HDOS System
Programmer’s Guide

Software Reference Manual

Copyright © 1980 HEATH COMPANY
Heath Company
BENTON HARBOR, MICHIGAN 49022

C All Rights Reserved

595-2553-02
Printed in the United
States of America

2 |

TABLE OF CONTENTS

Part 1 —Introduction................................... 5
PUrpose ... 5
Background o 5
Preface 5
Part 2 — Run-Time Envirenment 6
Memory Layout ... 6
IO Environmentoo 7
Interrupt Environment 8
Interrupt Vectors................oooo i i 8
Discontinuing Interrupts..................coooiiiioo i 9
CPU Environmentoooiiiiiiiiinnnnn 9
Channel Environment 9
Part3 —1/OChanmels 10
Part 4 — Precautions 11
Memory Precautions 11
User Memory Areacoooviviuueneenin 11
Stack Maintenance 11
/O Precautionsoo 11
Interrupt Precautions........................00ooiiiiii 12
CPU Precautionsoooooioeeeoooo i 12
Debugging Hintsoooo o 13
Part 5 — Resident SCALLs 14
EXIT o 15
SCIN L 16
SCOUT ..o 17
READ ... 18
WRITE ... 20
PRINT ... 21
CONSL .o 22
LCSLMD ... 22
LCONTY ..o 23
LCUSOR ... 23
LCONWI ..o 23
LCONFL ... 24
CLRCO ... 26
LOADO ... 27
VERS .o 28

| 3

Part 6 — Overlaid SCALLSttt ittt iittetsnttorosansonntossans 29
Overlay Managementouuinuiniuitree e iiineeeessmnnneensens 29
O T (A Y 1= PO 30
OPEN R .ottt e 31
L8 2 01\ L5/ PPN 33
OPENU .ottt e e e e 35
CLOSE .ottt e e e e 37
REN AME i i it et et et ittt et nnons 38
DELETE i i e i e i e 40
04 5 1 7 PP 41
POSIT oottt e e 43
|) D@} 1) 48
NAME o et e et e e 50
LINK ottt it e e e e e 52
(@4 1 I PP 53
SET T O ..o i it i e e e e e e 55
CLEAR oottt e e e 57
ERROR .ottt et e e 59
LOAD D . ottt i e e e e e e e s 60
MOUNT o et e e et e et it it ans 61
DMOUN L it e e e i e e e e 62
MONM S . oottt e e e 63
DM NS ottt ittt e e e e 64
2 DS 1 P 65
Part 7 — HDOS Symbol Definitionscoooiiiiinn 66
Recommended HDOS Common Deck Contents 67
Recommended HOSDEF.ACM Contentscooviiiiniiiiiann.. 67
Recommended HOSEQU.ACM Contentscovviieiiiiiannnn 69
Recommended ASCILACM Contentscoviiiiiiienninennn, 70
Recommended ECDEF.ACM Contentsc.ccoviiiiieeniinenn.. 71
HDOS Symbol Values ...t 72
HOSDEF Symbol Definitionscooiiiiiiiiiiiiiiin . 72
HOSEQU Symbol Definitionsccooiiiiiiiiiiiiniiinnn. 72
ECDEF Symbol Definitionscooiiiiiiiiiiiit. 73
Part 8 — Programming Examplesol 74
Menu Prologue for MBASIC ... 74

| 0

Part 1

INTRODUCTION

Purpose

This manual describes the advanced features of HDOS that are necessary for a
user program to interface with HDOS at the assembly language level. This
information is provided for use by the more advanced programmer and is not
presented in a tutorial manner.

Background

The “HDOS Software Reference Manual” documents the various system com-
mands and BASIC statements used to generate and maintain files at the higher
language level. At this level, the novice or average programmer need not be
concerned about the involved details of interfacing his programs with HDOS or
the disk drives. Since the release of HDOS, Heath has received from some
advanced programmers requests for information on how to interface with HDOS
at the assembly language level. For their particular tasks, programs must be
written in assembly language. It is in an effort to be of service to these users that
this manual has been written.

Any comments or questions regarding the contents of this Manual should be
directed to and only to the Heath Technical Consultation Department, Benton
Harbor, MI 49022.

Preface

HDOS provides a full run-time support environment for assembly language
programs. Communications with file-oriented devices, console communica-
tions, memory allocation, and other such services are provided by the HDOS
system. Since the H8 and H89 do not afford any hardware protection, assembly
language routines must be “polite”, in that they should not damage the H8 or
H89 running environment. This subject will be discussed in more detail further
on in this document.

HDOS also contains many useful general-purpose subroutines, which may be
called by user programs. These, together with the system services provided,
make assembly language programming under HDOS very convenient.

Part 2

RUN-TIME ENVIRONMENT

When you type ‘“RUN fname”, HDOS will load your program into memory and
run it. This section will discuss the initial run-time environment of the program.
Refer to the memory map in Chapter 1 of the Heath HDOS System Manual.

Memory Layout

The first 64 bytes of RAM, from 040000 to 040100, are used by PAM-8. The
PAM-8 source listing documents their use.*

The next 295 bytes are used by HDOS and the disk device driver for work cells.
These cells are in low memory so that HDOS and its overlays can reference them
without having to compute relocation factors (HDOS and its overlays are both
relocatable in high memory). Some of the contents of these cells are of interest to
assembly language programmers, and are available (indirectly) through HDOS
system calls. You should refrain from accesssing them directly, since their
position may change with future releases. Use of the proper HDOS symbols and
system calls in assembly language programs will make it possible to transport
your program to future Heath CPUs executing HDOS. There are a few cells that
may be of interest to the programmer; they are documented in Part 7. They may
be read, but must never be written.

Following the work cell area is a 279-byte stack area. When a user program is
executed, the stack pointer is set to the symbol STACK, which is 042200A. N ote
that you may not set your stack pointer below that address, and then use the area
below 42200A for code or datd (other than data stored by a normal PUSH). You
may make the stack larger, setting SP to a value larger than 042200A. Calls to the
HDOS system will preserve this larger stack.

The user program area starts at 042200A, immediately after the top of the stack.
The user program extends until the last byte loaded by the RUN command. Note
that the assembler generates a dummy 00 byte as the last statement in a program,
so that trailing DS declarations will be contained in the size of the running
program. There is a system call which requests access to more memory. You
must issue the call first, since HDOS may be using that area for its own code.

* Although the PAM-8 ROM will be referenced throughout this guide, the general-purpose routines of the MTR-88,
MTR-89, PAM-8-GO, and XCON-8 ROMs all have common entry points. For specific information, refer to the
particular ROM manuals and listings.

After the user program LWA, HDOS may (or may not) have HDOSOVLg or
HDOSOVL1 loaded. HDOSOVLZ and 1 are the-HDOS system overlays. The
HDOS functions which reside in the overlays are discussed in Part 7 and listed
on Page 68. In general, HDOS will attempt to reside HDOSOVL. If there is
sufficient free room for it, it will remain in memory. This is discussed further in
Part 7.

Any active device drivers are loaded immediately before the resident HDOS
code. A device driver is loaded when a file is opened on a device whose driver is
not yet in memory. The TT: device driver is built into the resident HDOS code
and the H17 ROM, and never needs to be loaded. Since the SY: driver is
permanently loaded into memory when the system is first booted up, it also
never needs to be loaded.

Finally, the HDOS system resides in high memory, up against the upper limit of
available RAM. When the system is booted up, HDOS initially loads at a fixed
lower address. After sizing memory, HDOS moves its permanently resident parts
into high memory. This section contains the TT: and SY: device drivers, the
SCALL dispatcher, the overlay loader, and the handlers for many SCALL func-
tions. These are discussed in Part 5.

I/0O Environment

HDOS has a vested interest in the 1/O ports being used by the device drivers
currently in memory. These ports should not be disturbed when HDOS (or a
device driver) may be trying to use them. The ports are:

H89

Port

H8

H47 Floppy Disk
H17 Floppy Disk
Reserved

H88-3 Alternate Terminal
Reserved

H14 Line Printer
Console Terminal
Reserved

HB88-5 Cassette
Reserved
Reserved
Reserved

170-173Q (078-07BH)
174-177Q (07C-07FH)
300-307Q (0C0-0C7H)
320-327Q (0D0-0D7H)
330-337Q (0D8-0DFH)
340-347Q (OEO0-0E7H)
350-357Q (OEB-OEFH)
360-361Q (OF0-OF 1H)
370-371Q (OF8-OF9H)
372-373Q (OF2-OFBH)
374-375Q (OFC-OFDH)
376-377Q (OFE-OFFH)

H47 Floppy Disk

H17 Floppy Disk
Reserved

H8-4 Alternate Terminal
Reserved

H8-4 Line Printer

H8-4 Console Terminal
H8 Front Panel

HB8-5 Cassette

Console Terminal

H8-5 Alternate Terminal
Reserved

Since the TT: and SY: drivers are permanently resident, it is vital that you do not

disturb the TT: and SY: ports. Disturbing the SY: port will destroy your disks.

Disturbing the TT: ports will damage the console driver package. The console
driver package communicates with the console device at interrupt time, so you
will not be able to detect character entry by examining the console status bits.
HDOS provides you with a facility to test the presence of a console character.

Interrupt Environment

HDOS is an interrupt-driven system, so be careful how you handle interrupts.
Your program must not turn off interrupts via the DI instruction for other than
very short periods of time. The H17 device driver makes use of the front panel
clock interrupts, so you must not disable them, either directly via port 360Q or by
the PAM-8 control word. Likewise, console interrupts are used by the system
console handler, and should not be disturbed. HDOS does not currently support
any interrupt-driven device drivers, but programs may still make use of inter-
rupts. There are two major trouble areas in this: choosing a vector, and discon-
tinuing the interrupts.

INTERRUPT VECTORS

Of the eight interrupt vectors available in an 8080A, HDOS makes use of six or
seven of them. In brief:

0 — Master Clear. Returns control to PAM-8

1 — Clock Interrupts

2 — Single-Step. Used by DBUG. May be used by user program when
not running DBUG. '

3 — Console Interrupts.

4 — Reserved for Real-Time Clock (if implemented)

5 — Reserved for H47 (if implemented)

6 — Available for user programs.

7 — HDOS SCALL vector.

Setup the vectors by storing a JMP to your interrupt service routine in the PAM-8
“.UIVEC” area, as discussed in the PAM-8 Manual.

»

DISCONTINUING INTERRUPTS

When a user program causes a device to start issuing interrupts, it must some-
how turn off that device before control returns to the system. HDOS will not alter
the interrupt vector JMP) in PAM-8’s “.UIVEC”, and an interrupt occurring after
your program has been removed will be tragic. Also note that as a user, you must
be careful of typing CTL-Z, as this can kill your program before it can shut down
any interrupting devices.

NOTE: You must turn off the device interrupts before surrendering control to
HDOS. Simply replacing your interrupt vector with EI and RET instructions will
cause disaster, since the interrupting device will continue to request interrupts
until it is serviced, and HDOS does not know how to service it. Your machine
will then hang in an interrupt service loop.

CPU Environment

After loading your program, HDOS. transfers control to the program’s entry
point. This is the address specified in the END (assembler) pseudo.

Channel Environment

HDOS allows user programs to communicate with file-oriented devices via
“channels”. These channels are discussed in Part 3. In all cases, channel -1
(377Q) is open for read access on the device and file that the program was loaded
from. This is done so you can conveniently load overlays without having to
know under what name and disk drive your program was run from. If your
program was run in response to a RUN command, all other channels will be
closed. If your program was run in response to a ““.LINK” SCALL, then the other
channels will remain as they were set up by the program which issued the
“.LINK”.

10

Part 3

I/0 CHANNELS

All file 1/O in the HDOS system is done via I/O channels. “File I/O” refers to
normal I/O done to HDOS devices via HDOS device drivers. N aturally, a program
may control its “‘private devices” (ones not suitable for device drivers) in any
way it pleases.

In general, the sequence for doing file /O is to issue an ““open” SCALL (.OPENR,
OPENW, or .OPENU) to HDOS, supplying HDOS with the file descriptor as an
ASCII string. HDOS will parse the string, load the device driver (if necessary),
and open the file. When you issue the “open” SCALL, you supply a channel
number from -1 (i.e., 377Q) to 5. This channel number must not already be in
use. This means that you may open a maximum of seven files simultaneously.

Once the file has been opened, you can perform I/0O by using the . READ, .WRITE,
and .POSIT SCALLs. Make these requests by suppling HDOS with the channel
number of the file you want read or written. After the initial open, you no longer
need the file descriptor string. Should you suddenly need that file name, say to
issue an error message, HDOS provides the NAME SCALL torecall the file name
used when that channel was opened.

All disk fileI/O is done in multiples of 256 bytes, the system sector size. As many
bytes as desired may be transferred at one time, so long as the count is an integer
multiple of 256. HDOS normally performs I/O in a sequential fashion. For
example, if your program is reading from a disk file one sector (256 bytes) at a
time, the first read will return sector 0, the next read sector 1, etc. For each open
channel, HDOS maintains a “‘sector cursor”, which indicates which sector in the
file is next to be read or written. HDOS does provide the facility, via .POSIT, to
randomly read and write sectors to/from a disk file by changing the value of this
“sector cursor”.

When you are done with the file, use the .CLOSE SCALL, once more supplying
the channel number. HDOS will close the file and thus make that channel
available for another open.
\

NOTE: Although channel —1 can be used as a general purpose I/O channel, its
use should normally be avoided. It is already open when your program is started;
youmust close it before you can open a file on it. Also, channel —1 will be cleared
(seethe .CLEAR SCALL)if you use the .LINK SCALL. Thus any file open for write
on channel —1 at that time will be lost.

|11

Part 4

PRECAUTIONS

We have discussed earlier in this document that the HDOS system does not
provide any hardware protection, and thus is vulnerable to errors in assembly
language programs. This segment discusses the “Do’s and Dont’s” of assembly
language programming in more detail.

Memory Precautions

The two most important areas of memory precautions are: respect for the user
program area, and maintenance of the stack.

USER MEMORY AREA

A user program must never write into memory outside of its domain. This
“domain” consists of the memory area from 042200A (USERFWA] to the LWA of
the user program area. When your program is first loaded, this LWA is set to the
end of your program and its declared data areas (via DS, DW, or DB; not EQU).
The “.SETTOP” SCALL is available to adjust this limit. User programs may
adjust this limit as often as they like (see the .SETTOP SCALL documentation).
Note that HDOS may use all memory after this limit for a storage area, which is
going to cause trouble if your routine also tries to access it.

STACK MAINTENANCE

Since the HDOS system uses interrupts, and requires interrupts to handle the
console, the H17 disk, and the H47 disk, your program may beinterrupted at any
time. You must always maintain a valid stack pointer, with at least 64 free bytes
on the top of that stack. If you plan to fill the system stack area, then you should
ORG your program above 042200A and set the stack pointer higher, giving
yourself and HDOS a bigger stack. HDOS does not use a separate stack; it uses the
top of the user program stack.

I/O Precautions

As we discussed earlier, I/O precautions consist of keeping your INs and OUTs to
yourself. Don’t disturb the H17, and don’t disturb the console ports! Also, be
careful what you do with the front panel ports, either directly or indirectly via
PAM-8. These ports control the clock interrupts, which are necessary forthe H17
device driver.

12

Interrupt Precautions

When you are using interrupts, you must use only the available vectors, which
are 4 (if you are not using a real-time clock), 5 (if you are not using an H47),and 6.
You may also use 2, if you will not be using DBUG. Before you enable your
interrupting device, install the service vector in the appropriate *“.UIVEC” loca-
tion.

Most importantly, turn off the interrupting device so it cannot issue any more
interrupts before you either return control to HDOS, or CTL-Z out of the program.
If an interrupt occurs when your program is no longer there to service it, the
operating system, and possibly the information on your diskettes, will be de-
stroyed!

Since console and clock interrupts may occur at any time, your program should
not turn off interrupts (via DI) except for very short periods of time.

Finally, HDOS uses the clock interrupts, so you should not overlay its interrupt
vector. Programs desiring clock service should use all means possible to make do
with the interrupt counter (PAM-8’s .TICCNT). If you absolutely must have clock
interrupts, save the address in the clock vector, install your own vector, and have
your service routine exit the interrupt by jumping to the HDOS vector address.
HDOS uses the clock interrupts for H17 timings; disturbing it might cause your
motors to keep spinning, prematurely wearing the motors. Or worse, you might
defeat the H17 driver’s head settle delays, and cause a bad sector to be written.

CPU Precautions

This precaution should be familiar to all assembly language programmers: Don’t
let the CPU execute undefined memory locations. Should such a thing occur, itis
unlikely that your disks will be damaged, due to some safeguards built into the
system. However, you should immediately re-boot, and not try to warm-start the
system, since the CPU may have damaged tables in memory. Remember, the
HDOS system uses a sophisticated linked-allocation scheme to handle disk files.
Damaging that table, or damaging the directory or allocation areas on the disk,
can cause all files on that disk to become lost, not just one or two!

J

If you are debugging a program which consistently vectors into undefined
memory locations, then it is best to use write-protect labels on the disks. Then,
when you crash, you can quickly restart by using PAM-8 to start at the HDOS
cold-start address, 040100A. Entering at this address should return you to HDOS
command mode. Do this only if you have your disks write-protected. Otherwise
it is too risky. Usually, when your program runs wild, the CPU ends up at some
high memory location where you don’t have any memory. The computer
hardware generates @ for nonexistent memory, so you will quickly run througha
long string of NOP’s, until you wrap from 377377A to 000000A, which is the
master clear restart address for PAM-8. If you display the PC and find it set to
your high memory address, then you probably took this “circumpolar” route
into PAM-8.

Debugging Hints

The best way to debug programs is to ORG them above DBUG, and test them

using DBUG. After entering DBUG, use the LOAD command to load in the
program under test. You can then break-point and single step through your

program. Do not single step through an HDOS SCALL, or you may damage the
disk.

After the program seems to be working, ORG it back down to 042200A, (or
wherever) and reassemble.

14 |

Part 5

RESIDENT SCALLSs

This segment covers those HDOS service requests (called SCALLs) which are
permanently resident in memory. The use of these SCALLs will not cause an
overlay to be loaded.

In general, a SCALL (Sys CALL) consists of a
RST 7

instruction followed by a byte containing the request number. Most SCALLs
require that some registers be set up before the call. Likewise, most may alter the
registers, so a program should save any registers which it wants to preserve.

The ASM assembler has a special opcode for SCALLS:
SCALL code

where ““code” is the number of the request. This statement generates the equiva-
lent of

DB 377Q, code

We recommend that you use the HOSDEF.ACM file to include these definitions.
In general, it is advisable to use the recommended symbol definitions for all
references to HDOS, and include them in one or more XTEXT decks. This will
make programming easier for you, and guarantee compatibility with future
releases. Although we will make every effort to keep binary compatibility, we
may need to revert to “assembly language compatability,” in which case you
may have to change some HDOS symbol values and reassemble.

J

|15

U ~EXIT

* o x EXIT — EXIT USER PROGRAM.

*

* EXIT IS CALLED TO RETURN CONTROL TO THE SYSTEM COMMAND
* PROGRAM.

*

* MVI A,FLAG {see below)

* SCALL .EXIT

*

* FOR EITHER EXIT, THE CONTROL CHARACTER VECTORS

* (SET BY .CTLC) ARE CLEARED.

*

* IN ADDITION, THE ABORT EXIT RESETS THE DISK AND

* CONSOLE I/0 DRIVERS.

*

* ENTRY (4) = FLAG (@ = NORMAL, 1 = ABORT)
* EXIT -IF- [SYSTEM DISK IS STILL MOUNTED]
* —0Oor-—

* [STAND-ALONE IS SET]

* ~THEN- EXIT TO "SYSCMD.SYS"

* ~ELSE- EXIT TO REBOOT CODE

*

The .EXIT SCALL is the proper way for a program to return control to HDOS. In
O any mode, .EXIT will close all open /O channels. This action is equivalent to that
of the .CLEAR SCALL. It is best for a program to close or clear its own channels

before incurring .EXIT, as future releases may differ in this action.

It should not be necessary for a program to use abort exit unless some process was
being used which affected the state of the console or disk I/O ports. The use of
such processes is not recommended.

If SY®: has been dismounted and the STAND-ALONE flag is not set, HDOS exits
to re-boot. If the STAND-ALONE flag has been set and no disk is mounted on
SY@:, or SYSCMD.SYS is not found on the disk mounted on SY#:, HDOS exits to
re-boot. Thus, the only way for a program to return to the command level once
SY#: has been dismounted and remounted is for the STAND-ALONE flag to have
been previously set via the SET command, and for the disk mounted on SY@: to
have SYSCMD.SYS on it.

** EXAMPLES:

ALDONE MVI A,D FLAG NORMAL EXIT
SCALL .EXIT

ABTXIT MVI Al FLAG ABORT EXIT
SCALL .EXIT

o NOTE: We do not encourage this re-entrance to HDOS, and it may not be supported in future releases.

16 |

.SCIN — System Console INput

*xx SCIN - SYSTEM CONSOLE INPUT.

*

* SCIN TAKES A SINGLE CHARACTER FROM THE CNSOLE INPUT
* BUFFER, IF ANY ARE AVAILABLE.

*

* L1 SCALL .SCIN

* Jc L1 CHARACTER NOT READY
¥*

* ENTRY NONE

* EXIT 'C' SET IF NO CHARACTER

* 'C' CLEAR IF CHARACTER

* (A) =CHARACTER

*

USES AF

This command is relatively obvious, and is also explained in the HEATH HDOS
Software Reference Manual. Note that you can use the .CONSL SCALL to set
console mode bits.

** EXAMPLES:

RDCHAR SCALL .SCIN TRY TO READ CHARACTER
JC RDCHAR NONE READY YET
RET EXIT, (A) = CHARACTER

NOTE: Detailed examples of .SCIN are shown in the HEATH HDOS Manual.

17

CJ .SCOUT — System Console OUTput

o SCOUT — SYSTEM CONSOLE OUTPUT.

*

* SCOUT OUTPUTS A SINGLE CHARACTER TO THE CONSOLE. CURSOR
* POSITIONING IS KEPT TRACK OF. A "NL" CHARACTER

* INDICATES A NEW LINE. "CR" AND "LF" CHARACTERS SHOULD
* NOT BE USED.

*

* MVI A, CHAR

* SCALL .SCOUT

*

* ENTRY (A) = CHARACTER

* EXIT (A) = CHARACTER

*

USES NONE

This command is relatively obvious, and is also explained in the HEATH HDOS
Software Reference Manual.

o *% EXAMPLES :
:“ MVI A, et l
SCALL .SCOUT TYPE AN ASTERISK ON THE CONSOLE

NOTE: Further examples of .SCOUT are shown in the HEATH HDOS Manual.

18|

.READ — Read From File

Use the .READ SCALL to read data from an open channel. The channel must
already have been opened via a .OPENR or .OPENU SCALL (except for channel
—1, as noted previously).

Currently, all device I/O under HDOS (with the exception of the console, via the
.SCIN and .SCOUT calls) is “block mode”. This means that you must read or
write to the device in multiples of 256 bytes. If you cannot fill the last block, you
should pad it out with zero bytes. The last block in all HDOS source files is
padded out to 256 characters with 00 bytes.

The quoted C in the following example indicates the carry flag. This SCALL, as
in all others in HDOS, returns with the carry flag set if an error or abnormal
condition has occurred. The most common “error” for the .READ command is
“end-of-file”. The convention used above and throughout this document is that
exit conditions which are predicated on the setting of a flag are discussed
directly under that flag, indented one space. Thus, the (BC) register pair contains
the unused byte count if, and only if, the ‘C’ flag is set. If ‘C’ is clear, then all of the
bytes were read, and (BC) contains garbage. Thus, the (BC) and (DE) registers
contain meaningful information only when an error condition occurred, which
is normally an “‘end-of-file”’. The error codes returned by HDOS are defined in
Part 7. This is simply a condensation of the error messages discussed in the
HEATH HDOS Software Reference Manual. Note that you can use the .ERROR
SCALL to look up an explanatory message.

*ex READ - PROCESS READ SCALL.

*

* READ PROCESSES READ SCALLS. IF A SERIAL DEVICE, PASS TO
* DRIVER. IF A STORAGE DEVICE, HANDLE STORAGE MAPPING.
*

* MVI A, CHAN

* LXI B, COUNT MUST BE MULTIPLE OF 256

* LXI D,ADDR

* SCALL .READ READ DATA FROM FILE

*

* ENTRY (A) = I/O CHANNEL/NUMBER

* (B) = COUNT OF 256-BYTE BLOCKS TO TRANSFER

* (C) =0

* (DE) = DATA ADDRESS

* EXIT 'C' CLEAR IF ALL OK

* 'C' SET IF ERROR

* (A) = ERROR CODE

* (BC) = UNUSED TRANSFER COUNT

* (DE) = NEXT UNUSED ADDRESS

*

USES ALL

|19

NOTE: All read operations must be for integer multiples of 256 bytes. Thus, the
last sector in a file may have been padded with 00 bytes. All ASCII (coded) files in
HDOS are zero-byte filled in the last sector (if they need it). A 00 byte is
considered a NULL character, and should always be ignored when encountered

in an ASCII file.

*% EXAMPLES:

READ MVI A1l
LXI B,256
LXI D,BUFFER
SCALL .READ
JC READ1
LXI B,256
JMP READ2

* HAVE

READ1 CPI EC.EOF
JNE ERROR
STA EOFFLG
LXI H,256
MOV AL
SuUB C
MOV C.A
MOV AH
SBB B
MOV B.A

* READ COMPLETE.

READZ2

BUFFER DS 256

READ FROM ALREADY OPEN CHANNEL 1
READ ONE SECTOR

READ IT
ERROR
READ 256 BYTES

ERROR. SEE IF EOF, OR SOMETHING WORSE

SEE IF JUST EOF

HAVE SERIOUS ERROR

FLAG HAVE SEEN EOF

(HL) = ORIGINAL STARTING COUNT

(BC) = 256—-REMCNT = AMOUNT READ

(BC) = BYTES AVAILABLE

SECTOR BUFFER

20|

.WRITE — Write to Open File J

* % %

* ok ok ok ok ok ok ok ok 0k %k k %k Kk %k

WRITE ~ PROCESS WRITE SCALL.

MVI
LXI
LXI
SCALL

ENTRY

EXIT

USES

A, CHAN

B, COUNT MUST BE MULTIPLE OF 256
D, ADDR
.WRITE WRITE DATA TO CHANNEL

(A) = CHANNEL #*
(BC) = DATA COUNT
(DE) = DATA ADDRESS
"C' CLEAR IF ALL OK
'C' SET IF ERROR
(BC) = UNUSED TRANSFER COUNT
(DE) = NEXT UNUSED ADDRESS
(A) = ERROR CODE
ALL

The .WRITE SCALL is very similar to the .READ call, except that it writes the
data to the file. Once again, the count in (BC) must be an integral multiple of 256.

The most typical error returned by .WRITE is “NO ROOM ON MEDIA”.

J

NOTE: All write operations must be for integer multiples of 256 bytes. Thus, the
last sector in a file may have to be filled out to 256 bytes. All ASCII (coded) filesin
HDOS are zero-byte filled in the last sector (if they need it). A 00 byte is
considered a NULL character, and should always be ignored when encountered
in an ASCII file.

WRIDAT

BUFFER

EXAMPLES:

MVI
LXI
LXI
SCALL
JC

DS

A1 CHANNEL 1 ALREADY OPEN
B,512 WRITE 512 BYTES
D,BUFFER

.WRITE WRITE IT

ERROR SERIOUS ERROR

512 BUFFER AREA FOR WRITE

|21

(‘J .PRINT — Print Line on System Console

¥ PRINT - PRINT CONSOLE LINE.

*

* PRINT CAUSES A CODED LINE TO BE PRINTED AT THE CONSOLE.
*

* LXI H, LINEADDR

* SCALL . PRINT

*

* THE LAST CHARACTER IN THE LINE SHOULD HAVE THE
* 200Q BIT SET.

*

* ENTRY (HL) = LINE ADDRESS

* EXIT (HL) = LWA OF MESSAGE +1

*

USES AF,HL

PRINT is an efficient and convenient way to print lines on the system console.
Another good way is to use the subroutine “$TYPTX"”, as shown in Part 8. Note
that the parity bit (bit 200Q) is set over the last character to be printed to notify the
end-of-line to HDOS. Remember, use the NL character (012Q, same as LF) for a
CRLF sequence. HDOS will automatically insert the required number of PAD
characters for the console. If you prefer, you can include the NULL (00) character
in a print line. It is ignored, does not cause a delay in console output, and thus
cannot be used as a PAD character.

** EXAMPLES:
LXI H,MSGA TYPE OUT STARTUP MESSAGE
SCALL .PRINT
PROMPT LXI H, MSGB TYPE OUT PROMPT MESSAGE
SCALL .PRINT
REACHA SCALL .SCIN READ REPLY....
MSGA DB 12Q, 'SET OPTIONS:
DB 12Q
DB 12Q, 'HELP - TYPE THIS LIST'
DB 12Q, 'CRASH — DESTROY DISK SURFACE'
DB 12Q+200Q NEW LINE, END OF PRINT
MSGB DB 12Q, 'YOUR COMMAND?',' '+200Q

22

.CONSL — Set Console Mode Bits

% CONSL - SET AND CLEAR CONSOLE FLAGS.

CONSL IS CALLED TO SET, CLEAR, OR READ BITS IN THE
VARIOUS CONSOLE FLAGS.

THE CALLER PASSES AN INDEX INTO THE PROPER FLAG, A
MASK TO INDICATE THE AFFECTED BITS, AND A SET OF NEW
VALUES FOR THOSE BITS.

INDEX =

o] I.CSLMD

1 I.CONTY

2 I.CUSOR

3 I.CONWI

4 I.CONFL
ENTRY (A) = INDEX

(B) = NEW VALUES
(C) MASK ('1' BIT FOR EVERY BIT TO CHANGE)
EXIT 'C' CLEAR IF NO ERROR
(A) = NEW VALUE
'C' SET IF ERROR
(A) = ERROR CODE
USES ALL

Il

* ¥ ¥ k k k >k ¥ *kx *k *k k k k *k * * ok * %k *k * Kk *k

The .CONSL SCALL is used to read and write the console control bits and bytes.
These bytes are available directly in memory, but we recommend that you access
them via the .CONSL command to guarantee synchronization and upward com-
patibility with future releases.

The caller supplies HDOS with three values: the index of the byte to be read
and/or written, the bits to be altered, and the new bit values. The technique of
supplying a “bits-affected”” mask and a “new value” pattern allows you to alter
just one bit in a byte, without having to know the values of the other bits in the
byte. Since the console is an interrupt-responsive device, this also avoids syn-
chronization probems. There are five bytes which can be read and/or written via
the .CONSL function.

I.CSLMD - Console Mode

I.CSLMD EQU 0] I.CSLMD IS FIRST BYTE
CSL.ECH EQU 10000000B SUPPRESS ECHO
CSL.WRP EQU 00000010B WRAP LINES AT WIDTH

CSL.CHR EQU 00000001B OPERATE IN CHARACTER MODE

|23

These three bits are used to affect the mode in which HDOS handles characters
typed at the console. They are documented in more detail in the HDOS Software
Reference Manual.

I.CONTY - Console Type

I.CONTY EQU 1 I.CONTY IS 2ND BYTE

CTP.BKS EQU 10000000B TERMINAL PROCESSES BACKSPACES
CTP.MLI EQU 00100000B MAP LOWER CASE TO UPPER ON INPUT
CTP.MLO EQU 00010000B MAP LOWER CASE TO UPPER ON OUTPUT
CTP.2SB EQU 00001000B TERMINAL NEEDS TWC STOP BITS
CTP.BKM EQU 00000010B MAP BKSP (UPON INPUT) TO RUBOUT
CTP.TAB EQU 00000001B TERMINAL SUPPORTS TAB CHARACTERS

The bits in the .CONTY byte are used to describe the console’s hardware
characteristics. These bits are all discussed under the SET command section in
the HEATH HDOS Software Reference Manual.

I.CUSOR - Console Cursor Position

I.CUSOR EQU 2 I.CUSOR IS 3RD BYTE

The L.CUSOR byte contains the current cursor position of the console terminal
cursor. Immediately after a New-Line, this byte contains 001.

I.CONWI - Console Width

I.CONWI EQU 3 I.CONWI IS 4TH BYTE

The . CONWI byte contains the current console width. This value is documented
under the SET command in the HDOS Software Reference Manual. In brief,
when the cursor reaches this value, HDOS automatically generates an NL. You
can effectively disable this option by setting the width to 255.

24 |

I.CONFL - Console Flags

I.CONFL EQU 4 I.CONFL IS 5TH BYTE
CO.FLG EQU D00000D1B CTL-0 FLAG
CS.FLG EQU 10000000B CTL-S FLAG

The I.CONFL byte contains the current setting of the console CTL-O and CTL-S
bytes. A user program may find it useful to note that the user has typed CTL-S or
CTL-O.In addition, your program may want to clear the CTL-O flag immediately
before an input prompt is typed, so that the typing of the prompt is guaranteed.

NOTE: If the CTL-S flag is set, and your program issues a character to the console
(via.SCOUT or .PRINT) then your program will hang up in HDOS waiting for the
CTL-S flag to clear. There is no way to do a “conditional’” character type-out.
Programs which do not want to hang up must check the CTL-S flag before every
PRINT or .SCOUT, and trust to luck that your user doesn’t type the CTL-S
between the .CONSL and the .SCOUT.

|25

* *

KEY

BKS

EXAMPLES:

SET CHARACTER MODE, NO ECHO

MVI A,I.CSLMD (A) = BYTE INDEX
MVI B, CSL . ECH+CSL. CHR SET BOTH BITS
MVI C,CSL.ECH+CSL. CHR AFFECT BOTH BITS

SCALL . CONSL

SET MAP LOWER CASE TO UPPER, CLEAR BACKSPACE ON 'RUBOUT'

MVI A,I.CONTY (A) = BYTE INDEX
MVI B,CTP.MLI+CTP.MLO SET MAP LOWER CASE BITS
MVI C,CTP.MLI+CTP.MLO+CTP.BKS SET MAP, CLEAR

SCALL .CONSL

READ CONSOLE CURSOR POSITION

MVI A,TI.CUSOR

MVI c,0 AFFECT NO BITS, (B) MEANINGLESS

SCALL .CONSL AFFECT .NOTHING, JUST GET NEW
(SAME AS OLD) VALUE

CPI 1 SEE IF CURSOR OVER COLUMN 1

SET CONSOLE WIDTH

MVI A,I.CONWI

MVI B, 80 SET 80 COLUMNS

MVI C,377Q AFFECT FULL BYTE

SCALL . CONSL SET WIDTH

.CLRCO — Clear Console Buffer

* CLRCO - CLEAR CONSOLE BUFFERS.

*

* CLRCO CLEARS THE CONSOLE TYPE-AHEAD BUFFER.
* CTL-0 AND CTL-S FLAGS ARE ALSO CLEARED.

*

* ENTRY NONE

* " EXIT NONE

* USES ALL

The .CLRCO SCALL is used to clear the console buffer, and the console CTL-S
and CTL-O flags. HDOS contains a console “type-ahead” buffer, so the user may
type commands before a program asks to read from the console. All typed text is
stored in the type-ahead buffer; the .SCIN SCALL reads the characters from the
buffer. The special control characters; CTL-A, CTL-B, and CTL-C; are not stored
in the type-ahead buffer; but instead, cause an interrupt to a user service routine
(if you set one up via the .CTLC SCALL). Often, a user has typed a partial line
before he typed the CTL-C (or CTL-A or CTL-B). You can use the .CLRCO
function to clear out any unwanted type-ahead.

NOTE: Issuing the .CLRCO function does not cause a New-Line to be sent to the
console. The user is given no indication that the characters he may have typed in

have been discarded. Your program should issue a new prompt immediately
after the .CLRCO function, to make things clear to the user.

i EXAMPLE: CLEANUP AFTER CTL—C

(Part 6 discusses intercepting CTL-C's)

* ASSUME CONTROL PASSES HERE AT CTL-C

CCHIT LXI H,CCHITA TYPE "C
SCALL .PRINT ACKNOWLEDGE CTL~-C, SETUP NEW LINE
SCALL .CLRCO CLEAR TYPE AHEAD

CCHITA DB '"CY,212Q “C WITH NEW-LINE

J

| 27

~

.LOADO — Load Overlay

*en LOADO — LOAD SPECIFIED OVERLAY

*

* LOADO LOADS THE OVERLAY SPECIFIED THROUGH THE INDEX
*

* OVERLAY INDEX

*

* HDOSOVLE P

* HDOSOVL1 1

*

* ENTRY (A) = OVERLAY INDEX

* EXIT (PSW) = 'C' CLEAR IF NO ERROR
* 'C' SET IF ERROR

* (A) = ERROR CODE

* USES ALL

The .LOADO system call is used to force an overlay load. Before you dismount

the system disk (SY#:),you must load both overlays “0” and “1”. Quite simply,

once the system disk has been dismounted, subsequent diskettes are only data

diskettes. That is, the overlays may not be loaded from them. A sample program
O fragment follows, and further examples may be found in Part 8.

NOTE: This system call may generate an error if enough memory is not available
for both your program and the indicated overlay. In such a case, either the size of
your program must somehow be reduced, or you will have to forego the overlay
loading.

*% Examples:

MVI A,0VLO :
SCALL .LOADO LOAD 'HDOSOVL{.SYS'

JC FATAL Error on attempted load
MVI A,0VL1

SCALL .LOADO LOAD 'HDOSOVL1.SYS'

JC FATAL Error on attempted load

28

.VERS — HDOS Version Number

*xx VERS - RETURN HDOS VERSION NUMBER

*

* VERS RETURNS THE HDOS VERSION NUMBER AS A ONE—BYTE

* BCD NUMBER. A DECIMAL IS ASSUMED BETWEEN THE HIGH

* AND LOW ORDER NYBBLES.

*

* ENTRY NONE

* EXIT (PSW) = 'C' CLEAR IF NO ERROR

* (AY = VERSION NUMBER

* 'C' SET IF ERROR (VERS < 1.5)
(A) = ERROR CODE (EC.ILC)

* USES AF

The .VERS system call returns the current version number of HDOS. The primary
use of this system call is to ascertain under which version of HDOS the program
is running. If the program determines that the version does not support these
new calls, it may exit gracefully with an error message. Versions earlier than 1.5
may be distinguished because they will return an invalid system call.

The version number is returned as one BCD byte. That is, version 1.5 will return
21, or 25Q), or 015H. (See the HDOS common deck listing for an example of the

definition format).

SCALL
JC
CPI
JNZ

BADVER LXI
SCALL

MESSAG DB
DB

.VERS

BADVER No version system call
VERS

BADVER Invalid version
B,MESSAG

.PRINT *

12Q,'This version of HDOS does not support'
'the required system calls.', 12Q+200Q

|29

Part 6

OVERLAID SCALLs

This section discusses those HDOS SCALLs which are resident in the overlaid
portion of HDOS.

Overlay Management

When an overlaid request is issued, HDOS checks the status of the overlay area. If
it is already in memory, the request is processed. If it is not in memory, HDOS
then checks the LWA of your user program. If there is not enough room past the
end of your user LWA, then some of the last bytes in the user memory area are
swapped to disk. Then the overlay is loaded and the function performed. After
the function is performed, HDOS will reload any paged-out portion of your
program.

This overlay structure affects assembly language programmers in two ways:

1. Arguments passed to HDOS for SCALL requests should not be too high
up in user memory, as they might get swapped to the disk when the
overlay is loaded.

2. In program where you plan on doing many overlay SCALLs, try to
limit your memory requests so that the overlay area can remain resi-
dent. Currently, the best way of doing this is to use the .SETTOP
SCALL to find the maximum allowable allocation; then subtract the
overlay size, kept in HDOS’s low memory (see Part 7). Also subtract a
10-byte margin of error. You may request memory up to this new limit
without causing the overlay area to be swapped out.

30 |

File Names

Since many overlaid SCALLs require file names as arguments, this is a good time
to discuss HDOS file names.

In general, when you supply a file name as an argument to a SCALL, you point to
an ASCII string containing the file descriptor just as the user would have typed it.
The line should be terminated with a delimiter of some sort, usually a comma,
blank, or @@ character. For example, the following are examples of valid file
names:;

DB 'SY@:MYFILE.TMP' &
DB "TEMP', @
DB 'BASIC.SAV,' (',' delimits name)

Of course, these names are all shown being assembled into the program. You
might just as well have read them from the user’s console, or generated the names
somehow. They must not have embedded @@ bytes or blanks in the names.

Also note that some of the examples shown do not specifiy an extension or a
device. All SCALLs that take file names as arguments also require a default
block. This block is a 6-byte area, containing the default device specification and
a default extension specification. A typical default block is:

DB 'sygTmp’

which yields a default device of SY@: and extension of TMP. Another common
default block is:

DB 'sYg . g.p.¢

which indicates that there is no default extension. File descriptors not specifying
a name will generate a file with a null extension.

J

(U .OPENR — Open File for Read

* % ¥

*x %k % % %X % % * % % ok ¥ %X * * *x X *x X

OPENR — OPENR SCALL PROCESSOR.

OPENR IS CALLED TO OPEN A CHANNEL FOR