
    000.025  0015   DVD.V30 DS      1       = DVDFLV IF HDOS 3.0 Driver 
                                                /3.0a/ 
    000.026  0016   DVD.SPL DS      1       SET preamble size (pages/2) 
                                               /3.0a/ 
    000.027  0017           DS      20      RESERVED, MUST BE 0  /3.0a/ 
    000.053  002B   DVD.STE EQU     *       ENTRY FOR 'SET' INVOCATION 
 
    002.000  0200   DVD.ENT EQU     2000A   DRIVER ENTRY POINT(MULT OF 512) 
 
    ----------------------------------------------------------------------- 
    DEVICE DRIVER COMMUNICATION FLAGS 
    ----------------------------------------------------------------------- 
    000.000  0000   DC.REA  DS      1       READ 
    000.001  0001   DC.WRI  DS      1       WRITE 
    000.002  0002   DC.RER  DS      1       READ REGARDLESS    
    000.003  0003   DC.OPR  DS      1       OPEN FOR READ 
    000.004  0004   DC.OPW  DS      1       OPEN FOR WRITE 
    000.005  0005   DC.OPU  DS      1       OPEN FOR UPDATE 
    000.006  0006   DC.CLO  DS      1       CLOSE 
    000.007  0007   DC.ABT  DS      1       ABORT 
    000.010  0008   DC.MOU  DS      1       MOUNT DEVICE 
    000.011  0009   DC.LOD  DS      1       LOAD DEVICE DRIVER 
    000.012  000A   DC.RDY  DS      1       Device Ready 
    000.013  000B   DC.SET  DS      1       Update SET parameters 
    000.014  000C   DC.UNL  DS      1       Unload device driver 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-132 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    DEVICE DRIVER COMMUNICATION FLAGS (Cont)       
    ----------------------------------------------------------------------- 
 
    000.015  000D   DC.INT  DS      1       Interrupt 
    000.016  000E   DC.DSF  DS      1       Device-specific function 
    000.017  000F   DC.MAX  DS      1       MAXIMUM ENTRY INDEX 
 
    +---------------------------------------------------------------------+ 
    |        STANDARD DISK FORMATS FOR HDOS 3.0                | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    | DEVICE | SIDES | DENSITY | TPI | TRACKS | SPT | GROUPS | SPG | SIZE | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    |        |       |        |     |        |     |        |     |      |             
    |  H17   |   1   | SINGLE  |  48 |   40   |  10 |   200  |  2  |  400 | 

|        |    |        |     |        |     |        |     |      |    
    |  H17   |   1   | SINGLE  |  96 |   80   |  10 |   200  |  4  |  800 | 

|        |    |        |     |     |     |        |  |   | 
    |  H17   |   2   | SINGLE  |  48 |   40   |  10 |   200  |  4  |  800 | 
    |        |    |        |     |     |     |        |  |   | 
    |  H17   |   2   | SINGLE  |  96 |   80   |  10 |   200  |  8  | 1600 | 
    |        |    |        |     |     |     |        |  |   | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    |        |    |        |     |     |     |        |  |   | 
    |  H37   |   1   | SINGLE  |  48 |   40   |  10 |   200  |  2  |  400 | 
    |        |       |         |     |        |     |        |     |      | 
    |  H37   |   1   | SINGLE  |  96 |   80   |  10 |   200  |  4  |  800 | 
    |        |    |        |     |     |     |        |     |   | 
    |  H37   |   2   | SINGLE  |  48 |   40   |  10 |   200  |  4  |  800 | 
    |        |    |        |     |        |     |        |     |   | 
    |  H37   |   2   | SINGLE  |  96 |   80   |  10 |   200  |  8  | 1600 | 
    |        |       |        |     |        |     |        |  |   | 
    |  H37   |   1   | DOUBLE  |  48 |   40   |  16 |   160  |  4  |  640 | 
    |        |    |        |     |     |     |        |     |   | 
    |  H37   |   1   | DOUBLE  |  96 |   80   |  16 |   213  |  6  | 1278 | 
    |        |       |        |     |     |     |        |     |   | 
    |  H37   |   2   | DOUBLE  |  48 |   40   |  16 |   213  |  6  | 1278 | 
    |        |    |        |     |     |     |        |  |   | 
    |  H37   |   2   | DOUBLE  |  96 |   80   |  16 | 255    | 10  | 2550 | 
    |        |       |        |     |     |     |        |  |   | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-133 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    +---------------------------------------------------------------------+ 
    |             STANDARD DISK FORMATS FOR HDOS 3.0  (Cont)              | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    |        |       |         |     |        |     |        |     |      | 
    |  H47   |   1   | SINGLE  |  48 |   77   |  13 |   250  |  4  | 1000 | 
    |        |       |         |     |        |     |        |     |      | 
    |  H47   |   1   | DOUBLE  |  48 |   77   |  26 |   250  |  8  | 2000 | 
    |        |    |        |     |     |     |        |  |   | 
    |  H47   |   2   | SINGLE  |  48 | 77     |  13 |   250  |  8  | 2000 | 
    |        |       |        |     |        |     |        |     |   | 
    |  H47   |   2   | DOUBLE  |  48 |   77   |  26 |   250  | 16  | 4000 | 
    |        |    |        |     |     |     |        |  |   | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    |        |       |        |     |     |     |        |  |   | 
    | IOMEGA |   1   |  ?     |  ?  |   77   |  64 |   244  | 20  | 4880 | 
    |        |    EIGHT (8) LOGICAL UNITS PER CARTRIDGE   |  |   | 
    | IOMEGA |   1   |  ?     |  ?  |   77   | 512 |  1952  | 20  |39040 | 
    |        |    |        |     |     |     |        |  |   | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
 
 
    +---------------------------------------------------------------------+ 
    |            SUPER 89 RAM DISK by Dean Gibson/Ultimeth                | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    | BANKS  | SIDES | DENSITY | TPI | TRACKS | SPT | GROUPS | SPG | SIZE | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
    |        |    |        |     |     |     |        |     |   | 
    | 1      |   1   |  N/A   | N/A |  127   |  2  |   127  |  2  |  254 | 
    | 2      |   1   |  N/A   | N/A |  254   |  2  |   254  |  2  |  508 | 
    | 3      |   1   |  N/A   | N/A |  380   |  2  |   190  |  4  |  760 | 
    |        |    |        |     |     |     |        |  |   | 
    +--------+-------+---------+-----+--------+-----+--------+-----+------+ 
 
    ----------------------------------------------------------------------- 
    I/O CHANNEL DEFINITIONS 
    ----------------------------------------------------------------------- 
    000.000  0000   IOC.LNK DS      2       ADDRESS OF NEXT CHANNEL, =0 
                                              IF LAST 
    000.002  0002   IOC.DDA DS      2       THREAD JUMP TO DEVICE DRIVER 
                                              (VIA DEV TABLE) 
 
    000.004  0004   IOC.FLG DS      1       FILE TYPE FLAGS 
    000.001  0001   FT.DD   EQU     00000001B   DIRECTORY DEVICE 
    000.002  0002   FT.OR   EQU     00000010B   OPEN FOR READ 
    000.004  0004   FT.OW   EQU     00000100B   OPEN FOR WRITE 
    000.010  0008   FT.OU   EQU     00001000B   OPEN FOR UPDATE 
    000.020  0010   FT.OC   EQU     00010000B   OPEN FOR CHARACTER MODE 
    000.003  0003   IOC.SQL EQU     *-IOC.DDA   LENGTH OF INFO FOR 
                                                  SEQUENTIAL FILE 
 
 
     
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-134 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    I/O CHANNEL DEFINITIONS (Cont)                 
    ----------------------------------------------------------------------- 
 
    000.005  0005   IOC.GRT DS      2       ADDRESS OF GROUP RESERVATION 
                                              TABLE 
    000.007  0007   IOC.SPG DS      1       SECTORS PER GROUP, THIS DEVICE 
    000.010  0008   IOC.CGN DS      1       CURRENT GROUP NUMBER 
    000.011  0009   IOC.CSI DS      1       CURRENT SECTOR INDEX (IN 
                                              CURRENT GROUP) 
    000.012  000A   IOC.LGN DS      1       LAST GROUP NUMBER 
    000.013  000B   IOC.LSI DS      1       LAST SECTOR INDEX (IN LAST 
                                              GROUP) 
    000.010  0008   IOC.DRL EQU     *-IOC.FLG   LENGTH OF INFO NORMALLY 
                                                  COPIED 
                    *                           BACK TO THE CHANNEL TABLE 
    000.014  000C   IOC.DTA DS      2       DEVICE TABLE ADDRESS FOR THIS 
                                                DEVICE 
    000.016  000E   IOC.DES DS      2       SECTOR NUMBER OF DIRECTORY 
                                              ENTRY 
    000.020  0010   IOC.DEV DS      2       DEVICE CODE 
    000.022  0012   IOC.UNI DS      1       UNIT NUMBER (0-9) 
 
    000.021  0011   IOC.DIL EQU     *-IOC.DDA   LENGTH OF INFO FOR 
                                                  DIRECTORY FILE 
    000.023  0013   IOC.DIR DS      DIRELEN     DIRECTORY ENTRY 
 
    000.052  002A   IOCELEN EQU     *       IOC ENTRY LENGTH 
 
    000.001  0001   IOCCTD  EQU     1       INDEX OF USER CHANNEL #0 IN 
                                              CHANTAB (FIRST = 0) 
 
    ----------------------------------------------------------------------- 
    FILE BLOCK DEFINITIONS  
    ----------------------------------------------------------------------- 
    000.000  0000   FB.CHA  DS      1       CHANNEL NUMBER 
    000.001  0001   FB.FLG  DS      1       FLAGS 
    000.002  0002   FB.FWA  DS      2       BUFFER FWA 
    000.004  0004   FB.PTR  DS      2       BUFFER POINTER 
    000.006  0006   FB.LIM  DS      2       LIMIT OF DATA IN BUFFER 
                                              (READ OPERATIONS) 
    000.010  0008   FB.LWA  DS      2       LWA OF BUFFER 
    000.012  000A   FB.NAM  DS      4+8+4+1 NAME OF FILE 
    000.021  0011   FB.NAML EQU     *-FB.NAM 
    000.033  001B   FBENL   EQU     *       ENTRY LENGTH 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-135 
    ================    =================================       =========== 
                             
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    FILDEF - FILE TYPE DEFINITIONS  
    ----------------------------------------------------------------------- 
    DB      377Q,FT.XXX 
    ----------------------------------------------------------------------- 
    000.000  0000   FT.ABS  EQU     0       ABSOLUTE BINARY 
    000.001  0001   FT.PIC  EQU     1       POSITION INDEPENDANT CODE 
    000.002  0002   FT.REL  EQU     2       RELOCATABLE CODE 
    000.003  0003   FT.BAC  EQU     3       COMPILED BASIC CODE 
 
    000.020  0010   FT.BSX  EQU     10H     Compiled BASEX Code 
 
    ----------------------------------------------------------------------- 
    ABS FORMAT EQUIVALENCES  
    ----------------------------------------------------------------------- 
    000.000  0000   ABS.ID  DS      1       377Q = BINARY FILE FLAG 
    000.001  0001           DS      1       FILE TYPE (FT.ABS) 
    000.002  0002   ABS.LDA DS      2       LOAD ADDRESS 
    000.004  0004   ABS.LEN DS      2       LENGTH OF ENTIRE RECORD 
    000.006  0006   ABS.ENT DS      2       ENTRY POINT 
 
    000.010  0008   ABS.COD DS      0       CODE STARTS HERE 
 
    ----------------------------------------------------------------------- 
    PIC FORMAT EQUIVALENCES  
    ----------------------------------------------------------------------- 
    000.000  0000   PIC.ID  DS      1       377Q = BINARY FILE FLAG 
    000.001  0001           DS      1       FILE TYPE (FT.PIC) 
    000.002  0002   PIC.LEN DS      2       LENGTH OF ENTIRE RECORD 
    000.004  0004   PIC.PTR DS      2       INDEX OF START OF PIC TABLE 
                                                                            
    000.006  0006   PIC.COD DS      0       CODE STARTS HERE 
 
    ----------------------------------------------------------------------- 
    REL FORMAT EQUIVALENCES  
    ----------------------------------------------------------------------- 
    000.000  0000   REL.ID  DS      1       377Q = BINARY FILE FLAG 
    000.001  0001           DS      1       FILE TYPE (FT.REL) 
    000.002  0002   REL.LEN DS      2       LENGTH OF ENTIRE RECORD 
    000.004  0004   REL.PTR DS      2       INDEX OF START OF REL TABLE 
    000.006  0006   REL.COD DS      0       CODE STARTS HERE 
 
    ----------------------------------------------------------------------- 
    BASEX HEADER EQUIVALENCES 
    NOTE: For more information about BASEX, contact Mighty/Soft 
    ----------------------------------------------------------------------- 
    000.000  0000   BSX.ID  DS      1       377Q = Binary File Flag 
    000.001  0001           DS      1       File Type (FT.BSX) 
    000.002  0002   BSX.PSA DS      2       Program Start Address 
    000.004  0004   BSX.PEA DS      2       Program End Address 
    000.006  0006   BSX.SSA DS      2       Symbol_Table Start Address 
    000.010  0008   BSX.SEA DS      2       Symbol_Table End Address 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-136 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    BASEX HEADER EQUIVALENCES (Cont)                
    ----------------------------------------------------------------------- 
 
    000.012  000A   BSX.COD DS      0       Code Starts Here 
    ----------------------------------------------------------------------- 
    TASK PROCESSOR DEFINITIONS  
    ----------------------------------------------------------------------- 
    000.101  0041   .TASK   EQU     101Q    Process TASK function 
    000.317  00CF   TASKID  EQU     317Q    Task Identification Flag 
    000.327  00D7   TASKID. EQU     327Q 
 
 ** TASK Processor Function Codes 
 * 
 * Calling sequences. 
 
 ** TAS.ID - Identify TASK 
      * 
      *       TAS.ID  is  used to identify a TASK to the Task Manager and 
      *       the system.  The TASK is flagged as ACTIVE upon return with 
      *       the Task Sequence Number (TSN) in (A). 
      *       Entry:  (HL) = Address of TASK Block 
 *  (B)  = TAS.ID 
 * Exit: 'C' Set 
 *   (A) = Error code 
 *  'C' Clear if Ok. 
 *   (A) = Task Sequence Number 
 * Uses: ALL 
 
    000.000  0000   TAS.ID  DS      1       Identify TASK to System 
 
 ** TAS.INQ - Inquire About TASKs in System 
      * 
      *       TAS.INQ  returns  a  pointer to the task block table in the 
      *       Task Manager or to a task block within an individual  task. 
      *       The  task block table consists of the addresses of the task 
      *       blocks of all tasks known to the system.  the Task Manager. 
      *       This  table consists of the addresses An address of 000000A 
      *       signifies an unused entry, while 377377A marks the  end  of 
      *       the table.  The general form of the table is: 
      * 
 *  DW Address_of_TASK_Block 
 *  DW TASK_Process_Flag 
      * 
      *       The TASK Process flag contains a '1' bit for each interrupt 
      *       vector the TASK services.  The bits  are  assigned  in  the 
      *       following manner: 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-137 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    TASK PROCESSOR DEFINITIONS (Cont)               
    ----------------------------------------------------------------------- 
 
    TAS.INQ - Inquire About Tasks in System (Cont) 
 
      * 
 *  Byte 0 : 
      *   
 *      bit 7 = High order bit, Interrupt Level 7 
 *        . 
 *        . 
 *      bit 1 =      Interrupt Level 1 
 *      bit 0 = Low order bit,  TASK is active 
      * 
      *       For  example, a value of 10001000B (or 210Q) would indicate 
      *       that the TASK services the  SCALL  vector  (INT7)  and  the 
      *       console  vector  (INT3).   Also  the  task is not currently 
      *       active.  
      * 
      *       Byte 1 : 
 * 
 *      Reserved for future use 
 * 
 * Entry : (A) = TSN desired, or -1 for base of task block 
 * 
 * Exit: 'C' Clear 
 *   (HL) = Address of TASK block table 
 *  'C' Set 
 *   (A) = Error code  (Illegal SCALL) 
 *   TASK Monitor not STARTed 
 * Uses: A,F,H,L 
 
    000.001  0001   TAS.INQ DS      1       Inquire about TASKs 
 
 ** TAS.DEA - Deactivate a TASK 
 * 
      *       TAS.DEA  flags  a  TASK  as  inactive  and discontinues all 
      *       processing of interrupts by the TASK.  That  is,  the  Task 
      *       Manager  will  not  pass  control  to the task at interrupt 
      *       time.  The task's function processor will receive  control, 
      *       (with  the  value  of TAS.DEA in the (A) register), to take 
      *       care of disabling interrupts, and  other  'clean  up'  type 
      *       activity before deactivation. 
      * 
 * *WARNING* 
      * 
      *       If  an  interrupt  occurs  after deactivation which must be 
      *       serviced by this TASK, the system will  crash  due  to  the 
      *       unserviced interrupt.  The ONLY way to re-activate any task 
      *       is via the TAS.REA function. 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-138 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    TASK PROCESSOR DEFINITIONS (Cont)                
    ----------------------------------------------------------------------- 
 
    TAS.INQ - Inquire About Tasks in System (Cont) 
 
      * 
 * Entry: (A) = Task Sequence Number 
 * Exit: 'C' Clear, TASK deactivated 
 *  'C' Set 
 *   (A) = Error code 
 *   No such TASK, TASK monitor not STARTed, 
 *   TASK not abortable, or TASK not active 
 * Uses: A,F 
 
    000.002  0002   TAS.DEA DS      1       Deactivate Task 
 
 ** TAS.REA - Re-activate a TASK 
      * 
      *       TAS.REA   Re-activates   a   previously  deactivated  task. 
      *       Control is passed to the task's function  processor,  (with 
      *       the  value of TAS.REA in the (A) register), to take care of 
      *       any   initialization   which   may   be   required.    Such 
      *       initialization  may include, but not be limited to, setting 
      *       up of ports, and re-requesting interrupt service  from  the 
      *       Task manager 
      * 
 * Entry: (A) = Task Sequence Number 
 * Exit: 'C' Clear, TASK re-activated 
 *  'C' Set 
 *   No such TASK, TASK monitor not STARTed, or 
 *   TASK already active 
 * Uses: A,F 
 
 
    000.003  0003   TAS.REA DS      1       Reactivate TASK 
 
 ** TAS.RIS - Request Interrupt Service 
      * 
      *       TAS.RIS  is  called  by  a  task  to request that interrupt 
      *       service be provided by the Task Manager to  the  task.   It 
      *       allows  the  Manager  to control access of interrupt-driven 
      *       tasks, and removes the burden from the user of  setting  up 
      *       and/or clearing of interrupt service vectors. 
      *  
 * *WARNING* 
 * 
 * This function must be called before any interrupts occur. 
      *  
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-139 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    TASK PROCESSOR DEFINITIONS (Cont)               
    ----------------------------------------------------------------------- 
 
    TASK.REA - Reactiveate A Task (Cont) 
 
      *       Entry:  (A)  = Task Sequence Number 
 *  (B)  = TAS.RIS 
 *  (C)  = Interrupt Level (1-7) 
 *  (HL) = Interrupt processor address 
 * Exit: 'C' clear 
 *   Vectors installed 
 *  'C' set 
 *   (A) = Error code 
 *   Unknown TSN, or Task Manager not present 
 * Uses: A,F 
 * 
      *       Upon entry to the particular interrupt service routine the  
      *       user must follow the following conventions; 
 * 
 * Vectors 1-6 : All registers pushed on the stack. 
 *  (SP+0) = return to task manager 
 *  (SP+2) = return to user program via USR.RST 
 *  (SP+4 - SP+6) = Task Manager registers 
 *  (SP+8) = return to user program via $RSTALL 
 *  (SP+10 - SP+18) = user registers 
 *  (SP+20) = users interrupted PC 
 * 
 * Vector 7 (SCALL) : 
 * 
 *  (HL) = users return address (pointer to SCALL) 
 *  (SP+0) = return to task manager 
 *  (SP+2) = task managers (HL) 
 *  (SP+4) = users PSW 
 *  (SP+6) = users HL 
      * 
      *       All  other  registers  unaffected.   If the task intends to 
      *       handle the SCALL the task managers return should be  popped 
      *       and the SCALL handled normally 
 
    000.004  0004   TAS.RIS DS      1       Request interrupt service 
 
    000.005  0005   TAS.MAX DS      0 
 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-140 
    ================    =================================       =========== 
 
                 APPENDIX 13-E: DIRECTORY ENTRY FORMAT (Cont) 
                 ++++++++++++++++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    TASK PROCESSOR DEFINITIONS (Cont)                
    ----------------------------------------------------------------------- 
 
 *** TASK Block Definition. 
      * 
      *       The TASK block is a structure used to identify TASKs to the 
      *       TASK monitor, and the system.  The format of the  block  is 
      *       as follows: 
 * 
 *  TASK Name DB 'TASKNAME' 
 *  Version (BCD) DB BCD_VERSION 
 *  TASK Id  DB 'XXXX' 
 *  Task Status DB STATUS_BYTE 
 *  Task Start DW START_ADDRESS 
 *  Task End DW END_ADDRESS 
 *  Task Processor DW PROCESSOR_ADDRESS 
 
    000.000  0000   TSB.NAM DS      8       Name of the TASK 
    000.010  0008   TSB.VER DS      1       Version (BCD) of TASK 
    000.011  0009   TSB.ID  DS      4       Other Id information 
    000.015  000D   TSB.STA DS      1       Task status byte  
                                              (See definitions) 
    000.016  000E   TSB.STR DS      2       Starting address of TASK 
                                              in memory 
    000.020  0010   TSB.END DS      2       Ending address of TASK in 
                                              memory 
    000.022  0012   TSB.PRC DS      2       Address of TASK function 
                                              processor 
                    *                       ... If = 0, then no processor. 
    000.024  0014   TSB.LEN EQU     *       20 BYTES 
 
    -----------------------------------------------------------------------  
    STATUS BYTE DEFINITIONS 
    ----------------------------------------------------------------------- 
    000.001  0001   TSS.ACT EQU     00000001B   Task is active 
    000.000  0000   TSS.DEA EQU     00000000B   Task is inactive 
                                                  (suspended) 
    000.002  0002   TSS.UFP EQU     00000010B   Task uses H8 front panel 
    000.010  0008   TSS.MEM EQU     00001000B   Task uses B/S memory 
    000.200  0080   TSS.TCA EQU     10000000B   Task may not be 
                                                  de-activated. 
 
    TASMAX  EQU     16              Maximum number of tasks in system 
    *********************************************************************** 
 
 
 
 
    
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-141 
    ================    =================================       =========== 
 
                          APPENDIX 13-F: ROMCALLS 
                          +++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
 USEFUL SUBROUTINES FROM THE ORIGINAL H17-ROM 
    ----------------------------------------------------------------------- 
 
    ***     $COMP - COMPARE TWO CHARACTER STRINGS. 
 
    * 
    *       $COMP COMPARES TWO BYTE STRINGS. 
    * 
    *       ENTRY:  (C) = COMPARE COUNT 
    *               (DE) = FWA OF STRING #1 
    *               (HL) = FWA OF STRING #2 
    *       EXIT:   'Z' CLEAR, IS MIS-MATCH 
    *               (C) = LENGTH REMAINING 
    *               (DE) = ADDRESS OF MISMATCH IN STRING #1 
    *               (HL) = ADDRESS OF MISMATCH IN STRING #2 
    *               'Z' SET, HAVE MATCH 
    *               (C) = 0 
    *               (DE) = (DE) + (0C) 
    *               (HL) = (HL) + (0C) 
    *       USES:   A,F,C,D,E,H,L 
 
    $COMP   EQU     30060A  1830H   6192 
    ...................................................................... 
 
    ***     $DADA - PERFORM (H,L) = (H,L) + (0,A) 
    * 
    *       ENTRY:  (H,L) = BEFORE VALUE 
    *               (A) = BEFORE VALUE 
    *       EXIT:   (H,L) = (H,L) + (0,A) 
    *               'C' SET IF OVERFLOW 
    *       USES:   F,H,L 
   
    $DADA   EQU     30072A  183AH   6202 
    ...................................................................... 
 
    ***    $DADA. - ADD (0,A) TO (H,L) 
    *                                                                           
    *       ENTRY:  NONE 
    *       EXIT:   (HL) = (HL) + (0A) 
    *       USES:   A,F,H,L 
                                                                                
    $DADA.  EQU     30101A  1841H   6209 
    ...................................................................... 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFERENCE GUIDE       PAGE 13-142 
    ================    =================================       =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    ***     $DU66 - UNSIGNED 16 / 16 DIVIDE. 
    * 
    *       (HL) = (BC)/(DE) 
    * 
    *       ENTRY:  (BC), (DE) PRESET 
    *       EXIT:   (HL) = RESULT 
    *               (DE) = REMAINDER 
    *       USES:   ALL 
 
    $DU66   EQU     30106A  1846H   6214 
    ....................................................................... 
 
    ***     $HLIHL - LOAD HL INDIRECT THROUGH HL. 
    * 
    *       (HL) = ((HL)) 
    * 
    *       ENTRY:  NONE 
    *       EXIT:   NONE 
    *       USES:   A,H,L 
 
    $HLIHL  EQU     30211A  1889H   6281 
    ....................................................................... 
 
    ***     $CDEHL - COMPARE (DE) TO (HL) 
    * 
    *       $CDEHL COMPARES (DE) TO (HL) FOR EQUALITY. 
    * 
    *       ENTRY:  NONE 
    *       EXIT:   'Z' SET IF (DE) = (HL) 
    *       USES:   A,F 
 
    $CDEHL  EQU     30216A  188EH   6286 
    ....................................................................... 
 
    ***     $CHL - COMPLEMENT (HL). 
    * 
    *       (HL) = -(HL)            TWO'S COMPLEMENT 
    * 
    *       ENTRY:  NONE 
    *       EXIT:   NONE 
    *       USES:   A,F,H,L 
      
    $CHL    EQU     30224A  1894H   6292 
    ....................................................................... 
 
    ***     $INDL - INDEXED LOAD. 
    * 
    *       $INDL LOADS DE WITH THE TWO BYTES AT (HL)+DISPLACMENT 
    * 
    *       THIS ACTS AS AN INDEXED FULL WORD LOAD. 
    *       (DE) = ( (HL) + DSPLACEMENT ) 
 
 



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-143 
    ================    ==============================          =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .$INDL - INDEXED LOAD (Cont) 
 
    *       ENTRY:  ((RET)) = DISPLACMENT (FULL WORD) 
    *               (HL) = TABLE ADDRESS 
    *       EXIT:   TO (RET+2) 
    *       USES:   A,F,D,E 
 
    $INDL   EQU     30234A  189CH   6300 
    ....................................................................... 
 
    ***     $MOVE - MOVE DATA 
    * 
    *       $MOVE MOVES A BLOCK OF BYTES TO A NEW MEMORY ADDRESS. 
    *       IF THE MOVE IS TO A LOWER ADDRESS, THE BYTES ARE MOVED FROM 
    *       FIRST TO LAST. 
    * 
    *       IF THE MOVE IS TO A HIGHER ADDRESS, THE BYTES ARE MOVED FROM 
    *       LAST TO FIRST. 
    * 
    *       THIS IS DONE SO THAT AN OVERLAPED MOVE WILL NOT 'RIPPLE'. 
    * 
    *       ENTRY:  (BC) = COUNT 
    *               (DE) = FROM 
    *               (HL) = TO 
    *       EXIT:   MOVED 
    *               (DE) = ADDRESS OF NEXT FROM BYTE 
    *               (HL) = ADDRESS OF NEXT *TO* BYTE 
    *               'C' CLEAR 
    *       USES:   ALL 
 
    $MOVE   EQU     30252A  18AAH   6314 
    ....................................................................... 
 
    ***     $MU10 - MULTIPLY UNSIGNED 16 BIT QUANTITY BY 10 
    * 
    *       (HL) = (DE) * 10 
    * 
    *       ENTRY:  (DE) = MULTIPLIER 
    *       EXIT:   'C' CLEAR IF OK 
    *               (HL) = PRODUCT 
    *               'C' SET IF ERROR 
    *       USES:   F,D,E,H,L 
 
    $MU10   EQU     30324A  18D4H   6356 
    ....................................................................... 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-144 
    ================    ==============================          =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    ***     $MU66 - UNSIGNED 16 X 16 MULTIPLY. 
    * 
    *       ENTRY:  (BC) = MULTIPLICAND 
    *               (DE) = MULTIPLIER 
    *       EXIT:   (HL) = RESULT 
    *               'Z' SET IF NOT OVERFLOW 
    *       USES:   ALL 
 
    $MU66   EQU     30337A  18DFH   6367 
    ....................................................................... 
                                                                            
    ***     $MU86 - MULTIPLY 8 X 16 UNSIGNED. 
    * 
    *       ENTRY:  (A) = MULTIPLIER 
    *               (DE) = MULTIPLICAND 
    *       EXIT:   (HL) = RESULT 
    *               'Z' SET IF NOT OVERFLOW 
    *       USES:   A,F,H,L 
 
    $MU86   EQU     31007A  1907H   6407 
    ....................................................................... 
 
    ***     $RSTALL - RESTORE ALL REGISTERS. 
    * 
    *       $RSTALL RESTORES ALL THE REGISTERS OFF THE STACK, AND 
 
    *       RETURNS TO THE PREVIOUS CALLER. 
    * 
    *       ENTRY:  (SP) = PSW 
    *               (SP+2) = BC 
    *               (SP+4) = DE 
    *               (SP+6) = HL 
    *               (SP+8) = RET 
    *       EXIT:   TO *RET*, REGISTERS RESTORED 
    *       USES:   ALL 
 
    $RSTALL EQU     31047A  1927H   6439 
    ....................................................................... 
 
    ***     $SAVALL - SAVE ALL REGISTERS ON STACK. 
    * 
    *       $SAVALL SAVES ALL THE REGISTERS ON THE STACK. 
    * 
    *       ENTRY:  NONE 
    *       EXIT:   (SP) = PSW 
    *               (SP+2) = BC 
    *               (SP+4) = DE 
    *               (SP+6) = HL 
    *       USES:   H,L 
    
    $SAVALL EQU     31054A  192CH   6444 
  
 



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-145 
    ================    ==============================          =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    ***     $TJMP - TABLE JUMP. 
    * 
    *       USAGE 
    * 
    *       CALL    $TJMP           (A) = INDEX 
    *       DW      ADDR1           INDEX = 0 
    *       .         . 
    *       .         . 
    *       DW      ADDRN           INDEX = N - 1 
    * 
    *       ENTRY:  (A) = INDEX 
    *       EXIT:   TO PROCESSOR 
    *               (A) = INDEX * 2 
    *       USES:   NONE. 
 
    $TJMP   EQU     31061A  1931H   6449 
 
    *       ENTRY:  (A) = INDEX * 2 
 
    $TJMP.  EQU     31062A  1932H   6450 
    ....................................................................... 
 
    ***     $TBRA - BRANCH RELATIVE THROUGH TABLE. 
    * 
    *       $TBRA USES THE SUPPLIED INDEX TO SELECT A BYTE FROM THE 
    *       JUMP TABLE. THE CONTENTS OF THIS BYTE ARE ADDED TO THE 
    *       ADDRESS OF THE BYTE, YIELDING THE PROCESSOR ADDRESS. 
    * 
    *       CALL    $TBRA 
    *       DB      LAB1-*          ; INDEX = 0 FOR LAB1 
    *       DB      LAB2-*          ; INDEX = 1 FOR LAB2 
    *       DB      LABN-*          ; INDEX = N-1 FOR LABN 
    * 
    *       ENTRY:  (A) = INDEX 
    *               (RET) = TABLE FWA 
    *       EXIT:   TO COMPUTED ADDRESS 
    *       USES:   F,H,L 
 
    $TBRA   EQU     31076A  193EH   6462 
    ....................................................................... 
 
    ***     $TBLS - TABLE SEARCH 
    *                                                                       
    *       TABLE FORMAT 
    * 
    *       DB      KEY1,VAL1, 
    *       .       . 
    *       .       . 
    *       DB      KEYN,VALN 
    *       DB      0 
    * 
   
 



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-146 
    ================    ==============================          =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    .$TBLS (Cont) 
 
    *       ENTRY:  (A) = PATTERN 
    *               (H,L) = TABLE FWA 
    *       EXIT:   (A) = PATTERN IF FOUND 
    *               'Z' SET IF FOUND 
    *               'Z' CLEAR IF NOT FOUND OR PATTERN=0 
    *       USES:   A,F,H,L 
 
    $TBLS   EQU     31111A  1949H   6473 
    ....................................................................... 
 
    ***     $TYPTX - TYPE TEXT. 
    * 
    *       $TYPTX IS CALLED TO TYPE A BLOCK OF TEXT ON THE SYSTEM CONSOLE. 
    * 
    *       A BYTE WITH THE 200Q BIT SET IS THE LAST BYTE IN THE MESSAGE. 
    * 
    *       ENTRY:  (RET) = TEXT 
    *       EXIT:   TO (RET+LENGTH) 
    *       USES:   A,F 
 
    $TYPTX  EQU     31136A  195EH   6494 
 
    *       ENTRY:  (HL) = TEST 
    *       EXIT:   (HL) = (HL) + LENGTH 
    *       USES:   A,F,H,L 
 
    $TYPTX. EQU     31144A  1964H   6500 
    ....................................................................... 
 
    ***     $UDD - UNPACK DECIMAL DIGITS. 
    * 
    *       UDD CONVERTS A 16 BIT VALUE INTO A SPECIFIED NUMBER OF 
    *       DECIMAL DIGITS. THE RESULT IS ZERO FILLED. 
    * 
    *       ENTRY:  (B,C) = ADDRESS VALUE 
    *               (A) = DIGIT COUNT 
    *               (H,L) = MEMORY ADDRESS 
    *       EXIT:   (HL) = (HL) + (A) 
    *       USES:   ALL 
 
    $UDD    EQU     31157A  196FH   6511 
    ....................................................................... 
 
 
 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-147 
    ================    ==============================          =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
 
 
    ***     $ZERO - ZERO MEMORY 
    * 
    *       $ZERO ZEROS A BLOCK OF MEMORY. 
    * 
    *       ENTRY:  (HL) = ADDRESS 
    *               (B) = COUNT 
    *       EXIT:   (A) = 0 
    *       USES:   A,B,F,H,L 
                                      
    $ZERO   EQU     31212A  198AH   6538 
    ....................................................................... 
 
    ***     $FILL - FILL MEMORY 
    * 
    *       $FILL FILLS A BLOCK OF MEMORY. 
    * 
    *       ENTRY:  (HL) = ADDRESS 
    *               (B) = COUNT 
    *               (A) = FILL BYTE 
    *       EXIT:   (A) = 0 
    *       USES:   A,B,F,H,L 
 
    $FILL   EQU     31213A  198BH   6539 
                                               
 
    ***     8 CONSTANT ZERO BYTES. 
 
    $ZEROS  EQU     31320A  19D0H   6608 
    ....................................................................... 
 
    ***     $REL - RELOCATE CODE. 
    * 
    *       REL PROCESSES A RELOCATION LIST. 
    * 
    *       ENTRY:  (BC) = DISPLACEMENT FROM ASSEMBLED ADDRESS 
    *                      & RELOCATION FACTOR (FROM CURRENT ADDRESS) 
    *               (HL) = FWA RELOCATION LIST 
    *       EXIT:   NONE 
    *       USES:   ALL 
    * 
    *       (DE) WILL BE EQUAL TO (BC), CALL $REL. 
 
    $REL.   EQU     33175A  1B7DH   7037 
 
    *       ENTRY:  (BC) = DISPLACEMENT FROM ASSEMBLED ADDRESS 
    *               (DE) = RELOCATION FACTOR (FROM CURRENT ADDRESS) 
    *               (HL) = FWA RELOCATION LIST 
 
    
 
 



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-148 
    ================    ==============================          =========== 
 
                        APPENDIX 12-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    $REL (Cont) 
 
    *       EXIT:   NONE 
    *       USES:   ALL 
 
    $REL    EQU     33177A  1B7FH   7039 
    ....................................................................... 
 
    ----------------------------------------------------------------------- 
  SUMMARY OF H17 ROM SUBROUTINE ADDRESSES 
    ----------------------------------------------------------------------- 
 
 Name   S/OCT   HEX DEC Description 
      =======      ======  ====  ====  =========================== 
 
 $COMP  EQU 30060A 1830H 6192 String Compare 
 
 $DADA  EQU 30072A 183AH 6202 Add A to HL 
 
 $DADA. EQU 30101A 1841H 6209 Add A to HL 
 
 $DU66  EQU 30106A 1846H 6214 16 bit / 16 bit 
 
 $HLIHL EQU 30211A 1889H 6281 Indirect Load HL Thru HL 
 
 $CDEHL EQU 30216A 188EH 6286 Compare DE to HL 
 
 $CHL  EQU 30224A 1894H 6292 Compliment HL 
 
 $INDL  EQU 30234A 189CH 6300 Indexed Load 
 
 $MOVE  EQU 30252A 18AAH 6314 Move Block of Memory 
 
 $MU10  EQU 30324A 18D4H 6356 Multiply by 10 
 
 $MU66  EQU 30337A 18DFH 6367 16 bit X 16 bit 
 
 $MU86  EQU 31007A 1907H 6407 8 bit X 16 bit 
 
 $RSTALL  EQU 31047A 1927H 6439 Restore All Registers 
 
 $SAVALL  EQU 31054A 192CH 6444 Save All Registers 
 
 $TJMP  EQU 31061A 1931H 6449 Table Jump 
 
 $TJMP. EQU 31062A 1932H 6450 Table Jump 
 
 $TBRA  EQU 31076A 193EH 6462 Table Branch 
 
 $TBLS  EQU 31111A 1949H 6473 Table Search 
 
 $TYPTX EQU 31136A 195EH 6494 Type Text 
  



    CHAPTER THIRTEEN    HDOS SYSTEM PROGRAMMERS' GUIDE          PAGE 13-149 
    ================    ==============================          =========== 
 
                        APPENDIX 13-F: ROMCALLS (Cont) 
                        ++++++++++++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    SUMMARY OF H17 ROM SUBROUTINE ADDRESSES Cont) 
    ----------------------------------------------------------------------- 
 
 $TYPTX.  EQU 31144A 1964H 6500 Type Text 
 
 $UDD  EQU 31157A 196FH 6511 Unpack Decimal Digits 
 
 $ZERO  EQU 31212A 198AH 6538 Zero Block of Memory 
 
 $FILL  EQU 31213A 198BH 6539 Fill Block of Memory 
 
 $ZEROS EQU 31320A 19D0H 6608 8 Constant Zeros 
 
 $REL.  EQU 33175A 1B7DH 7037 Relocate Code 
 
 $REL  EQU 33177A 1B7FH 7039 Relocate Code 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-150 
    ================    ==================================      =========== 
    
                                     INDEX 
                                     +++++ 
 
    .CHFLG  SCALL, 7-38                         NOTE:  THIS INDEX IS NOT 
    .CLEAR  SCALL, 7-8, 7-12, 7-34, 7-54        YET DONE.  NOTICE ALL THE 
    .CLEARA SCALL, 7-65                         REFERENCES TO CHAPTER 7. 
    .CLOSE  SCALL, 7-8, 7-34                    IT WAS CHAPTER 7 FOR HDOS 
    .CLRCO  SCALL, 7-23                         VERSION 2.0. 
    .CONSL  SCALL, 7-14, 7-20, 7-38 
    .CRC16  SCALL 
    .CTLC   SCALL, 7-50 
    .DAD    SCALL, 7-68 
    .DECODE SCALL, 7-45 
    .DELETE SCALL, 7-30, 7-37, 7-54 
    .DMNMS  SCALL, 7-61 
    .DMOUN  SCALL, 7-59 
    .ERROR  SCALL, 7-56 
    .EXIT   SCALL, 7-12 
    .GDA    SCALL 
    .LINK   SCALL, 7-7, 7-8, 7-49 
    .LOADD  SCALL, 7-57 
    .LOADO  SCALL, 7-24 
    .LOG    SCALL 
    .MONMS  SCALL, 7-60 
    .MOUNT  SCALL, 7-58 
    .NAME   SCALL, 7-8, 7-47 
    .OPEN   SCALL, 7-66 
    .OPENC  SCALL, 7-63 
    .OPENR  SCALL, 7-8, 7-16, 7-28, 7-35, 7-40 
    .OPENU  SCALL, 7-8, 7-16, 7-32, 7-40 
    .OPENW  SCALL, 7-8, 7-30, 7-37, 7-40, 7-54 
    .POSIT  SCALL, 7-8, 7-32, 7-40 
    .PRINT  SCALL, 7-19, 7-22 
    .READ   SCALL, 7-8, 7-16 
    .RENAME SCALL, 7-35 
    .RESET  SCALL, 7-62 
    .RESNMS 
    .SCIN   SCALL, 7-14, 7-16, 7-23 
    .SCOUT  SCALL, 7-15, 7-16, 7-22 
    .SETTOP SCALL, 7-9, 7-26, 7-52 
 
    .TASK   SCALL 
    .TDU    SCALL 
    .VERS.  SCALL, 7-25 
    .WRITE  SCALL, 7-8, 7-18 
 
    Appending to Files, 7-32 
    Arguments to SCALLs, 7-26 
    ASCII Files, 7-17, 7-18 
    ASM, XTEXT Pseudo, 7-12 
    ASM SCALL Opcode, 7-12 
    Attribute Flags, 7-38 
 
    Block Mode, I/O, 7-16 
    Booting Volumes (Disks), 7-32 
    Buffer, Console, 7-23 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-151 
    ================    ==================================      =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    Calls, System, 7-12, 7-26 
    Cells, Low-Memory, 7-4 
    Channel -1, 7-7, 7-8, 7-16, 7-34 
    Channel Closing, 7-40 
    Channel Cursor, 7-40 
 
    Channel Environment, 7-7 
    Channel File Name, 7-47 
    Channel Numbers, 7-8, 7-28 
    Channels, Freeing, 7-54 
    Channels, I/O, 7-7, 7-8 
    Channels, Closing, 7-34 
    Clock Interrupts, 7-5, 7-6, 7-9, 7-10 
    Closing Channels, 7-30, 7-32, 7-34 
    Cold Start HDOS, 7-10, 7-11 
    Compatibility, 7-12 
    Computing File Size, 7-40 
    Conflicts, Usage, 7-28, 7-31, 7-35, 7-37 
    Console, System, 7-20, 7-23 
    Console Buffer, 7-23 
    Console Interrupts, 7-5, 7-6 
    Console Pad Characters, 7-18, 7-19 
    Control Character Service Routines, 7-50 
    Conventions, Documentation, 7-16 
    CPU Compatibility, 7-4 
    CPU Environment, 7-7 
    CPU Precautions, 7-10 
    Creation, File, 7-28 
    CRLF Sequence via New Line, 7-19 
 
    CTL-A, 7-23, 7-50 
    CTL-B, 7-23, 7-50 
    CTL-C, 7-23, 7-50 
    CTL-O, 7-22, 7-23 
    CTL-S, 7-22, 7-23 
    CTL-Z, 7-7, 7-10, 7-30 
    Cursor, Sector, 7-8 
    Cursor, Channel, 7-40 
 
    DB Pseudo, 7-9 
    DBUG, 7-6, 7-11 
    Debugging Hints, 7-11 
    Default Block, 7-26, 7-35 
    Deletion, File, 7-28, 7-37 
    Descriptor File, 7-8, 7-26, 7-30, 7-45 
    Device Driver(s), 7-5, 7-6, 7-8 
    Device Driver, SY:, 7-5 
    Device Driver, TT:, 7-5 
    Device Driver Interrupts, 7-6 
    Device Drivers, Loading, 7-57 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-152 
    ================    ==================================      =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    Device Drivers, Ports, 7-5 
    Device I/O, 7-16 
    DI Instruction, 7-10 
    Discontinuing Interrupts, 7-7 
    Dismounting Disks, 7-59, 7-61 
    Documentation Conventions, 7-16 
    Domain, User Program, 7-9 
    DS Pseudo, 7-9, 7-52 
    DS Statements, 7-4 
    DW Pseudo, 7-9 
 
    End Pseudo, 7-7 
    Entry Point, User Program, 7-7 
    Environment, Interrupt, 7-6 
    Environment, Run-Time, 7-4 
    Environment, Channel, 7-7 
    Environment, CPU, 7-7 
    EQU Pseudo, 7-9, 7-52 
    Error Messages, Issuing, 7-8, 7-56 
    ERRORMSG.SYS, 7-56 
    Extension, File Descriptor, 7-27 
 
    File Appending, 7-32 
    File Attribute Flags, 7-38 
    File Creation, 7-30 
    File Deletion, 7-30, 7-37 
    File Descriptor, 7-8, 7-26, 7-45 
    File Flags, LOCK, 7-38 
    File Flags, Write-Protect, 7-38 
    File I/O, 7-8, 7-40 
    File Modification, 7-30, 7-32 
    File Name, Channel, 7-47 
    File Names, 7-26 
    File, Random Access, 7-40, 7-41 
    File Renaming, 7-35 
    File Replacement, 7-30 
    File, Sequential Access, 7-40 
    File Size, Computing, 7-40 
    File Updating, 7-32 
    File Usage Conflict, 7-28, 7-31, 7-35, 7-37 
    File Write Access, 7-30, 7-31 
    Files, ASCII, 7-17, 7-18 
    Files, Temporary, 5-54 
    Flags, Attribute, 7-38 
    FLAGS Program, 7-38 
    Freeing Channels, 7-54 
    FWA User Program Area, 7-4 
 
 
 
     
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-153 
    ================    ==================================      =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    H17, 7-5, 7-6, 7-9 
    H17 ROM, 7-5 
    H37, 7-5 
    H47, 7-5, 7-6, 7-9, 7-10 
    HDOS, Cold-Start, 7-10, 7-11 
    HDOS, Overlays, 7-5, 7-65 
    HDOS, Resident Area, 7-5 
    HDOS, Returning to, 7-13 
    HDOS Version Number, 7-25 
 
    I.CONFL - Console Flags Cell, 7-21 
    I.CONTY - Console Type Cell, 7-21 
    I.CONWI - Console Width Cell, 7-21 
    I.CSLMD - Console Mode Cell, 7-20 
    I.CUSOR - Console Cursor Position, 7-21 
    I/O, Random, 7-8, 7-40 
    I/O, Sequential, 7-8, 7-40 
    I/O Channels, 7-8 
    I/O Environment, 7-5 
    I/O Ports, 7-5 
    I/O Precautions, 7-9 
    INIT Program, 7-38 
    Interrupt, Single-Step, 7-6 
    Interrupt Environment, 7-6 
    Interrupt Precautions, 7-10 
    Interrupt Service, 7-50 
    Interrupt Usage, HDOS, 7-6, 7-9, 7-10 
    Interrupt Vectors, 7-6, 7-7, 7-10 
    Interrupt Vectors, Available, 7-10 
    Interrupts, Device Drivers, 7-6 
    Interrupts, Discontinuing, 7-7, 7-10 
    Interrupts, Turning Off, 7-10 
    Interrupts, Clock, 7-6, 7-9, 7-10 
    Interrupts, Console, 7-6, 7-9, 7-10, 7-20 
 
    Last Block of Files, 7-16 
    Loading Overlays, 7-24 
    LWA User Memory, 7-5, 7-9, 7-26, 7-52 
 
    Memory, FWA User Program, 7-4, 7-9 
    Memory, LWA User Program, 7-5, 7-9, 7-26, 7-52 
    Memory, Requesting Access, 7-4, 7-9, 7-52 
    Memory Layout, 7-4 
    Memory Precautions, 7-9 
    Memory Tables, CPU, 7-10 
    Modification, File, 7-30, 7-32 
    Mounting Disks, 7-58, 7-60 
 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-154 
    ================    ==================================      =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    Names, File, 7-26 
    NL (New Line) Character, 7-19 
    NULL Character, 7-18 
 
    Orphaned Sectors, 7-32 
    Overlay Management, 7-26 
    Overlays, Loading, 7-24 
    Overlays, HDOS, 7-5, 7-7, 7-24, 7-65 
 
    Pad Characters, Console, 7-19 
    PAM-8, 7-4, 7-8, 7-19 thru 7-11 
    Port Assignments, I/O, 7-5 
    Port Assignments, Table, 7-5 
    Precautions, 7-9 
    Precautions, CPU, 7-10 
    Precautions, I/O, 7-9 
    Precautions, Interrupt, 7-10 
    Precautions, Memory, 7-9 
    Precautions, Stack, 7-9 
    Program Execution, 7-4, 7-49 
    Program Size, 7-4 
    PROLOGUE.SYS, 7-71 
 
    Random File Access, 7-40, 7-41 
    Random I/O, 7-8, 7-40 
    Read Access, Files, 7-28 
    Real-Time Clock, 7-6, 7-14 
    Relocations of HDOS, 7-4 
    Renaming Files, 7-35 
    Replacement, File, 7-30 
    Resetting Disks, 7-62 
    Resident HDOS Code, 7-5 
    Resident SCALLs, 7-12 
    Restart, HDOS, 7-10, 7-11 
    Return to HDOS, 7-13 
    ROM, H17, 7-5 
    RUN Command, 7-4 
    Run-Time Environment, 7-4 
 
    SCALL, .CHFLG, 7-38 
    SCALL, .CLEAR, 7-54 
    SCALL, .CLEARA, 7-65 
    SCALL, .CLOSE, 7-34 
    SCALL, .CLRCO, 7-23 
    SCALL, .CONSL, 7-20 
    SCALL, .CRC16, 
    SCALL, .CTLC,  7-50 
    SCALL, .DAD, 7-68 
 
 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-155 
    ================    ==================================      =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
 
    SCALL, .DECODE, 7-45 
    SCALL, .DELETE, 7-37 
    SCALL, .DMNMS, 7-61 
    SCALL, .DEMOUN, 7-59 
    SCALL, .ERROR,  7-56 
    SCALL, .EXIT,   7-12 
    SCALL, .GDA 
    SCALL, .LINK,   7-49 
    SCALL, .LOADD,  7-57 
    SCALL, .LOADO,  7-24 
    SCALL, .LOG 
    SCALL, .MONMS,  7-60 
    SCALL, .MOUNT,  7-58 
    SCALL, .NAME,   7-47 
    SCALL, .OPENC,  7-63 
    SCALL, .OPENR,  7-28 
    SCALL, .OPENU,  7-32 
    SCALL, .OPENW,  7-30 
    SCALL, .POSIT,  7-40 
    SCALL, .PRINT,  7-19 
    SCALL, .READ,   7-16 
    SCALL, .RENAME, 7-35 
    SCALL, .RESET,  7-62 
    SCALL, .RESNMS 
    SCALL, .SCIN,   7-14 
    SCALL, .SCOUT,  7-15 
    SCALL, .SETTOP, 7-52 
    SCALL, .TASK 
    SCALL, .TDU 
    SCALL, .VERS,   7-25 
    SCALL, .WRITE,  7-18 
    SCALL, Arguments, 7-26 
    SCALLs, Overlaid, 7-26 
    SCALLs, Resident, 7-12 
    SCALLs, Vector, 7-6 
    Sector, Cursor, 7-8 
    Sector, Size, 7-8 
    Sequential Access, File, 7-40 
    Sequential I/O, 7-8, 7-40 
    Service Routines, Control Character, 7-50 
    SET Command, HDOS, 7-13 
    Single-Step Interrupt, 7-6 
    Size, Program, 7-4 
    Stack, 7-4 
    Stack, Changing Size, 7-4 
    Stack Maintenance, 7-9 
    Stack Precautions, 7-9 
    Stand-Alone Flag, 7-13 
    Subroutines, 7-3 
 
 
 



    CHAPTER THIRTEEN    HDOS PROGRAMMERS' REFEREMCE MANUAL      PAGE 13-156 
    ================    ==================================      =========== 
 
                                 INDEX (Cont) 
                                 ++++++++++++ 
 
    Symbols, HDOS, 7-4, 7-12 
    SYSCMD.SYS, 7-13, 7-71 
    System Calls, 7-12 
    System Console, 7-20 
    System Console Interrupts, 7-6, 7-9, 7-10, 7-20 
    System Stack, 7-4 
 
    Table, Memory, 7-10 
    .TICCNT, 7-10 
    Temporary Files, 7-54 
    Type-Ahead Buffer, HDOS, 7-23 
    $TYPTX, 7-19, 7-21 
 
    .UIVEC, 7-7, 7-10 
    Updating Files, 7-32 
    Usage Conflict, File, 7-28, 7-31, 7-35, 7-37 
    User Memory Area, 7-4, 7-9  
    User Memory LWA, 7-5, 7-9, 7-26, 7-52 
    User Program Entry Point, 7-7 
    User Stack, 7-4 
    USERFWA, 7-4, 7-9 
    Utility Subroutines, 7-3 
 
    Vectors, Interrupt, 7-6, 7-7, 7-10 
    Version Number, HDOS, 7-25 
 
    Write Access, Files, 7-30 
    Write Protection, 7-10 
 
    XTEXT, 7-12, 7-A1 
 
    $MOVE, 7-73 
    $TYPTX, 7-19, 7-21, 7-73 
 
    *********************************************************************** 
 
    Last Edited: 11-Apr-90 
 
 



 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            HDOS SOFTWARE REFERENCE 
                                    MANUAL 
 
 
                          HDOS DISK OPERATING SYSTEM 
 
                                 VERSION 3.02 
 
 
 
                                  CHAPTER 14 
 
                                   DATA BITS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-i 
    ================    =========                                 ========= 
 
 
 
 
 
 
 
 
 
 
 
                          HEATH DISK OPERATING SYSTEM 
 
                           SOFTWARE REFERENCE MANUAL 
 
                                 VERSION 3.02 
 
 
    HDOS  was originally copyrighted in 1980 by the Heath Company.  Through 
    the years it continued to be improved  by  successive  revisions  which 
    included  1.5, 1.6, and finally 2.0.  It was entered into public domain 
    on 19 July 1989 per letter by Jim Buszkiewicz, Managing  Editor,  Heath 
    Users'   Group,   P.O.    Box   217,   Benton   Harbor,  MI  49022-0217 
    (616)982-3463.   A  copy  of  this  letter  is  available  for   public 
    inspection.  Indeed, HDOS is still alive and well! 
 
    This  manual is indicative of further improvements and provides for the 
    latest revision, HDOS 3.0 and HDOS 3.02.  Revision 3.0 is  detailed  in 
    chapters  1,  2, and 3, while chapters 4, 5, 6, 7 and 8, 13 and 14, are 
    related  to  revision  3.02.   Chapters  9  through  12,   with   minor 
    improvements,  are  essentially  picked  up  from the original HDOS 2.0 
    manual. 
     
    Chapter  14,  Data Bits, is a mixed collection of various bits of datum 
    that are worthy of being contained in the HDOS 3.02  manual.   It  will 
    give  the  reader some interesting background information that couldn't 
    be obtained from any other source. 
 
    SPECIAL  DISCLAIMER:  The  Heath Company cannot provide consultation on 
    either the HDOS Operating System or user-developed or modified versions 
    of Heath software products designed to operate under the HDOS Operating 
    System.  Do not refer to Heath for questions. 
 
    Instead, you are invited to direct  any  questions concerning the Heath 
    Disk Operating System (HDOS) to Mr. Kirk L. Thompson,  Editor  "Staunch 
    89/8"  Newsletter,  P.O. Box 548, #6 West  Branch  Mobile Home Village, 
    West Branch, IA 52358. 
 
 
 
 
 
 
 
     
     
     



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-1 
    ================    =========                                 ========= 
 
 
                               TABLE OF CONTENTS 
                               +++++++++++++++++ 
 
           INTRODUCTION .................................... 14-2 
 
           WHATS NEW ....................................... 14-3 
             SYSCMD Capsule Review ......................... 14-3 
               New Commands ................................ 14-3 
               New Batch Commands .......................... 14-4 
             PIP Capsule Review: ........................... 14-5 
               New Verb Switches ........................... 14-5 
               New Modifier Switches ....................... 14-5 
              
           FILELIST FOR HDOS 3.0a .......................... 14-6 
             System Distribution Disk ...................... 14-7 
             Utilities and Drivers ......................... 14-7 
             Driver Source 1 ............................... 14-7 
             Driver Source 2 ............................... 14-8 
             Driver Source 3 ............................... 14-8 
             Driver Source 4 ............................... 14-9   
             Common Decks 1 ................................ 14-9 
             System Source 1 .............................. 14-11 
             System Source 2 .............................. 14-12 
             Common Decks 2 ............................... 14-12 
             Common Decks 3 ............................... 14-15 
 
           DISK CONTENTS FOR HDOS 3.0a .................... 14-17 
             File Descriptions ............................ 14-17 
 
           NOTES .......................................... 14-19 
             [A] Memory Map ............................... 14-19 
             [B] Directory Structure and Flags ............ 14-20 
             [C] Device Drivers ........................... 14-21 
             [D] Syscmd/Plus and PIP/Plus ................. 14-22 
             [E] Default Device Data ...................... 14-22 
             [F] List of Files for HDOS 3.02 .............. 14-22 
 
           GRAPHICS CHARACTERS ............................ 14-24 
 
           ULTRA ROM ...................................... 14-27            
 
           CREDITS AND KEY VENDOR ADDRESSES ............... 14-38 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-2 
    ================    =========                                 ========= 
 
 
 
                                 INTRODUCTION 
                                 ++++++++++++ 
 
    This  chapter  is  provided  as a convenience to furnish reference data 
    which is quickly available.  For instance, if you desire to  scan  'New 
    Commands,'  'New  Batch  Commands,'  or wants to find the files on 'PIP 
    Capsule Review' before using PIP to resolve  a  specific  problem,  the 
    TABLE OF CONTENTS can quickly lead you to the appropriate page. 
     
    Also,  since the 'Filelist for HDOS 3.0a' contains a list of all of the 
    original  source  code files you don't have to turn on your computer to 
    locate  specific  files, or sort thru a pile of disks to find the files 
    you want to check.  To shorten the time required to perform this  task, 
    first  go  to  the Table of Contents, determine which disk is likely to 
    contain your file, and turn to the appropriate page(s). 
     
    Further, if you desire to learn more details about the HDOS  3.02  mod, 
    all  that is necessary is to refer to 'Disk Contents,' 'Notes' section, 
    and you will find all the data is laid out before you when you turn  to 
    the page(s) of interest. 
     
    Finally,  the  data is available in transportable sections on the disk. 
    If you want to make notes, all you have to do is to print the file that 
    interests you, and you don't need to format it first, as you would have 
    to do if the original copy of the file  resided  on  disk.   Therefore, 
    this chapter provides convenience and saves time for the user. 
     
    It  also  will  be a help to those who do not yet have a printer, since 
    all the data is already printed. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-3 
    ================    =========                                 ========= 
 
 
                           WHAT'S NEW IN HDOS 3.02 ? 
                           +++++++++++++++++++++++++ 
 
    A capsule review of the differences between SYSCMD 3.0a and 3.02. 
    ----------------------------------------------------------------- 
 
    BIT has been enhanced. 
    CLR has been changed to CFLAGS with no arguments. 
    CLS has been enhanced. 
    COPY has been enhanced; see discussion in PIP section below. 
    COUNT has been enhanced. 
    DMM has been enhanced. 
    END has been enhanced. 
    FLAGS has been changed to SFLAGS and CFLAGS with arguments. 
    LOADF has been changed to FLOAD. 
    IF KEY has been enhanced. 
    SI has been enhanced. 
    WAIT has been enhanced. 
 
    New Commands            Meaning 
    ------------            ----------------------------------------------- 
    ALT                     Show alternate device name 
    ALT DVn:                Set alternate device name 
    ALT :                   Set alternate device name to default name 
    BAT[CH] fname [args]    Bypass .ABS link & try to run BATCH file 
    CF[LAGS] file(s)        Clear all flags on specified file(s) 
    CF[LAGS] file(s)=flags  Clear flags on specified file(s) 
    CLS                     Clear console screen (reset graphics, reverse, 
                              25th line) 
    CLS <any arg>           Reset graphics, reverse, 25th line 
    DEF[AULT] ~             Set system default to all nulls 
    D                     ; Dismount primary device unit 0 
    FLO[AD] xx[:]           Same as LOAD plus Fix in memory 
    HA[LT]                  Try SHUTDOWN.ABS(.BAT) then exit HDOS 
    M                     ; Mount primary device unit 0 
    MOV[E] dest=source      Copy file(s), verify, delete source file(s) 
    Pn                      Set current list device unit to #n.  n=0..7 
    PRN                     Show current list device name & unit 
    PRN DVn:                Set current list device name to xx (unit 0) 
    PU[SER] file(s)=users   Put specified file(s) in specified user areas 
    QD                    ; Quiet Dismount (All available units of default 
                              device) 
    QD SY:, DK:, Etc      ; Quiet Dismount (All available units of xx:) 
    QM                    ; Quiet Mount (All available units of default 
                              device) 
    QM SY:, DK:, Etc      ; Quiet Mount (All available units of xx:) 
    R                     ; Reset primary device unit 0 
    RU[SER] file(s)         Remove specified file(s) from all active user 
                              areas 
    RU[SER] file(s)=users   Remove specified file(s) from specified user 
                              areas 
    SF[LAGS] file(s)=flags  Set specified flags on specified file(s) 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-4 
    ================    =========                                 ========= 
 
                               WHAT'S NEW (Cont) 
                               +++++++++++++++++ 
 
    A capsule review of differences between SYSCMD 3.0a and 3.02. (Cont) 
    -------------------------------------------------------------------- 
 
    New Commands            Meaning 
    ------------            ----------------------------------------------- 
 
    U[SER]                  Show active user area 
    U[SER] n                Set active user area to #n.  n=0..7 
    Un                      Set active user area to #n.  n=0..7 
    XYZ[ZY]                 Toggle display of exit codes upon return 
                              to SYSCMD 
    XYZ[ZY] <any arg>       Toggle display of PIP command syntax within 
                              SYSCMD 
    ....................................................................... 
      
    New BATCH Commands      Meaning 
    ------------------      ----------------------------------------------- 
    BIT                     Show BIT values 
    BIT T                   Toggle all BIT flags 
    BIT T digit             Toggle specific BIT flag (0..7) 
    CB[UF]                  Clear console buffer 
    COU[NT]                 Show system counter value 
    END                     Exit BATCH file (usually before physical end) 
    END C                   Exit BATCH file & clear console screen & modes 
    END <any arg>           Exit BATCH file & clear ONLY console modes 
    IF [NOT] KEY =          Test ASK or TRAP keystroke value 
      value command 
    KEY                     Show current ASK keystroke value 
    KEY alpha               Preset ASK keystroke 
    KEY ?<cr|space|tab|?>   Preset special value.  CR = null 
    ' [text]                Remark, do nothing 
    TR[AP]                  Grab keystroke on the fly & save it 
    WAIT                    Wait indefinitely for user to touch any key 
 
    New special replaceable parameters: 
 
    %# = active user area (0) 
    %p = active LP unit (0) 
    %k = ASK keystroke 
   
    New special characters: 
 
    $@ = the NULL char 
    $< = the BACKSPACE char 
    $# = active user area (0) 
    $p = active LP unit (0)         Note: The old "$p" has changed to "$>" 
    $k = the ASK keystroke 
    $> = default system prompt 
    *********************************************************************** 
                                                                            
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-5 
    ================    =========                                 ========= 
 
                               WHAT'S NEW (Cont) 
                               +++++++++++++++++ 
 
    A capsule review of differences between SYSCMD 3.0a and 3.02. (Cont) 
    -------------------------------------------------------------------- 
 
    '&' has been added to the possible flags.  It equals 'SLWD.' 
    't' has been added to the possible sort fields.  It is time ascending. 
    'tr' has been added to the possible sort fields.  It is time 
        descending. 
 
    When  copying  files  to  a  different disk, if the destination disk is 
    filled or there is not enough room left on it to copy the next file  in 
    your  list,  PIP will give you the opportunity to reset the destination 
    drive and insert another disk. 
    *********************************************************************** 
 
    A capsule review of the differences between PIP 3.0a and 3.02 
    ------------------------------------------------------------- 
 
    /SUPRESS has been enhanced with subswitches. 
    /PAGE has been enhanced to paginate DIR listings to the console. 
    /FULL header has been rearranged. 
 
    New Verb Switches       Meaning 
    -----------------       ----------------------------------------------- 
    /NOP                    Do absolutely nothing 
 
    /PUT[USER]:f..          Put file in user areas 
    /PUT[USER]:f.!.         Put in these user areas & Remove from others 
                              except 0 
    /PUT[USER]:*            Put file in all user areas 
    /REM[USER]              Remove file from all user areas except 0 
    /REM[USER]:f..          Remove file from specified user areas 
                              ('0' invalid) 
    /REM[USER]:*            Remove file from all user areas except 0 
    /USR                    Set active user area to 0 
    /USR:n                  Set active user area to #n.  n=0..7 
    /TAB[LE]                Build source file list 
    /W[IDE]                 Same as /B 
 
    New Modifier Switches   Meaning 
    ---------------------   ----------------------------------------------- 
    /.                      Override automatic setting of /US:<Active 
                              user area> 
    /CLS                    Clear console screen on H19 
    /DSF                    Delete source file after verifying destination 
    /HOLD                   Set Hold Screen mode on H19 
 
    /NOU[SER]               Include files ONLY in user area 0 
    /NOU[SER]:u..           Include files NOT in specified user areas 
    /P[AGE]                 Paginate directory listings sent to console 
 
    /SO[RT]:t[r]            Sort files for DEST usage 
                            t = creation Time ascending   tr = reverse sort 
                                                          



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-6 
    ================    =========                                 ========= 
 
                               WHAT'S NEW (Cont) 
                               +++++++++++++++++ 
 
    A capsule review of the differences between PIP 3.0a and 3.02: (Cont) 
    --------------------------------------------------------------------- 
 
    New Modifier Switches   Meaning 
    ---------------------   ----------------------------------------------- 
    /SU[PRESS]              Supress trailing message & files selected count 
    /SU[PRESS]              [a][h][t][s][c][*]  Supress selected item(s) 
                              a = audit trail      s = status (25th) line 
                              h = header lines     c = files selected count 
                              t = trailing messa   * = all possible items 
    /T[ODAY]                Include files created today 
    /UA[REAS]               Set DEST file user areas to SOURCE file user 
                              areas 
    /UA[REAS]:u..           Set DEST file user areas 
    /US[ER]:u..             Include files in specified user areas 
    *********************************************************************** 
 
                            FILELIST FOR HDOS 3.0A 
                            ++++++++++++++++++++++ 
 
    The  following  are  /FULL listings of the seven (7) single-sided hard- 
    sector distribution disks and the four (4) source disks for  HDOS  3.0, 
    Revision A. 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 0 on 11-Aug-88   Type: System  Init Date: 14-Dec-86    
    Label:  HDOS 3.0, Issue #50.07.00     [System Distribution] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    HDOS30  .SYS    40    40   4-Oct-86   3:16a  SLWC  D 
    TT      .DVD    13    14   5-Oct-86   5:28p  SL C  D 
    SYSCMD  .SYS    38    38   4-Oct-86   6:25p  SLWC  D 
    PIP     .ABS    42    42   4-Oct-86   6:29p  SLWC  D 
    SY      .DVD    18    18   5-Oct-86   5:32p  SL C  D 
    ERRORMSG.SYS     8     8  10-Aug-86  11:15a  SLWC  D 
    SET     .ABS     8     8  20-Sep-86  10:12p    WC  D 
    SYSHELP .DOC    25    26  19-Oct-86   8:52p  SLWC  D 
    HELP    .       12    12  19-Oct-86   8:56p  SLWC  D 
    INIT    .ABS    29    30   5-Oct-86   5:00p    WC  D 
    SYSGEN  .ABS    20    20   5-Oct-86   5:12p    WC  D 
    MAP     .ABS     8     8  18-Oct-86  11:35p    WC  D 
    SYSHELP .H19    26    26  21-Sep-86   3:30p    WC  D 
    ONECOPY .ABS    21    22  13-Oct-86  11:00p    WC  D 
    WHAT    .ABS    16    16   5-Oct-86   3:10p    WC  D 
    SYS     .ABS     1     2   7-Aug-86  11:15a    WC  D 
    HELP    .H19    13    14  14-Sep-86   1:52p    WC  D 
    MAKMSD  .ABS     3     4   5-Oct-86   4:09p    WC  D 
    EDIT    .ABS    16    16   5-Oct-86   4:42p    WC  D 
    RGT     .SYS     1     2  14-Dec-86   5:29p  SLWC  D 
    GRT     .SYS     1     2  14-Dec-86   5:29p  SLWC  D 
    DIRECT  .SYS    18    18  14-Dec-86   5:29p  SLWC  D 
    22 Files, Using 377 Sectors (386 Allocated, 4 Free, 1.0 % Free) 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-7 
    ================    =========                                 ========= 
 
                         FILELIST FOR HDOS 3.0a (Cont) 
                         +++++++++++++++++++++++++++++ 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 1 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00    [Utilities and Drivers] 
    ---------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ---------------------------------------------------------------------- 
    BASIC   .ABS    41    42   6-Aug-86   9:39p    WC  D 
    PATCH   .ABS    10    10   6-Aug-86   9:39p    WC  D 
    ASM     .ABS    32    32   6-Aug-86   9:40p    WC  D 
    XREF    .ABS    12    12   6-Aug-86   9:40p    WC  D 
    TT      .DVD    13    14   5-Oct-86   5:28p    WC  D 
    ND      .DVD     3     4   5-Oct-86   3:23p    WC  D 
    H17     .DVD    18    18   5-Oct-86   5:32p    WC  D 
    H37     .DVD    20    20   5-Oct-86   5:36p    WC  D 
    H47     .DVD    13    14   5-Oct-86   3:39p    WC  D 
    AT84    .DVD     5     6   6-Oct-86  10:07p    WC  D 
    AT85    .DVD     5     6   6-Oct-86  10:09p    WC  D 
    H1484   .DVD     6     6   7-Oct-86   9:44p    WC  D 
    H1485   .DVD     6     6   7-Oct-86   9:51p    WC  D 
    H2484   .DVD     6     6   7-Oct-86  10:15p    WC  D 
    H2584   .DVD    10    10   5-Oct-86   5:30p    WC  D 
    H4484   .DVD     8     8   9-Oct-86   8:40p    WC  D 
    MX8084  .DVD     8     8  10-Oct-86  12:58a    WC  D 
    MX8011  .DVD     8     8  10-Oct-86  12:56a    WC  D 
    IOMEGA  .DVD    10    10   5-Oct-86   5:39p    WC  D 
    README  .DOC    35    36  14-Nov-86   2:51a    WC  D 
    CLOCK89 .TAS     3     4   5-Oct-86   4:37p    WC  D 
    CLOCK89 .H8A    22    22   5-Oct-86   4:36p    WC  D 
    CLOCK   .TAS     3     4   5-Oct-86   5:45p    WC  D 
    CLOCK   .H8A    19    20   5-Oct-86   5:45p    WC  D 
    RGT     .SYS     1     2  14-Nov-86   4:18p  SLWC  D 
    GRT     .SYS     1     2  14-Nov-86   4:18p  SLWC  D 
    DIRECT  .SYS    18    18  14-Nov-86   4:18p  SLWC  D 
      
    27 Files, Using 336 Sectors (348 Allocated, 42 Free, 10.5 % Free) 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 2 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Driver Source 1] 
    ---------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time     Flags---  Accessed   A/C 
    -----------------------------------------------------------------------  
    H17DVD  .H8A    91    92   5-Oct-86   5:24p    WC  D 
    H17INIT .H8A    81    82   5-Oct-86   5:24p    WC  D 
    H17ABT  .ACM     3     4  10-Aug-86  11:23a    WC  D 
    H17CLK  .ACM     3     4  10-Aug-86  11:23a    WC  D 
    H17LOA  .ACM    13    14  13-Aug-86  11:23a    WC  D 
    H17MOU  .ACM    16    16  21-Sep-86   2:36p    WC  D 
    H17RDY  .ACM     5     6  10-Aug-86  11:23a    WC  D 
    H17REA  .ACM    14    14  10-Aug-86  11:23a    WC  D 
    H17RER  .ACM     2     2  13-Aug-86  11:23a    WC  D 
    H17ROD  .ACM    31    32  10-Aug-86  11:23a    WC  D 
    H17SET  .ACM    14    14  20-Sep-86   9:59p    WC  D 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-8 
    ================    =========                                 ========= 
 
                         FILELIST FOR HDOS 3.0a Cont) 
                         ++++++++++++++++++++++++++++ 
    ======================================================================= 
    Volume: 2 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Driver Source 1] 
    ---------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time     Flags---  Accessed   A/C 
    -----------------------------------------------------------------------  
    H17SET2 .ACM     2     2  10-Aug-86  11:23a    WC  D 
    H17UNL  .ACM     3     4  10-Aug-86  11:23a    WC  D 
    H17WRI  .ACM    13    14  10-Aug-86  11:23a    WC  D 
    H17SKEW .MBA     2     2  25-Nov-81  11:23a    WC  D 
    NDDVD   .H8A    12    12   5-Oct-86   2:55p    WC  D 
    ATDVD   .H8A    39    40   6-Oct-86  10:08p    WC  D 
    MAKE    .BAT     1     2  13-Aug-86  11:17a    WC  D 
    MAKEDVD .BAT     1     2   1-Sep-86  12:56p    WC  D 
    MAKEDVD2.BAT     1     2  31-Aug-86  11:18a    WC  D 
    RGT     .SYS     1     2  14-Nov-86   4:18p  SLWC  D 
    GRT     .SYS     1     2  14-Nov-86   4:18p  SLWC  D 
    DIRECT  .SYS    18    18  14-Nov-86   4:18p  SLWC  D 
 
    23 Files, Using 367 Sectors (382 Allocated, 8 Free, 2.0 % Free) 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 3 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.0       [Driver Source 2] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    H37DVD  .H8A    53    54   5-Oct-86   5:25p    WC  D 
    H37INIT .H8A    93    94   5-Oct-86   5:25p    WC  D 
    H37LIB  .ACM    87    88  13-Aug-86  11:24a    WC  D 
    IODVD   .H8A    42    42   5-Oct-86   5:25p    WC  D 
    IOINIT  .H8A    22    22   5-Oct-86   5:25p    WC  D 
    IODEF   .ACM    14    14  15-Mar-85  11:24a    WC  D 
    IOSUBS  .ACM    21    22  19-Aug-86  11:24a    WC  D 
    RGT     .SYS     1     2  14-Nov-86   4:19p  SLWC  D 
    GRT     .SYS     1     2  14-Nov-86   4:19p  SLWC  D 
    DIRECT  .SYS    18    18  14-Nov-86   4:19p  SLWC  D 
 
    10 Files, Using 352 Sectors (358 Allocated, 32 Free, 8.0 % Free) 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 4 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Driver Source 3] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    -----------------------------------------------------------------------  
    H47DVD  .H8A    34    34   5-Oct-86   2:50p    WC  D 
    H47INIT .H8A    64    64   5-Oct-86   2:51p    WC  D 
    H47LIB  .ACM    56    56  14-Aug-86  11:24a    WC  D 
    TTDVD   .H8A   103   104   5-Oct-86   5:24p    WC  D 
    H14DVD  .H8A    66    66   7-Oct-86   9:50p    WC  D 
    RGT     .SYS     1     2  14-Nov-86   4:20p  SLWC  D 
 
 



    CHAPTER FOURTEEN    DATA BITS                                 PAGE 14-9 
    ================    =========                                 ========= 
 
                         FILELIST FOR HDOS 3.0a Cont) 
                         ++++++++++++++++++++++++++++ 
    [Continued] 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 4 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Driver Source 3] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    -----------------------------------------------------------------------  
    GRT     .SYS     1     2  14-Nov-86   4:20p  SLWC  D 
    DIRECT  .SYS    18    18  14-Nov-86   4:20p  SLWC  D 
 
    8 Files, Using 343 Sectors (346 Allocated, 44 Free, 11.0 % Free) 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 5 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86       
    Label:  HDOS 3.0, Issue #50.07.00      [Driver Source 4] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    H24DVD  .H8A    51    52   7-Oct-86  10:14p    WC  D 
    H25DVD  .H8A    59    60   5-Oct-86   5:24p    WC  D 
    H44DVD  .H8A    54    54   9-Oct-86   8:39p    WC  D 
    MX80DVD .H8A    61    62  10-Oct-86  12:58a    WC  D 
    MAKMSD  .H8A    11    12   5-Oct-86   4:08p    WC  D 
    SET     .H8A    81    82   5-Oct-86   4:12p    WC  D 
    SYS     .H8A    11    12   7-Aug-86  11:25a    WC  D 
    RGT     .SYS     1     2  14-Nov-86   4:21p  SLWC  D 
    GRT     .SYS     1     2  14-Nov-86   4:21p  SLWC  D 
    DIRECT  .SYS    18    18  14-Nov-86   4:21p  SLWC  D 
 
    10 Files, Using 348 Sectors (356 Allocated, 34 Free, 8.5 % Free) 
     
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 6 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 1] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    ABSDEF  .ACM     1     2  15-Mar-85  11:19a    WC  D 
    ASCII   .ACM     4     4  22-Sep-86   8:25p    WC  D 
    BITC    .ACM     2     2  15-Mar-85  11:21a    WC  D 
    BITS    .ACM     2     2   2-Mar-86  12:00a    WC  D 
    BOODEF  .ACM     3     4   2-Aug-86  11:20a    WC  D 
    CDEHL   .ACM     1     2  15-Mar-85  11:19a    WC  D 
    CHL     .ACM     1     2  15-Mar-85  11:19a    WC  D 
    CPA     .ACM     6     6  27-Jul-86  11:22a    WC  D 
    BPDEHL  .ACM     1     2  21-Sep-86   9:22p    WC  D 
    CVD     .ACM     2     2  21-Sep-86  11:17p    WC  D 
    DADA    .ACM     1     2  15-Mar-85  11:19a    WC  D 
    DADA2   .ACM     1     2  15-Mar-85  11:19a    WC  D 
    DDD     .ACM     3     4  21-Sep-86  10:28p    WC  D 
    DDDEF   .ACM     3     4  21-Sep-86  10:30p    WC  D 
    DDFDEF  .ACM     1     2  21-Sep-86  10:31p    WC  D 
    DDS     .ACM     5     6  15-Mar-85  11:21a    WC  D 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-10 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a Cont) 
                         ++++++++++++++++++++++++++++ 
    [Continued] 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 6 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 1] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    DEVDEF  .ACM     7     8  17-Aug-86  11:20a    WC  D 
    DIRDEF  .ACM     3     4  19-Mar-85  11:19a    WC  D 
    DNV     .ACM     7     8  21-Sep-86  11:20p    WC  D 
    DU66    .ACM     1     2  15-Mar-85  11:19a    WC  D 
    DVDDEF  .ACM     3     4  25-Mar-85  11:19a    WC  D 
    DVDIO   .ACM    13    14   6-Oct-86   9:57p    WC  D 
    DVDIO2  .ACM     5     6   9-Oct-86  10:13p    WC  D 
    ECDEF   .ACM     9    10  10-Aug-86  11:22a    WC  D 
    ECVEC   .ACM     2     2  17-Jul-86  11:20a    WC  D 
    EDCON   .ACM     2     2  21-Sep-86  10:36p    WC  D 
    EDRAM   .ACM     4     4  21-Sep-86  10:38p    WC  D 
    EDVEC   .ACM     4     4  10-Aug-86  11:22a    WC  D 
    ESINT   .ACM    13    14  20-Aug-86  11:23a    WC  D 
    ESVAL   .ACM     8     8  27-Jul-86  11:19a    WC  D 
    FILDEF  .ACM     1     2  21-Sep-86  10:40p    WC  D 
    FLTDEF  .ACM     2     2   7-Aug-86  11:22a    WC  D 
    FST     .ACM     6     6  22-Sep-86  12:42a    WC  D 
    H14     .ACM     1     2   7-Oct-86   9:32p    WC  D 
    H17DEF  .ACM     5     6  15-Mar-85  11:20a    WC  D 
    H17ROM  .ACM     3     4  10-Dec-81  11:19a    WC  D 
    H37DEF  .ACM    10    10  10-Aug-86  11:22a    WC  D 
    H47DEF  .ACM    12    12   6-Aug-86  11:22a    WC  D 
    H47PAR  .ACM     1     2   6-Aug-86  11:22a    WC  D 
    HDSROM  .ACM     3     4   9-Aug-86  11:21a    WC  D 
    RGT     .SYS     1     2  14-Nov-86   4:21p  SLWC  D 
    GRT     .SYS     1     2  14-Nov-86   4:21p  SLWC  D 
    DIRECT  .SYS    18    18  14-Nov-86   4:21p  SLWC  D 
    HLIHL   .ACM     1     2  15-Mar-85  11:20a    WC  D 
    HOSBASE .ACM    10    10  14-Sep-86   4:45p    WC  D 
    HOSDEF  .ACM     7     8   1-Sep-86   8:45p    WC  D 
    HOSEQU  .ACM     3     4   9-Aug-86  11:19a    WC  D 
    HROM    .ACM     5     6  10-Aug-86  11:21a    WC  D 
    INDL    .ACM     2     2  15-Mar-85  11:20a    WC  D 
    INIDEF  .ACM     4     4  11-Aug-86  11:21a    WC  D 
    IOCDEF  .ACM     5     6  15-Mar-85  11:20a    WC  D 
    ITL     .ACM     2     2  15-Mar-85  11:21a    WC  D 
    LABDEF  .ACM     5     6   9-Aug-86  11:19a    WC  D 
    LBD     .ACM     5     6  12-Aug-86  11:23a    WC  D 
    MCU     .ACM     2     2  21-Sep-86  10:48p    WC  D 
    MLU     .ACM     2     2  21-Sep-86  10:49p    WC  D 
    MOVE    .ACM     3     4  15-Mar-85  11:20a    WC  D 
    MTR     .ACM     8     8  19-Aug-86  11:23a    WC  D 
    MTRDEF  .ACM     2     2  27-Jul-86  11:22a    WC  D 
    MTRRAM  .ACM     7     8  17-Jul-86  11:22a    WC  D 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-11 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a Cont) 
                         ++++++++++++++++++++++++++++ 
    [Continued] 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 6 on 11-Aug-88   Type: Data    Init Date: 14-Nov-86    
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 1] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    MU86    .ACM     1     2  15-Mar-85  11:20a    UC  D 
    PBF     .ACM     3     4  15-Feb-85  11:23a    WC  D 
    PBV     .ACM     4     4  15-Feb-85  11:23a    WC  D 
    PICDEF  .ACM     1     2  15-Mar-85  11:20a    WC  D 
    RCHAR   .ACM     1     2  15-Mar-85  11:20a    WC  D 
    RTL     .ACM     4     4  21-Sep-86  10:57p    WC  D 
    SAVALL  .ACM     3     4  15-Mar-85  11:20a    WC  D 
    SETCAL  .ACM     3     4  20-Sep-86   9:56p    WC  D 
    SOB     .ACM     2     2  21-Sep-86  11:03p    WC  D 
    SOP     .ACM     5     6  11-Aug-86  11:23a    WC  D 
    TBLS    .ACM     3     4  15-Mar-85  11:20a    WC  D 
    TBRA    .ACM     2     2  15-Mar-85  11:20a    WC  D 
    TDD     .ACM     3     4  15-Mar-85  11:21a    WC  D 
    THD     .ACM     2     2  15-Feb-85  11:23a    WC  D 
    TJMP    .ACM     2     2  15-Mar-85  11:20a    WC  D 
    TOD     .ACM     2     2  15-Feb-85  11:23a    WC  D 
    TRACE   .ACM     1     2  15-Mar-85  11:20a    WC  D 
    TYPTX   .ACM     2     2  15-Mar-85  11:20a    WC  D 
    U8250   .ACM     9    10  15-Mar-85  11:20a    WC  D 
    U8251   .ACM     5     6  15-Mar-85  11:20a    WC  D 
    U8255   .ACM     6     6  10-Oct-86  12:28a    WC  D 
    UDD     .ACM     2     2  15-Mar-85  11:20a    WC  D 
    UOW     .ACM     4     4  19-Aug-86  11:23a    WC  D 
    WTBLS   .ACM     3     4  15-Feb-85  11:23a    WC  D 
    ZERO    .ACM     1     2  15-Mar-85  11:20a    WC  D 
    ZEROS   .ACM     1     2  15-Mar-85  11:20a    WC  D 
 
    86 Files, Using 330 Sectors (382 Allocated, 8 Free, 2.0 % Free) 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87    
    Label:  HDOS 3.0, Issue #50.07.00      [System Source 1] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    HOS3    .H8A   388   400   4-Oct-86   3:13a   LWC  D   
    SYSCMD  .H8A    94    96   4-Oct-86   5:35p   LWC  D   
    PIP     .H8A    53    64   4-Oct-86   5:21p   LWC  D   
    SYSGEN  .H8A   212   224   5-Oct-86   5:04p   LWC  D   
    INIT    .H8A   215   224   5-Oct-86   4:58p   LWC  D   
    ONECOPY .H8A   238   240  13-Oct-86  10:59p   LWC  D   
    RGT     .SYS     1    16  25-Jun-87   6:03p  SLWC  D   
    GRT     .SYS     1    16  25-Jun-87   6:03p  SLWC  D   
    DIRECT  .SYS    32    32  25-Jun-87   6:03p  SLW   D   
 
    9 Files, Using 1234 Sectors (1312 Allocated, 2656 Free, 66.4 % Free) 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-12 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a Cont) 
                         ++++++++++++++++++++++++++++ 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87    
    Label:  HDOS 3.0, Issue #50.07.00      [System Source 2] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    EDIT    .H8A   163   176   5-Oct-86   4:40p   LWC  D   
    LABEL   .H8A    20    32  11-Jul-86  11:25a   LWC  D   
    FIX     .H8A    26    32  19-Oct-86   8:14p   LWC  D   
    MAP     .H8A    31    32  18-Oct-86  11:35p   LWC  D   
    WHAT    .C      10    16   5-Oct-86   3:09p   LWC  D   
    CREDITS .H8A     4    16  10-Aug-86  11:17a   LWC  D   
    TITLES  .ACM    17    32  13-Aug-86  11:15a   LWC  D   
    RGT     .SYS     1    16  25-Jun-87   6:05p  SLWC  D   
    GRT     .SYS     1    16  25-Jun-87   6:05p  SLWC  D   
    DIRECT  .SYS    32    32  25-Jun-87   6:05p  SLW   D   
 
    10 Files, Using 305 Sectors (400 Allocated, 3568 Free, 89.2 % Free) 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =   
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87   
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 2] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    ABR     .ACM    16    16   2-Aug-86  11:19a   LWC  D   
    AGT     .ACM     9    16  25-Mar-85  11:21a   LWC  D   
    ALP     .ACM     2    16  15-Mar-85  11:21a   LWC  D   
    BSXDEF  .ACM     2    16  14-Sep-86   1:35p   LWC  D   
    CAB     .ACM     2    16  15-Mar-85  11:21a   LWC  D   
    CAC     .ACM     2    16  25-Mar-85  11:21a   LWC  D   
    CAD     .ACM    14    16  12-Jul-86  12:00a   LWC  D   
    CCO     .ACM     2    16  15-Mar-85  11:19a   LWC  D   
    CCT     .ACM     1    16  29-Mar-86  12:00a   LWC  D   
    CDM     .ACM     4    16  25-Mar-85  11:21a   LWC  D   
    CDS     .ACM     8    16   3-Aug-86  11:21a   LWC  D   
    CDT2    .ACM    14    16  13-Aug-86  12:00a   LWC  D   
    CDU     .ACM     3    16  25-Mar-85  11:21a   LWC  D   
    CFC     .ACM     5    16  25-Mar-85  11:21a   LWC  D   
    CFD     .ACM     2    16  21-Sep-86  11:15p   LWC  D   
    CFI     .ACM     3    16  26-Mar-85  11:21a   LWC  D   
    CFP     .ACM     2    16  25-Mar-85  11:22a   LWC  D   
    CLL     .ACM     2    16  14-Sep-86   7:49p   LWC  D   
    COF     .ACM     4    16  15-Mar-85  11:21a   LWC  D   
    COMP    .ACM     2    16  15-Mar-85  11:19a   LWC  D   
    CPDEHL  .ACM     1    16  21-Sep-86   9:22p   LWC  D   
    CPF     .ACM     3    16  22-Sep-86  12:41a   LWC  D   
    CRLF    .ACM     1    16  15-Mar-85  11:19a   LWC  D   
    DAD     .ACM     7    16   3-Oct-86   8:12p   LWC  D   
    DCF     .ACM     2    16  17-Aug-86  11:22a   LWC  D   
    DDS2    .ACM     5    16  15-Mar-85  11:21a   LWC  D   
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-13 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a (Cont) 
                         +++++++++++++++++++++++++++++ 
 
    [Continued] 
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87   
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 2] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    DDS3    .ACM     6    16  17-Jul-81  12:00a   LWC  D   
    DFA     .ACM     4    16  25-Mar-85  11:22a   LWC  D   
    DFC     .ACM     4    16  28-Mar-85  11:22a   LWC  D   
    DFD     .ACM     9    16  17-Aug-86  11:23a   LWC  D   
    DIFDEF  .ACM     2    16  15-Mar-85  11:19a   LWC  D   
    DISDEF  .ACM     2    16  15-Mar-85  11:19a   LWC  D   
    DNS     .ACM     4    16  21-Sep-86  11:18p   LWC  D   
    DNT     .ACM     4    16  25-Mar-85  11:22a   LWC  D   
    DOS     .ACM     3    16  13-Jul-86  11:23a   LWC  D   
    DREAD   .ACM     3    16  15-Mar-85  11:19a   LWC  D   
    DRS     .ACM    15    16  21-Sep-86  11:34p   LWC  D   
    DTB     .ACM     4    16  21-Sep-86  11:35p   LWC  D   
    FBDEF   .ACM     2    16  21-Sep-86  10:39p   LWC  D   
    FCC     .ACM     2    16  25-Mar-85  11:22a   LWC  D   
    RGT     .SYS     1    16  25-Jun-87   6:07p  SLWC  D   
    GRT     .SYS     1    16  25-Jun-87   6:07p  SLWC  D   
    DIRECT  .SYS    32    32  25-Jun-87   6:07p  SLW   D   
    FCLEAR  .ACM     3    16  15-Mar-85  11:19a   LWC  D   
    FCLO    .ACM     6    16  21-Sep-86  11:44p   LWC  D   
    FDB     .ACM     2    16  25-Mar-85  11:22a   LWC  D   
    FEC     .ACM     2    16  29-Mar-86  12:00a   LWC  D   
    FERROR  .ACM     3    16  21-Sep-86  11:51p   LWC  D   
    FGC     .ACM     4    16  25-Mar-85  11:22a   LWC  D   
    FOE     .ACM     4    16  25-Mar-85  11:22a   LWC  D   
    FOPE    .ACM     9    16  21-Sep-86  11:58p   LWC  D   
    FREAB   .ACM     9    16  15-Mar-85  11:19a   LWC  D   
    FREAL   .ACM    11    16  15-Mar-85  11:19a   LWC  D   
    FST2    .ACM     9    16  22-Sep-86  12:42a   LWC  D   
    FUTIL   .ACM     8    16  22-Sep-86  12:01a   LWC  D   
    FWRIB   .ACM    13    16  22-Sep-86  12:17a   LWC  D   
    FWRIL   .ACM     3    16  15-Mar-85  11:19a   LWC  D   
    GETLAB  .ACM     2    16   3-Aug-86  11:19a   LWC  D   
    GNL     .ACM     2    16  21-Sep-86  10:41p   LWC  D   
    GUP     .ACM     2    16  15-Mar-85  11:19a   LWC  D   
    H17SUBS .ACM    24    32  20-Aug-86  12:00a   LWC  D   
    BCTT    .ACM     4    16  15-Mar-85  11:21a   LWC  D   
    IDN     .ACM     2    16  15-Mar-85  11:21a   LWC  D   
    ILDEHL  .ACM     1    16  22-Sep-86  12:49a   LWC  D   
    IMM     .ACM     4    16   3-Aug-86  11:21a   LWC  D   
    INCHA   .ACM     5    16  14-Sep-86   7:50p   LWC  D   
    INDXX   .ACM     7    16  22-Sep-86  12:53a   LWC  D   
    ISDEHL  .ACM     2    16  21-Sep-86  10:45p   LWC  D   
    LDE     .ACM     6    16  25-Mar-85  11:22a   LWC  D   
    LDI     .ACM     9    16  17-Aug-86  11:22a   LWC  D   
    LFD     .ACM     3    16  17-Aug-86  11:22a   LWC  D   
    LUD     .ACM     3    16  25-Mar-85  11:21a   LWC  D   
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-14 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a (Cont) 
                         +++++++++++++++++++++++++++++ 
 
    [Continued] 
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87   
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 2] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    MND     .ACM     9    16  17-Aug-86  11:23a   LWC  D   
    MOVEL   .ACM     4    16  21-Sep-86  10:50p   LWC  D   
    MOVL    .ACM     6    16  14-Sep-86   7:51p   LWC  D   
    MOVLL   .ACM     4    16  14-Sep-86   7:50p   LWC  D   
    MU10    .ACM     1    16  15-Mar-85  11:20a   LWC  D   
    NAMDEF  .ACM     2    16  14-Jul-86  11:21a   LWC  D   
    NREDY   .ACM     2    16  15-Mar-85  11:21a   LWC  D   
    OVLDEF  .ACM     2    16  15-Mar-85  11:20a   LWC  D   
    PCL     .ACM     4    16   4-Jul-86  12:00a   LWC  D   
    PDD     .ACM     3    16  15-Mar-85  11:21a   LWC  D   
    PGT     .ACM    16    16  17-Aug-86  11:21a   LWC  D   
    RBF     .ACM     2    16  25-Mar-85  11:22a   LWC  D   
    RDL     .ACM     5    16   1-Sep-86   9:27p   LWC  D   
    READY   .ACM     2    16  15-Mar-85  11:21a   LWC  D   
    RTL2    .ACM     5    16  21-Sep-86  11:03p   LWC  D   
    RVD     .ACM     3    16  15-Mar-85  11:21a   LWC  D   
    SCU     .ACM     5    16  22-Sep-86   1:08a   LWC  D   
    SGT     .ACM     3    16  25-Mar-85  11:22a   LWC  D   
    TASKDEF .ACM    43    48  22-Jun-86  12:00a   LWC  D   
    TFN     .ACM     2    16   2-Aug-86  11:19a   LWC  D   
    TFNS    .ACM     3    16  13-Oct-86  10:23p   LWC  D   
    TYPCC   .ACM     2    16  21-Sep-86  11:05p   LWC  D   
    TYPCH   .ACM     2    16  15-Mar-85  11:20a   LWC  D   
    TYPET   .ACM     8    16  15-Mar-85  11:20a   LWC  D   
    TYPLN   .ACM     5    16  15-Mar-85  11:20a   LWC  D   
    TYPT2   .ACM     2    16  15-Mar-85  11:20a   LWC  D   
    UAD     .ACM     4    16   1-Sep-86   4:27p   LWC  D   
    UDDN    .ACM     4    16  15-Mar-85  11:20a   LWC  D   
    UDDX    .ACM     4    16  21-Sep-86  11:07p   LWC  D   
    UDE     .ACM     4    16  25-Mar-85  11:22a   LWC  D   
    UDS     .ACM     2    16  25-Mar-85  11:22a   LWC  D   
    UHW     .ACM     3    16  21-Sep-86  11:08p   LWC  D   
    UNUM    .ACM     2    16  15-Mar-85  11:21a   LWC  D   
    WDO     .ACM     2    16  15-Mar-85  11:22a   LWC  D   
    WER     .ACM     2    16  15-Mar-85  11:20a   LWC  D   
    XCHGBC  .ACM     2    16  11-Jul-81  12:00a   LWC  D   
 
    108 Files, Using 552 Sectors (1792 Allocated, 2176 Free, 54.4 % Free) 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-15 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a (Cont) 
                         +++++++++++++++++++++++++++++ 
 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87    
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 3] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    BATCH   .ACM    63    64   7-Sep-86  12:00a   LWC  D   
    BYE     .ACM     4    16   9-Aug-86  12:00a   LWC  D   
    CHECK   .ACM     2    16  22-Jun-86  12:00a   LWC  D   
    CLS     .ACM     1    16   9-Aug-86  12:00a   LWC  D   
    COPY    .ACM     1    16   9-Aug-86  12:00a   LWC  D   
    DATE    .ACM     3    16   9-Aug-86  12:00a   LWC  D   
    DEFAULT .ACM    14    16  13-Aug-86  12:00a   LWC  D   
    DELETE  .ACM     2    16  22-Jun-86  12:00a   LWC  D   
    DEV     .ACM    23    32  17-Sep-86  12:00a   LWC  D   
    DFSS    .ACM     7    16  29-May-86  12:00a   LWC  D   
    DIR     .ACM     9    16   9-Aug-86  12:00a   LWC  D   
    DMM     .ACM    11    16  18-Sep-86  12:00a   LWC  D   
    DMMBIG  .ACM    34    48  17-May-86  12:00a   LWC  D   
    DSSS    .ACM     7    16   9-Mar-86  12:00a   LWC  D   
    EDLINE  .ACM    32    32   1-Sep-86  12:00a   LWC  D   
    FLAG    .ACM     3    16   9-Aug-86  12:00a   LWC  D   
    H19SUBS .ACM     4    16  24-Jul-86  12:00a   LWC  D   
    HDOS30  .ACM     2    16  14-Sep-86   1:35p   LWC  D   
    HELP    .ACM     1    16  13-Aug-86  12:00a   LWC  D   
    INDLB   .ACM     3    16   2-Mar-86  12:00a   LWC  D   
    LOADD   .ACM    14    16  <No-Date>  12:00a   LWC  D   
    LOG     .ACM     3    16   9-Aug-86  12:00a   LWC  D   
    MDR     .ACM    23    32  22-Sep-86   8:28p   LWC  D   
    PATH    .ACM     4    16   9-Aug-86  12:00a   LWC  D   
 
    PIP     .ACM     8    16   9-Sep-86  12:00a   LWC  D   
    PIPCMDS .ACM    74    80  18-Sep-86  11:43p   LWC  D   
    PIPCOPY .ACM    50    64  20-Sep-86  12:00a   LWC  D   
    PIPLIST .ACM    86    96  14-Sep-86   5:11p   LWC  D   
    PIPSUBS .ACM    84    96  20-Sep-86  10:28p   LWC  D   
    PIPSWI  .ACM    54    64   9-Sep-86  12:00a   LWC  D   
    PRINT   .ACM     3    16   4-Sep-86  12:00a   LWC  D   
    PROMPT  .ACM     3    16   9-Aug-86  12:00a   LWC  D   
    PROMSHO .ACM     9    16   3-Sep-86  12:00a   LWC  D   
    PRSCL   .ACM     2    16   4-Aug-86  12:00a   LWC  D   
    RENAME  .ACM     2    16  22-Jun-86  12:00a   LWC  D   
    RUN     .ACM     2    16  30-Jul-86  12:00a   LWC  D   
    RVL     .ACM     5    16   4-Aug-86  12:00a   LWC  D   
    SI      .ACM    13    16  11-Sep-86  12:00a   LWC  D   
    SORT    .ACM    20    32   2-Mar-86  12:00a   LWC  D   
    SSM     .ACM     7    16   4-Aug-86  12:00a   LWC  D   
    RGT     .SYS     1    16  25-Jun-87   6:09p  SLWC  D   
    GRT     .SYS     1    16  25-Jun-87   6:09p  SLWC  D   
    DIRECT  .SYS    32    32  25-Jun-87   6:09p  SLWC  D   
    START   .ACM     9    16   4-Oct-86   6:22p   LWC  D   
    TIME    .ACM    13    16   7-Sep-86  12:00a   LWC  D   
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-16 
    ================    =========                                ========== 
 
                         FILELIST FOR HDOS 3.0a (Cont) 
                         +++++++++++++++++++++++++++++ 
 
 
    [Continued] 
    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
    Volume: 0 on 11-Aug-88   Type: Data    Init Date: 25-Jun-87   
    Label:  HDOS 3.0, Issue #50.07.00      [Common Decks 3] 
    ----------------------------------------------------------------------- 
    Name    .Ext  Size Alloc   Created    Time   Flags---  Accessed   A/C 
    ----------------------------------------------------------------------- 
    TYPE    .ACM     3    16  26-May-86  12:00a   LWC  D   
    VERIFY  .ACM     4    16   9-Aug-86  12:00a   LWC  D   
    VERSN   .ACM     4    16   3-Sep-86  12:00a   LWC  D   
    XYZZY   .ACM     1    16   9-Aug-86  12:00a   LWC  D   
 
    49 Files, Using 760 Sectors (1264 Allocated, 2704 Free, 67.6 % Free) 
    *********************************************************************** 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-17 
    ================    =========                                ========== 
 
                          DISK CONTENTS FOR HDOS 3.0 
                          ++++++++++++++++++++++++++ 
 
    This  file  briefly describes the contents of the HDOS 3.0 Distribution 
    Disks.  The files included here are the final  versions,  except  where 
    indicated. 
 
    Disk    File            Description 
    ----    ------------    ----------------------------------------------- 
                        
    2     ASM.ABS         This  will not assemble much of HDOS.  The Gibson 
                          Assembler, available from Quikdata  was  used  to 
                          develop  HDOS 3.0.  The Gibson assembler is about 
                          10 times faster than this one and if you plan  on 
                          changing   HDOS   and  reassembling,  I  strongly 
                          recommend it.  The features I used which are  not 
                          supported by this assembler are relatively benign 
                          and should be easily worked around. 
                   
    2     AT84.DVD        Device  driver  for  alternate  terminal for H8-4 
                          interface. 
                    
    2     AT85.DVD        Device  driver  for  alternate  terminal for H8-5 
                          interface. 
                      
    2     BASIC.ABS       Benton  Harbor BASIC.  This has minor changes for 
                          HDOS 3.0. 
                                    
    2     CLOCK.TAS       Standard  H89  real  time  clock processor.  Type 
                          'START CLOCK<RTN>.'  Applies to the typical  H89/ 
                          Z90 computer systems.  Place this command in your 
                          AUTOEXEC.BAT file. 
                        
    2     CLOCK89.TAS     Super-89  real time clock processor.  Type 'START 
                          CLOCK89<RTN>.'  Applies to computer systems  with 
                          the  D.G.   Super89  CPU Board.  If you have one, 
                          place this command in your AUTOEXEC.BAT file. 
 
    1     EDIT.ABS        Heath's Line Editor crossed over to HDOS 3.0. 
                         
    1     ERRORMSG.SYS    A listing of HDOS 3.0a/3.02 error messages.  This 
                          listing has been revised and  improved  over  the 
                          listing of HDOS 2.0 and below. 
                      
    2     H1484.DVD       Device  driver  for  H14 printer with H8-4 inter- 
                          face. 
                     
    2     H1485.DVD       Device  driver  for  H14 printer with H8-5 inter- 
                          face. 
 
    2     H17.DVD         H17 device driver. 
 
    2     H2484.DVD       Device driver for H24 printer (TI-810) with H8-4 
                          interface. 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-18 
    ================    =========                                ========== 
 
                       DISK CONTENTS FOR HDOS 3.0 (Cont) 
                       +++++++++++++++++++++++++++++++++ 
 
 
    Disk   File           Description 
    ----   -----------    ------------------------------------------------ 
 
    2     H2584.DVD       Device driver for H25 printer with H8-4  
                          interface. 
 
    2     H37.DVD         H37 device driver. 
 
    2     H4484.DVD       Device driver for H44 Diablo printer with H8-4 
                          interface. 
 
    2     H47.DVD         H47 device driver. 
 
    1     HDOS30.SYS      This is the entire operating system.  There are 
                          no overlays. 
 
    1     HELP            Help for PIP.ABS for the non-H19 terminal. 
 
    1     HELP.H19        Help for PIP.ABS for the H19 terminal. 
 
    1     SYSHELP.DOC     Help with SYSCMD.SYS for the non-H19 terminal. 
 
    1     HELP.H19        Help with SYSCMD.SYS for the H19 terminal. 
 
    1     INIT.ABS        Initializes HDOS 3.0 disks. 
                       
    2     IOMEGA.DVD      Bernoulli  Box  device  driver.   (See the source 
                          code before attempting to use this driver!!) 
 
    1     MAKMSD.ABS      Used to create mass storage (disk) drivers. 
 
    1     MAP.ABS         Fun facts.  
 
    2     MX8011.DVD      Device driver for Epson MX-80 printer with H8-4 
                          interface. 
 
    2     MX8084.DVD      Device driver for Epson MX-80 printer with Z89-   
                          11 interface.  This is a parallel driver. 
 
    2     ND.DVD          Device driver for the null device.  
 
    1     ONECOPY.ABS     Copy files with one disk drive. 
 
    1     PATCH.ABS       For fixing bugs and patching programs. 
          SYSPATCH.ABS 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-19 
    ================    =========                                ========== 
 
                       DISK CONTENTS FOR HDOS 3.0 (Cont) 
                       +++++++++++++++++++++++++++++++++ 
 
 
    Disk   File           Description 
    ----   -----------    ------------------------------------------------ 
 
    1     PIP.ABS         Peripheral Interchange Program.   
 
    1     SET.ABS         Driver and HDOS SET Utility.   
 
    1     SY.DVD          Device driver for your primary system device. 
 
    1     SYS.ABS         Sets the system bit in a disk volume label. 
 
    1     SYSCMD.SYS      System Command Processor. 
 
    1     SYSGEN.ABS      Copies the HDOS 3.0 operating system onto newly- 
                          initialized disks. 
    2     TT.DVD 
                          Device  driver  for  the console.  Also processes 
                          all terminal-related scalls. 
 
    1     WHAT.ABS        Tells what files are.  Try "What HDOS30.SYS." 
                   
    1     XREF.ABS        A  program  that  goes  with  ASM.ABS.   Used  in 
                          creating machine code files. 
    ************************************************************************ 
 
                                     NOTES 
                                     +++++ 
 
    [A] MEMORY MAP 
    ============== 
 
    HDOS  3.0 is ORG-0.  This does not mean that the program area (USERFWA) 
    is near zero, but rather the system itself, HDOS30.SYS,  is  loaded  in 
    low  memory.   This  buys  the user about 4-5K of additional memory for 
    programs.  A brief memory map would appear as follows: 
 
 Start       End       Description 
 
 000000 027377 HDOS30.SYS 
 030000 033315 H17 ROM Subroutines 
    * 033316      037377      HDOS buffers and work areas [Note 1] 
    * 040000      040077      Monitor work cells [Note 2] 
 040100 042177 HDOS data area 
 042200 S.SYSM User program area 
 S.SYSM S.RFWA Loaded (but not locked) drivers 
      S.RFWA      S.HIMEM     GRT tables, locked drivers, buffers  
 
    Refer  to  Chapter  8,  Appendix 8-A: Memory Layouts - Memory Map, page 
    8-10 for further detail concerning the memory map for HDOS 3.02. 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-20 
    ================    =========                                ========== 
 
                                 NOTES (Cont) 
                                 ++++++++++++ 
 
    NOTES: 
         (1)  The  H17 driver code which formerly resided here is GONE, and 
    should not be referenced!  If a person calls this  code  directly,  the 
    disk WILL CRASH under this HDOS version! 
 
         (2)  This  is  where the PAM-8 or MTR-88/89/90 monitors kept their 
    scratch pad data.  Since HDOS runs in low memory, consider it  safe  to 
    assume that there is no monitor.  HDOS, however, uses selected cells in 
    this  area  in  the  same  fashion  as  the  monitor.   Software  which 
    references this area should function properly. 
      
    Software  which  calls the monitor code itself will NOT work.  The only 
    monitor point retained under 3.0 is .DLY.  Calling  any  other  monitor 
    routine will crash the system. 
 
 
    [B] DIRECTORY STRUCTURE AND FLAGS 
    ================================= 
 
    The  directory structure has changed slightly.  You will NOT be able to 
    read HDOS 3.0 diskettes with earlier versions of  HDOS.   You  will  be 
    able  to  read  earlier  diskettes  with  HDOS  3.0.  Non-standard HDOS 
    diskettes (using various time-of-day and other patches) may or may  not 
    work.   Mount  any  diskettes  in  question with the write-enable notch 
    COVERED.  The directory entry now contains the following information: 
 
       * file name 
 
       * file type 
 
       * time and date of file's creation 
 
       * number of times the file has been accessed (up to 255) 
 
       * flags 
                        A - File has been backed up [Note 2] 
                        B - File contains bad sectors [Note 3] 
                        C - File is contiguous on disk [Note 1] 
                        D - File may not be deleted [Note 4] 
                        L - Flags are locked 
   S - System file 
                        U - User flag [Note 5] 
   W - File is read-only 
 
    NOTES: 
         (1)  The contiguous flag [C] is automatically set by HDOS whenever 
    a file is closed if that file happens to be contiguous  on  disk.   The 
    .OPENC  SCALL  may  still be used as before to create 'C' files, as may 
    the '/C' switch in PIP. 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-21 
    ================    =========                                ========== 
 
                                 NOTES (Cont) 
                                 ++++++++++++ 
    NOTES: (Cont) 
         (2) The  archive flag [A] is used by a file archive (ARC) utility. 
    The Archive utility is available separately from Kirk Thompson. 
 
         (3) The bad sector flag [B] is used by a disk verify utility which 
    is called BAD.ABS.  This utility  is  available  separately  from  Kirk 
    Thompson. 
 
         (4) The  flag  [D]  locks a file against deletion.   This does not 
    imply write-protection, as  the  file  may  still  be  freely  read  or 
    written.   However,  a file with the 'D' flag set may not be opened for 
    .WRITE as this would cause the file to be deleted.  Instead,  open  for 
    .UPDATE must be used. 
 
         (5) The flag [U] is provided for user's use. 
 
       * user area mask (not implemented) 
 
       * first group number of file 
 
       * last group number of file 
 
       * last sector index of file 
 
       * file's creation date 
 
       * date of the file's last access 
 
 
 
    [C] DEVICE DRIVERS 
    ================== 
 
    Device  drivers  may  be  cleanly  UNLOADED.   They  may  also  process 
    interrupts.  The user should refer to  H17DVD.H8A  and  H37DVD.H8A  for 
    examples  of  how this works.  Pre-3.0 drivers which process interrupts 
    should  not  be  used.   The  techniques  used  under  2.0  to  process 
    interrupts may crash the system under 3.0. 
 
    The  device  table size is determined dynamically at boot time.  If you 
    have two drivers (the minimum, allowing for SY: and TT:)  you  get  two 
    entries.   If  you  have  fifteen  drivers (!)  HDOS will build a table 
    sufficient to hold all entries. 
     
    TT: is no longer part of HDOS but is an independent device driver.   In 
    addition  to  the  standard  device  driver  entry points, TT: includes 
    routines to  process  the  following  SCALLs:  .SCIN,  .SCOUT,  .PRINT, 
    .CONSL,  and  .CLRCO.   TT:  also supports operation at 19200 and 38400 
    baud. 
     
    A Device driver preamble (the SET part of the  driver)  may  be  larger 
    than  two  sectors.   It  may  extend to 16 sectors in multiples of two 
    sectors. 
     



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-22 
    ================    =========                                ========== 
 
                                 NOTES (Cont) 
                                 ++++++++++++ 
 
    [D] SYSCMD/Plus and PIP/Plus 
    ============================ 
 
    SYSCMD.SYS   and   PIP.ABS   remain   co-resident   whenever  possible, 
    eliminating the repeated re-loading of PIP. 
     
    PIP has approximately 50 switches.  See the "HELP."  file for  a  brief 
    description of them. 
     
    SYSCMD  supports  many  new  commands.   It  also supports execution of 
    "batch" files.  (A batch file is a text file containing commands  which 
    is  read  by  SYSCMD).   Batch  file  names end in ".BAT".  SYSCMD will 
    automatically search for and execute "SY0:AUTOEXEC.BAT" when the system 
    boots.  (This is in addition to, but AFTER, running of SY0:PROLOGUE.SYS 
    by HDOS.)  Operation of batch files is  nearly  identical  to  that  of 
    MS-DOS, with the exception of FOR/IN/DO which is not implemented. 
     
 
    [E] DEFAULT DEVICE DATA 
    ======================= 
    A default device may be "logged in" from the SYSCMD prompt. 
     
    A search path is implemented which causes SYSCMD to search for commands 
    which are not found on the default device. 
     
    All programs distributed with HDOS  3.0  use  the  default  device  for 
    reading and writing files. 
 
 
    [F] LIST OF FILES FOR HDOS 3.02 
    =============================== 
 
    HDOS30.SYS      version 3.02 of HDOS 
    TT.DVD          H19 driver 
    DK.DVD          Secondary disk drives driver 
    SY.DVD          Primary disk drives driver (less grinding sounds from 
                    drive) 
    H47.DVD         H47 driver (8-inch disks) 
    H37.DVD         H37 driver (soft-sector) 
    H17.DVD         H17 driver (hard-sector) 
    ND.DVD          Null device driver 
    RX.DVD          A Null device that tells you what its doing 
                    (debugging tool) 
    SYSCMD.SYS      3.02 System Command Processor 
    ERRORMSG.SYS    3.02 error list 
    HELP.           3.02 help file 
    PIP.ABS         3.02 peripheral interchange program 
    SYSHELP.DOC     3.02 help file 
    ....................................................................... 
    ACT.ABS         Show what tasks are loaded in "task manager" 
    BLANK.BAT       Screen blanking batch file.  Touch any key to  
                    restore the screen  
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-23 
    ================    =========                                ========== 
 
                                 NOTES (Cont) 
                                 ++++++++++++ 
 
    [F] LIST OF FILES FOR HDOS 3.02 (Cont) 
    ====================================== 
 
    BLINK.BAT       Silly way to clear the screen 
    CALC.ABS        Newer calculator that includes date codes 
    CHAN.TAS <TMG>  Shows I/O channel activity on 25th line 
    CLOCK.TAS <TMG> Standard software clock 
    CRASH.TAS <TMG> Touch BREAK key to crash system 
    DFD.ABS         Deleted files directory 
    DS.ABS          Directory sort 
    DVL.ABS         Display volume label sector 
    DVT.ABS         Show contents of device table 
    ECHO.TAS <TMG>  Send screen output to LP: (First load LP:) 
    IOT.ABS         Show contents of I/O table 
    JTRA.ABS        Job translator utility 
    KAL.ABS         Pretty patterns on your screen 
    KEYS.TAS <TMG>  Program all 8 function keys 
    MAP.ABS         Print magic addresses for 3.02 
    MDRC.BAT        A tool for looking at lots of disks 
    MP.ABS          MEGAPIP, an HDOS file-handling utility 
    OC.ABS          Newer ONECOPY 
    OPE.ABS         A utility to alter memory 
    SHOWALL.BAT     Show lots of HDOS information 
    SORT.ABS        File sorting utility 
    SYSHELP.DOC     3.02 help file 
    SYSMON.TAS <TMG>Monitor STACK for overflow and S.FASER syscalls 
    SYSPATCH.ABS    PATCH without codes 
    TAS.ABS         Activates and deactivates tasks in 'Task Manager' 
    TDU.TAS <TMG>   Terminal debug utility 
    TICTOC.BAT      Start clock first; then try this 
    TMAP.ABS        Task map.  Shows which are in memory 
    TMG.TAS         The 'Task Manager.'  Must be started first before 
                    certain tasks will work 
    TSR.ABS         Task status report for 'Task Manager' 
    USR.ABS         Show system speed with or without user clock vector 
    ZZ.ABS          Zig-Zag 
    *********************************************************************** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-24 
    ================    =========                                ========== 
      
                                 NOTES (Cont) 
                                 ++++++++++++ 
 
    ----------------------------------------------------------------------- 
                              GRAPHICS CHARACTERS 
    ----------------------------------------------------------------------- 
    Below  the character map is the lower case character ( and it's decimal 
    equivalent ) which gives you the graphic character; followed by the Hex 
    code and Control code for the native mode of the graphic character. 
    ----------------------------------------------------------------------- 
 
 
    CHARACTER NATIVE CODE 
    ===================== 
                          
    +--MOD---+  +--MOD---+  +--------+  +--------+  +--------+  +--------+ 
    |        |  |********|  |   **   |  |        |  |   **   |  |        | 
    |        |  | *******|  |   **   |  |        |  |   **   |  |        | 
    |  ****  |  |  ******|  |   **   |  |        |  |   **   |  |        | 
    | ****** |  |   *****|  |   **   |  |        |  |   **   |  |        | 
    | ****** |  |    ****|  |   **   |  |********|  |********|  |*****   | 
    | ****** |  |    ****|  |   **   |  |********|  |********|  |*****   | 
    |  ****  |  |     ***|  |   **   |  |        |  |   **   |  |   **   | 
    |        |  |      **|  |   **   |  |        |  |   **   |  |   **   | 
    |        |  |       *|  |   **   |  |        |  |   **   |  |   **   | 
    |        |  |        |  |   **   |  |        |  |   **   |  |   **   | 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
       ^   94      _   95      `   96      a   97      b   98      c   99 
       7F Hex      1F Hex      00 Hex      01 Hex      02 Hex      03 Hex 
       DEL         ^_          ^@          ^A          ^B          ^C 
 
 
    +--------+  +--------+  +--------+  +--NEW---+  +--MOD---+  +--MOD---+ 
    |   **   |  |   **   |  |        |  |        |  |        |  |*  *  * | 
    |   **   |  |   **   |  |        |  |        |  |        |  | *  *  *| 
    |   **   |  |   **   |  |        |  |  *     |  |     *  |  |  *  *  | 
    |   **   |  |   **   |  |        |  | **     |  |     ** |  |*  *  * | 
    |*****   |  |   *****|  |   *****|  |********|  |********|  | *  *  *| 
    |*****   |  |   *****|  |   *****|  | **     |  |     ** |  |  *  *  | 
    |        |  |        |  |   **   |  |  *     |  |     *  |  |*  *  * | 
    |        |  |        |  |   **   |  |        |  |        |  | *  *  *| 
    |        |  |        |  |   **   |  |        |  |        |  |  *  *  | 
    |        |  |        |  |   **   |  |        |  |        |  |*  *  * | 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
       d  100      e  101      f  102      g  103      h  104      i  105 
       04 Hex      05 Hex      06 Hex      07 Hex      08 Hex      09 Hex 
       ^D          ^E          ^F          ^G          ^H          ^I 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-25 
    ================    =========                                ========== 
 
                          GRAPHICS CHARACTERS (Cont) 
                          ++++++++++++++++++++++++++ 
 
    CHARACTER NATIVE CODE 
    ===================== 
    +--NEW---+  +--MOD---+  +--------+  +--------+  +--------+  +--------+ 
    |****    |  |        |  |        |  |        |  |****    |  |    ****| 
    |****    |  |    *   |  |        |  |        |  |****    |  |    ****| 
    |****    |  |    *   |  |        |  |        |  |****    |  |    ****| 
    |****    |  |    *   |  |        |  |        |  |****    |  |    ****| 
    |****    |  |    *   |  |        |  |        |  |****    |  |    ****| 
    |    ****|  |  ***** |  |    ****|  |****    |  |        |  |        | 
    |    ****|  |   ***  |  |    ****|  |****    |  |        |  |        | 
    |    ****|  |    *   |  |    ****|  |****    |  |        |  |        | 
    |    ****|  |        |  |    ****|  |****    |  |        |  |        | 
    |    ****|  |        |  |    ****|  |****    |  |        |  |        | 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
       j  106      k  107      l  108      m  109      n  110      o  111 
       0A Hex      0B Hex      0C Hex      0D Hex      0E Hex      0F Hex 
       ^J          ^K          ^L          ^M          ^N          ^O 
 
 
    CHARACTER NATIVE CODE 
    ===================== 
    +--------+  +--------+  +--MOD---+  +--------+  +--------+  +--------+ 
    |********|  |    ****|  |********|  |        |  |   **   |  |   **   | 
    |********|  |    ****|  |******* |  |        |  |   **   |  |   **   | 
    |********|  |    ****|  |******  |  |        |  |   **   |  |   **   | 
    |********|  |    ****|  |*****   |  |        |  |   **   |  |   **   | 
    |********|  |    ****|  |****    |  |********|  |*****   |  |********| 
    |        |  |    ****|  |****    |  |********|  |*****   |  |********| 
    |        |  |    ****|  |***     |  |   **   |  |   **   |  |        | 
    |        |  |    ****|  |**      |  |   **   |  |   **   |  |        | 
    |        |  |    ****|  |*       |  |   **   |  |   **   |  |        | 
    |        |  |    ****|  |        |  |   **   |  |   **   |  |        | 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
        p  112      q  113      r  114      s  115      t  116      u  117 
        10 Hex      11 Hex      12 Hex      13 Hex      14 Hex      15 Hex 
        ^P          ^Q          ^R          ^S          ^T          ^U 
 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
    |   **   |  |*      *|  |       *|  |*       |  |********|  |        | 
    |   **   |  |**    **|  |      **|  |**      |  |********|  |        | 
    |   **   |  | **  ** |  |     ** |  | **     |  |        |  |        | 
    |   **   |  |  ****  |  |    **  |  |  **    |  |        |  |        | 
    |   *****|  |   **   |  |   **   |  |   **   |  |        |  |        | 
    |   *****|  |   **   |  |   **   |  |   **   |  |        |  |        | 
    |   **   |  |  ****  |  |  **    |  |    **  |  |        |  |        | 
    |   **   |  | **  ** |  | **     |  |     ** |  |        |  |        | 
    |   **   |  |**    **|  |**      |  |      **|  |        |  |********| 
    |   **   |  |*      *|  |*       |  |       *|  |        |  |********| 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
        v  118      w  119      x  120      y  121      z  122      {  123 
        16 Hex      17 Hex      18 Hex      19 Hex      1A Hex      1B Hex 
        ^V          ^W          ^X          ^Y          ^Z          ^[ 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-26 
    ================    =========                                ========== 
 
                          GRAPHICS CHARACTERS (Cont) 
                          ++++++++++++++++++++++++++ 
 
    CHARACTER NATIVE CODE (Cont) 
    ============================  
    +--------+  +--------+  +--NEW---+  +--OLD---+  +--OLD---+  +--OLD---+ 
    |**      |  |      **|  |  ****  |  |        |  |        |  |        | 
    |**      |  |      **|  | *    * |  |        |  |        |  |   **** | 
    |**      |  |      **|  |* *  * *|  |    *   |  |        |  |  ****  | 
    |**      |  |      **|  |*      *|  |    *   |  |   *    |  |  ****  | 
    |**      |  |      **|  |* *  * *|  |  ***** |  |        |  |   ***  | 
    |**      |  |      **|  |*  **  *|  |    *   |  | *****  |  |    **  | 
    |**      |  |      **|  | *    * |  |    *   |  |        |  |    **  | 
    |**      |  |      **|  |  ****  |  |        |  |   *    |  |    **  | 
    |**      |  |      **|  |   **   |  |  ***** |  |        |  |        | 
    |**      |  |      **|  |   **   |  |        |  |        |  |        | 
    +--------+  +--------+  +--------+  +--------+  +--------+  +--------+ 
        |  124      }  125      ~  126  ( g  103 )  ( j  106 )  ( ~  126 ) 
        1C Hex      1D Hex      1E Hex  ( 07 Hex )  ( 0A Hex )  ( 1E Hex ) 
        ^\          ^]          ^^      ( ^G     )  ( ^J     )  ( ^^     ) 
 
 
    NOTE: Reverse video for these characters has the high bit set in native 
    mode. 
    *********************************************************************** 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-27 
    ================    =========                                ========== 
     
                                 THE ULTRA ROM 
                                 +++++++++++++ 
    ----------------------------------------------------------------------- 
    SPECIAL KEYBOARD SEQUENCES 
    ----------------------------------------------------------------------- 
      
 Version 2.8 of the Ultra ROM Firmware 
 
 Control-Shift-ESC  Clear Transparent Mode if set. 
     Clear Native Mode if set. 
     Unlock keyboard if locked. 
     No code is sent to host. 
 
 Control-TAB   Transmit 14H to host. 
 
 Shift-SCROLL  Enter Scroll Mode if not already set. 
     Advance one page if in scroll mode. 
     No code is sent to host. 
 
 Control-SCROLL  Exit Scroll Mode if set. 
     No code is sent to host. 
 
 Control-Shift-DELETE Soft Reset if H19 terminal. 
     No code is sent to host. 
 
 Control-RETURN  Return cursor to column one. 
     No code is sent to host. 
 
 Control-Shift-RETURN Transmit current line edited. 
     Line is terminated with CR. 
 
 Control-ERASE  Erase to end of screen. 
     No code is sent to host. 
 
 Control-Shift-ERASE Erase entire screen. 
     Home cursor. 
      
 Note: Upon receipt of a 12H the terminal will emit the 'click' 
  sound, similar to the tick of a clock. 
 
    ----------------------------------------------------------------------- 
    NORMAL MODE FUNCTION KEYS 
    ----------------------------------------------------------------------- 
 
    Values of function keys in their normal mode. 
    Native mode values are included for reference. 
 
 
 
 
 
 
 
 
 
     



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-28 
    ================    =========                                ========== 
 
                             THE ULTRA-ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    NORMAL MODE FUNCTION KEYS (Cont) 
    ----------------------------------------------------------------------- 
 
 
    SHIFTED 
 
         f 1          f2            f 3            f 4          f 5 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    |           | |           | |           | |           | |           | 
    |   ESC s   | |   ESC t   | |   ESC u   | |   ESC v   | |   ESC w   | 
    |           | |           | |           | |           | |           | 
    |  F3 Hex   | |  F4 Hex   | |  F5 Hex   | |  F6 hex   | |  F7 Hex   | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
 
 
    UNSHIFTED                                                            
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    |           | |           | |           | |           | |           | 
    |   ESC S   | |   ESC T   | |   ESC U   | |   ESC V   | |   ESC W   | 
    |           | |           | |           | |           | |           | 
    |  D3 Hex   | |  D4 Hex   | |  D5 Hex   | |  D6 Hex   | |  D7 Hex   | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
 
 
 
 
 
          SHIFTED 
 
              ERASE          BLUE            RED           WHITE 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  |           |  |           |  |           | 
          |   ESC E   |  |   ESC p   |  |   ESC q   |  |   ESC r   | 
          |           |  |           |  |           |  |           | 
          |  C5 Hex   |  |  F0 Hex   |  |  F1 Hex   |  |  F2 Hex   | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
 
 
          UNSHIFTED 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  |           |  |           |  |           | 
          |   ESC J   |  |   ESC P   |  |   ESC Q   |  |   ESC R   | 
          |           |  |           |  |           |  |           | 
          |  CA Hex   |  |  D0 Hex   |  |  D1 Hex   |  |  D2 Hex   | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
 
 
 
 
 
 
 
     



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-29 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    NORMAL MODE FUNCTION KEYS (Cont) 
    ----------------------------------------------------------------------- 
 
    How they function with the OFF LINE key down: 
 
      
 
 
    SHIFTED 
 
         f 1            f 2           f 3            f 4            f 5 
    +-----------+  +-----------+  +-----------+  +-----------+  +-----------+ 
    | ESC s     |  | ESC t     |  | ESC u     |  | ESC v     |  | ESC w     | 
    |           |  | enter     |  | exit      |  | wrap      |  | discard   | 
    | swap page |  | shifted   |  | shifted   |  | at end    |  | at end    | 
    |           |  | keypad    |  | keypad    |  | of line   |  | of line   | 
    +-----------+  +-----------+  +-----------+  +-----------+  +-----------+ 
                                                                             
 
    UNSHIFTED 
 
    +-----------+  +-----------+  +-----------+  +-----------+  +-----------+ 
    | ESC S     |  | ESC T     |  | ESC U     |  | ESC V     |  | ESC W     | 
    | [ + arg ] |  | enter     |  | set HALF  |  | set FULL  |  | transmit  | 
    | cursor    |  | transparent  | duplex    |  | duplex    |  | character | 
    | type      |  | mode      |  |           |  |           |  | at cursor | 
    +-----------+  +-----------+  +-----------+  +-----------+  +-----------+ 
 
 
 
 
           SHIFTED 
 
             ERASE           BLUE            RED           WHITE 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          | ESC E     |  | ESC p     |  | ESC q     |  | ESC r     | 
          | cls and   |  | enter     |  | exit      |  | [ + arg ] | 
          | home      |  | reverse   |  | reverse   |  | change    | 
          | cursor    |  | video     |  | video     |  | baud rate | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
 
 
          UNSHIFTED                                                  
          +-----------+  +-----------+  +-----------+  +-----------+ 
          | ESC J     |  | ESC P     |  | ESC Q     |  | ESC R     | 
          | erase to  |  | enter     |  | exit      |  | [ + arg ] | 
          | end of    |  | native    |  | native    |  | copy page | 
          | screen    |  | mode      |  | mode      |  | to other  | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
                                              ^ 
                                (SEE SECOND NOTE ON NEXT PAGE) 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-30 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    NORMAL MODE FUNCTION KEYS (Cont) 
    ----------------------------------------------------------------------- 
 
    NOTE 1:  This information is given so you will know what is going on if 
    you get strange results from the function keys while the OFF  LINE  key 
    is down. 
     
    NOTE 2:   The  entry noted as means that while in native mode, pressing 
    the unshifted RED key will transmit the native mode code for that  key, 
    not  'ESC  Q'.   Therefore, it is not possible to exit native mode with 
    that key.  You can exit native mode by pressing the ESC key followed by 
    the 'Q' key or by using CONTROL-SHIFT-ESC. 
 
    ----------------------------------------------------------------------- 
    USER-DEFINED FUNCTION KEYS 
    ----------------------------------------------------------------------- 
    There  are  two  built  in  sets  of  defined strings for the unshifted 
    function keys.  Notice that with the shift key they are unchanged  from 
    normal  mode.   You  can,  of  course,  assign  your  own values to the 
    unshifted keys. 
 
    SHIFTED ( no change ) 
         f 1          f 2           f 3           f 4           f 5 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    |           | |           | |           | |           | |           | 
    |   ESC s   | |   ESC t   | |   ESC u   | |   ESC v   | |   ESC w   | 
    |           | |           | |           | |           | |           | 
    |           | |           | |           | |           | |           | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
                                                                            
 
    UNSHIFTED CPM 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    | 'dir '    | | 'type '   | | 'list '   | | 'stat '   | | 'pip '    | 
    |           | |           | |           | |           | |           | 
    | User      | | User      | | User      | | User      | | User      | 
    | ????????  | | ????????  | | ????????  | | ????????  | | ????????  | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
                     
 
    UNSHIFTED HDOS 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    | 'mount'   | | 'dis'     | | 'reset'   | | 'copy'    | | 'type'    | 
    |           | |           | |           | |           | |           | 
    |           | |           | |           | |           | |           | 
    |           | |           | |           | |           | |           | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-31 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    USER-DEFINED FUNCTION KEYS (Cont) 
    ----------------------------------------------------------------------- 
 
    SHIFTED ( no change ) 
 
              ERASE          BLUE           RED            WHITE 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  |           |  |           |  |           | 
          |   ESC E   |  |   ESC p   |  |   ESC q   |  |   ESC r   | 
          |           |  |           |  |           |  |           | 
          |           |  |           |  |           |  |           | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
 
 
          UNSHIFTED CPM 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  | 'ren '    |  | 'era '    |  | 'user '   | 
          |   ESC J   |  |           |  |           |  |           | 
          |           |  | User      |  | User      |  | User      | 
          |           |  | ????????  |  | ????????  |  | ????????  | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
                          
          UNSHIFTED HDOS 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  | 'cat '    |  |  'SY1:'   |  |  'SY2:'   | 
          |   ESC J   |  |           |  |           |  |           | 
          |           |  | User      |  | User      |  | User      | 
          |           |  | ????????  |  | ????????  |  | ????????  | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
 
 NOTE: Spaces follow some of the predefined strings. 
      
  The ERASE key is unaffected by this mode. 
 
    ----------------------------------------------------------------------- 
    CONTROL-KEY MODE FUNCTION KEYS 
    ----------------------------------------------------------------------- 
 
    At any time that the CONTROL key is depressed, the function keys 
    perform the following: 
 
 
 
    SHIFTED 
         f 1          f 2            f 3          f 4           f 5 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    | disable   | | disable   | | disable   | | disable   | | enter     | 
    | graphics  | | reverse   | | wrap at   | | shifted   | | transparent 
    | mode      | | video     | | end of    | | keypad    | | mode      | 
    |           | |           | | line      | | mode      | |           | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-32 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    CONTROL KEY MODE FUNCTION KEYS (Cont) 
    -----------------------------------------------------------------------  
      
    UNSHIFTED                                                              
 
         f 1          f 2           f 3           f 4           f 5 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
    | enable    | | enable    | | enable    | | enable    | | enable    | 
    | graphics  | | reverse   | | wrap at   | | shifted   | | native    | 
    | mode      | | video     | | end of    | | keypad    | | mode      | 
    |           | |           | | line      | | mode      | |           | 
    +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ 
                     
 
           SHIFTED 
             ERASE           BLUE            RED           WHITE 
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  | disable   |  | copy 2nd  |  | zero the  | 
          |   ESC E   |  | user      |  | page ram  |  | 25th line | 
          |           |  | function  |  | to video  |  | clock     | 
          |           |  | keys      |  | ram       |  |           | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
 
           UNSHIFTED                                                  
          +-----------+  +-----------+  +-----------+  +-----------+ 
          |           |  | enable    |  | copy video|  |           | 
          |   ESC J   |  | user      |  | ram to    |  | swap page | 
          |           |  | function  |  | 2nd page  |  |           | 
          |           |  | keys      |  | ram       |  |           | 
          +-----------+  +-----------+  +-----------+  +-----------+ 
                             
 
 
    NOTE:   The ERASE key is not affected by this mode. 
 
    These keys do not function this way in native mode.  However, they will 
    in transparent mode.  While in transparent mode the graphics  mode  and 
    reverse video mode will not function except where transparent mode uses 
    reverse  video  normally.  If you have graphics or reverse video turned 
    on and then exit transparent  mode  then  will  still  be  enabled  and 
    functioning the way you expect. 
     
    If  you  are  in  transparent  mode  and  turn  on native mode then the 
    function keys revert to sending native mode codes only. 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-33 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    CODES FOR THE KEYPAD 
    ----------------------------------------------------------------------- 
 
       insert char   up cursor     delete char 
     +-----------+ +-----------+  +-----------+ 
 SHIFTED    | ESC @ [O] | | ESC A     |  | ESC N    | 
 ALTERNATE   | ESC ? w   | | ESC ? x   |  | ESC ? y   | 
 SHIFTED NATIVE | 97 Hex    | | 98 Hex    |  | 99 Hex    | 
 UNSHIFTED NATIVE  | 87 Hex    | | 88 Hex    |  | 89 Hex    | 
     +-----------+ +-----------+  +-----------+ 
 UNSHIFTED         7        8           9 
 
       left cursor  home cursor   right cursor 
     +-----------+ +-----------+  +-----------+ 
 SHIFTED    | ESC D     | | ESC H     |  | ESC C    | 
 ALTERNATE   | ESC ? t   | | ESC ? u   |  | ESC ? v   | 
 SHIFTED NATIVE | 94 Hex    | | 95 Hex    |  | 96 Hex    | 
 UNSHIFTED NATIVE  | 84 Hex    | | 85 Hex    |  | 86 Hex    | 
     +-----------+ +-----------+  +-----------+ 
 UNSHIFTED        4        5          6 
 
       insert line  down cursor    delete line 
    +-----------+ +-----------+  +-----------+ 
 SHIFTED    | ESC L     | | ESC B     |  | ESC M    | 
 ALTERNATE   | ESC ? q   | | ESC ? r   |  | ESC ? s   | 
 SHIFTED NATIVE | 91 Hex    | | 92 Hex    |  | 93 Hex    | 
 UNSHIFTED NATIVE  | 81 Hex    | | 82 Hex    |  | 83 Hex    | 
     +-----------+ +-----------+  +-----------+ 
 UNSHIFTED         1        2          3 
 
             zero        period        return 
     +-----------+ +-----------+  +-----------+ 
 SHIFTED    | 0       | | .       |  | CR    | 
 ALTERNATE   | ESC ? p   | | ESC ? n   |  | ESC ? M   | 
 SHIFTED NATIVE | 90 Hex    | | 9A Hex    |  | 9B Hex    | 
 UNSHIFTED NATIVE  | 80 Hex    | | 8A Hex    |  | 8B Hex    | 
     +-----------+ +-----------+  +-----------+ 
 UNSHIFTED         0            .          ENTER 
                                             (DOT) 
          
    NOTE:  The shifted 7 key has two sequences.  The first one (ESC @) sets 
    insert character mode and the second one (ESC O) exits insert character 
    mode. 
 
 
 
 
 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-34 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    ESCAPE SEQUENCES 
    ----------------------------------------------------------------------- 
    In alphabetical order, the '*' means an added feature of this ROM. 
 ESC #  transmit page 
 
 ESC :       * transmit current line 
 
 ESC ;       * transmit current line edited 
 
 ESC <       * NOT used - formerly ANSI MODE enable 
 
 ESC =  enter alternate keypad mode 
 
 ESC >  exit  alternate keypad mode 
 
 ESC ?       * send configuration report 
 
 ESC @  enter insert character mode 
 
 ESC A  cursor up 
 
 ESC B  cursor down 
      
 ESC C  cursor right 
 
 ESC D  cursor left 
 
 ESC E  erase screen and home cursor 
 
 ESC F  enter graphics mode 
 
 ESC G  exit  graphics mode 
 
 ESC H  home cursor 
 
 ESC I  reverse line feed 
 
 ESC J  erase to end of page 
 
 ESC K  erase to end of line 
 
 ESC L  insert line 
 
 ESC M  delete line 
 
 ESC N  delete character 
 
 ESC O  exit insert character mode 
 
 ESC P       * enter native keyboard mode 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-35 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    ESCAPE SEQUENCES (Cont) 
    ----------------------------------------------------------------------- 
 
 ESC Q       * exit  native keyboard mode 
 
        ESC R <arg>   * copy display memory to/from 2nd page memory <arg> 
                        is '1' or '2' which is the target of the copy. 
 
        ESC S <arg> * set cursor type 
                      <arg> is '1' thru '8' which is cursor type 
                      1 underscore - steady           5 block - steady 
                      2 underscore - invisible        6 block - invisible 
                      3 underscore - fast blink       7 block - fast blink 
                      4 underscore - slow blink       8 block - slow blink 
 
 ESC T       * enter transparent mode 
 
 ESC U       * set half duplex 
 
 ESC V       * set full duplex 
 
 ESC W       * transmit character at cursor 
 
        ESC X <arg> * set clock 
                      <arg>  is  a  seven-character  string  in  the  form:   
                      'hhmmss' followed by any character, usually a return. 
 
 ESC Y <r> <c> direct cursor addressing 
   <r> is row, <c> is column 
 
 ESC Z  identify as VT-52 ( ESC / K ) 
 
 ESC [  enter hold screen mode 
 
 ESC \  exit  hold screen mode 
 
 ESC ]  transmit 25th line 
 
 ESC ^       * reset clock to 00:00:00 
 
 ESC _ <arg>   * reverse characters on screen 
   <arg> is a count of how many characters to reverse 
 
 ESC `       * reverse entire screen 
 
 ESC a <n> <$> * load programmable function keys 
   <n> is '1' thru '8' indicating which function key 
   <$> is up to an 8 character string.  if not using 
                        all 8 characters then must terminate with DEL. 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-36 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    ESCAPE CODES (Cont) 
    ----------------------------------------------------------------------- 
 
 ESC b  erase to beginning of page 
 
 ESC c       * enable clock display 
 
 ESC d       * disable clock display 
 
 ESC e       * send time to host 
 
 ESC f <n> <$> * expand bytes vertical 
   <n> is count, <$> is character to expand 
 
 ESC g <n> <$> * expand bytes horizontal 
   <n> is count, <$> is character to expand 
 
 ESC h <arg>   * set/clear MODE 2 settings 
   <arg> is '1' thru '8', mode to set/clear 
   1 enable  software handshake 
   2 disable software handshake 
   3 start screen clock 
   4 stop screen clock 
   5 enable  programmed function keys 
 
   6 disable programmed function keys 
   7 select CPM  function keys 
   8 select HDOS function keys 
   9 NOT USED 
 
 ESC i <$>     * fill screen with byte 
   <$> is the character to fill screen with 
 
 ESC j  save cursor position 
 
 ESC k  restore cursor position 
 
 ESC l  erase entire line 
 
 ESC m       * reset programmable function keys 
 
 ESC n  cursor position report 
 
 ESC o  erase to beginning of line 
 
 ESC p  enter reverse video mode 
 
 ESC q  exit  reverse video mode 
 
 
 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-37 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
 
    ----------------------------------------------------------------------- 
    ESCAPE SEQUENCES (Cont) 
    ----------------------------------------------------------------------- 
 
 ESC r <arg>   * set baud rate ( NOT a new feature, but modified ) 
   <arg> is 'A' thru 'H', new baud rate 
   A 110  E 4800 
   B 300  F 9600 
   C 1200  G 19200 
   D 2400  H 38400 
 
   from original ROM 
   <arg> is 'A' thru 'L', new baud rate 
   A 110  E 1200  I 3600 
   B 150  F 1800  J 4800 
   C 300  G 2000  K 7200 
   D 600  H 2400  L 9600 
 
 ESC s       * swap display memory with 2nd page memory 
 
 ESC t  enter shifted keypad mode 
 
 ESC u  exit  shifted keypad mode 
 
 ESC v  set wrap at end of line 
 
 ESC w  set discard at end of line 
 
 ESC x <arg> Heath set mode 
   <arg> is '1' thru '9', mode to set 
   1 enable 25th line 
   2 disable key click 
   3 enter hold screen mode 
   4 block cursor 
   5 cursor off 
   6 enter keypad shifted mode 
   7 enter alternate keypad mode 
   8 auto line feed on receipt of CR 
   9 auto CR on receipt of line feed 
 
 ESC y <arg> Heath reset mode 
   <arg> is '1' thru '9', mode to reset 
   1 disable 25th line 
   2 enable key click 
   3 exit hold screen mode 
   4 underscore cursor 
   5 cursor on 
   6 exit keypad shifted mode 
   7 exit alternate keypad mode 
   8 no auto line feed 
   9 no auto CR 
 
 



    CHAPTER FOURTEEN    DATA BITS                                PAGE 14-38 
    ================    =========                                ========== 
 
                             THE ULTRA ROM (Cont) 
                             ++++++++++++++++++++ 
    ----------------------------------------------------------------------- 
    ESCAPE SEQUENCES (Cont) 
    ----------------------------------------------------------------------- 
 
 ESC z  reinitialize to power-up configuration 
 
 ESC {  enable keyboard input 
 
 ESC |       * execute terminal self-test 
 
 ESC }  disable keyboard input 
    *********************************************************************** 
    NOTES ON THE ULTRA ROM: 
 
    This file was prepared for those people who have the Ultra ROM. 
 
    The Ultra ROM was designed by Bill Parrott III.  For a time it was sold 
    by  Software Wizardry.  Unfortunately, at the completion of this manual 
    it is no longer commercially available.  
    *********************************************************************** 
 
    CREDITS: 
        WRITER/TYPIST .................. Dan Jerome (SMUGH) 
        TECHNICAL ADVISOR #1 ........... John Toscano (SMUGH) 
        TECHNICAL ADVISOR #2 ........... Bill Cordes (SMUGH) 
        HDOS 3.0 PROGRAMMER ............ Bill Parrott III 
        HDOS 3.02 PROGRAMMER ........... Richard Musgrave 
        CHIEF OF QUALITY CONTROL: ...... Terry Hall 
    ....................................................................... 
 
    **Key Vendor Name and Address**      **Products for HDOS 3.0/3.02** 
    ===============================      ============================== 
    Lindley Systems                      Ultimate Printer Driver 
    c/o William Lindley                  Misc software for HDOS 
    4257 Berwick Place 
    Woodbridge, VA 22192 
    (703) 590-8890 
 
    Quikdata, Inc.                       Gibson HDOS 3.0/3.02 Assembler; 
    c/o Henry E. Fale                    Various H89 hardware and software; 
    2618 Penn Circle                     HDOS Software Reference Manuals; 
    Sheboygan, WI 53081 
    (414) 452-4172 
 
    Staunch 8/89'er                      Associated utilities for HDOS; 
    c/o Kirk Thompson                    HDOS Software Reference manual; 
    P.O. Box 548                         manuals; all of the HDOS 3.02 
    Lot #6 West Branch Mobile            files on disk or hardcopy; 
     Home Village,                       miscellaneous software 
    West Branch, IA 52358 
 



                             MEGAPIP DOCUMENTATION 
                             +++++++++++++++++++++ 
 
    MEGAPIP  is  an excellent file-handling utility for HDOS 3.02.  This is 
    the first shell type  of  program  developed  for  the  HDOS  Operating 
    System.   
 
    When  you call up MP.ABS, a graphics rectangle will be "painted" on the 
    screen.  In the bottom of the large rectangle, a shorter rectangle will 
    appear.   In  a  few seconds, the directory of SY0: will appear.  There 
    will be a highlighted bar over the first file of the disk.  This shadow 
    bar  may  be  moved by the arrow keys.  In conjunction with the program 
    keys, it will enable you to select which function you want to perform. 
     
    Below the list of files in the shorter rectangle is a  comment  stating 
    that if you want help, press the question mark [?] key.  When you press 
    the question mark key -- you don't need to press  <RTN>  --  the  first 
    screen  blanks out and another screen takes its place.  The contents of 
    the first Help screen is as follows: 
    ....................................................................... 
 
         -- Tagging Functions --             -- File Functions -- 
 
         T = Tag file                        C = Copy files 
         U = Untag file                      R = Rename files 
         W = Wild tag/untag                  D = Delete files 
                                             I = File info 
                                             N = File CRC 
         -- Misc. Functions --               F = Alter file(s) Flags 
                                             A = File(s) user Areas 
         L   = new Login 
         S   = free Space 
         E   = Edit file                     -- Viewing Functions -- 
         X   = eXecute file                                             
         +/- = next/previous screen          V = View file(s) 
         ?   = Help                          P = Print file(s) 
         Q   = Quit MegaPip                  H = Hex Dump 
                                                       
    ....................................................................... 
 
    The contents of the second Help screen is as follows: 
 
                                 f1 = Run PIP 
                             f2 = Sort file table 
                             f4 = active user area 
                           f5 = mount/dismount/reset 
            
                              arrows move cursor 
                              home -> first file 
                              white -> last file 
 
                              esc = abort at key 
                          ^D (CTRL-D) = abort at text 
 
                                 blue = refresh 
                                  red = quit 
    ....................................................................... 



 
    How to Use MegaPip: 
 
    BACKGROUND: 
    The  first  time you call MegaPip to your screen, note the screenful of 
    files and the beautiful graphics  rectangles  drawn  to  contain  them. 
    MegaPip  will  bring  up  the  list of files from SY0:.  If you want to 
    bring up the file list of SY1: or SY2:, just type 'L'  at  the  cursor. 
    You  will be asked for an argument.  In this case, just type 'SY1:', or 
    the desired drive name, and press '<RTN>'.  MegaPip will then log  onto 
    SY1:. 
 
    In  the upper right hand corner a legend will say: "Screen 1 of 1."  If 
    you are looking at an 80-track double-sided drive, the legend  may  say 
    "Screen  1  of  2."   If  you  have more files than that, it could say: 
    "Screen 1 of n," where n stands for a number. 
     
    You  can  move  the shadow bar with the use of the arrow keys.  To move 
    from screen to screen, place the shadow bar on the last column of files 
    to  the  right  and then place it on the last file in the column.  Then 
    type '<RTN>'. 
 
    HOW TO USE THE UTILITY: 
    Probably  one  of  the  most often used tasks is copying files from one 
    drive to another.  To copy files, first you must tag them.  First place 
    the shadow bar on the first file that you want to copy.  Type 'T' where 
    the shadow bar is.  (Ignore the apostrophes.)   Continue  to  move  the 
    shadow  bar  to the file(s) that you want to copy and type 'T' for each 
    one.  When you are done with tagging the files to be copied,  type  'C' 
    at the cursor down at the bottom of the page. 
 
    The  program  will  ask:  "COPY  - <T>agged, <U>ntagged, <F>ile."  Type 
    'T.'  The program will  ask:  "Copy  TAGGED  to?"   Type  'SY1:'.   The 
    program goes to a plain screen and prints the following: 
 
    "PIP SY1:=SY0:Filename.Ext/S/SU:CST" 
 
    "SY0:Filename.Ext --> SY1:Filename.Ext ... Copied" 
 
    This  expression  made  by  the computer is made for each file that you 
    want copied.  When it is done, the program instructs:  "Touch  Any  Key 
    ....   "  When  you  touch  any  key,  the  screen shifts, and you find 
    yourself back into the main screen of MegaPip. 
     
    When you want to exit the program, type "Q" at the cursor.  The program 
    will  ask:  "Are You Sure ?  Y/N."  Just type 'Y,' and you will be back 
    at the HDOS prompt, DAN+>. 
 
    This  is  but one example of the versatility of this fine program.  For 
    example, when you are in MegaPip, you can sort the file table, enter  a 
    user  area, mount or dismount a disk, or do any of the options shown in 
    the tables above. 
 
                                    CAUTION 
                                    ------- 
 
    MegaPip  is  a fine program, but it is recommended that you approach it 



    carefully, since it can be a dangerous.  The first time  one  uses  it, 
    you  can  inadvertently  delete  all  of  your  files on the disk being 
    displayed.  To cause this to happen, all you have to do is to place the 
    shadow  bar  on  the  file  that  you want deleted and type 'D," at the 
    cursor, and press <RTN>.  All of the files on disk will be deleted!  To 
    prevent  this  catastrophe  from occuring, first tag the specific files 
    that you want deleted.  THEN tell the program to delete only the tagged 
    ones. 
 
    MegaPip.DOC, HDOS 3.02 
    Last Edited: 11-Apr-90 
 


