1.2 DDT Prompt Invocation Method

You respond to the system prompt with the following command:

A>DDT RETURN

The DDT utility will identify itself with the following display:

DDT VERS n.n

where “n.n” is the version number; and

6 3

where (the hyphen character) is the DDT prompt, at which you

can enter special DDT commands.

To load a file from the default disk into memory under this invocation
method, you must now make the following entries, in order: the letter
I, (no space), the complete file name of the program to be loaded, a
carriage return, the letter R, and another carriage return.

The DDT utility will Insert the name of the program into memory,
Read the named program into memory, and display values for both
the “NEXT” available address and the “PC” program counter. For exam-
ple, if you desire to debug the program file named “PROGRAM.HEX”,
the console display of these transactions might appear as follows:

a>DDT RETURN

DDT VERS 2.2

-IPROGRAM.HEX RETURN
-R RETURN

NEXT PC

3E80 0100

Where “3E80” is the next available memory address after the end of
the program (or the address after the last address occupied by
the loaded program);

where “0100” is the current value of the program counter (or the first
memory address occupied by the program); and

s 7

where (the hyphen character) is the DDT prompt, at which you

can enter special DDT commands.

Page 2-121

Page 2-122

LOADING A PROGRAM FROM A NON-DEFAULT DRIVE

Using the second DDT invocation method, you can access a file from
a non-default disk by doing the following, in order:

Enter the letter I, the complete file name of the program to be
loaded, and a carriage return.

Enter the character string S5C and a carriage return. This entry
will produce a six-character display.

Enter the two-digit drive number for the drive containing the pro-
gram that is to be debugged, and a carriage return. (See the table
below to find the drive number that corresponds to the appropriate
drive letter. This table will not be displayed on the console.)

Drive Number Drive Letter
00 DEFAULT
01 A
02 B
03 C
04 D
05 E
06 F

NOTE: “DEFAULT” is the drive logged before DDT invocation.

The drive number you entered will be displayed on the right of
the six-digit display, and a second six-digit display will appear
beneath.

Enter a . (period) and a carriage return. This entry will be displayed
on the right of the second six-digit display.

Enter the letter R and a carriage return. DDT will read the program
file into memory, and display values for both the “NEXT” available
address and the “PC” program counter.

Page 2-123

For instance, to access the file named “PROGRAM.HEX” from the disk
within non-default drive B (02), you must interact with DDT as shown
in the following display:

A>DDT RETURN

DDT VERS 2.2

-JIPROGRAM.HEX RETURN
-S5C RETURN

005¢c 00 02 RETURN

005D 57 . RETURN

-R RETURN

NEXT PC

3880 0100

2 SAVING A DEBUGGED PROGRAM

You can preserve the results of a debugging session by copying a block
of data from the Transient Program Area (TPA) to a disk file. The SAVE
resident command will assist in this task. SAVE copies a user-specified
number of pages from the TPA to a user-specified file name on a disk.

To SAVE a program that has been loaded into memory and debugged
by DDT, first exit from the DDT utility to the operating system. If the
exit is performed properly, the image of the program in the TPA will
remain undisturbed as SAVE copies from it to a disk file.

You can exit from the DDT utility by either of the following two
methods:

® Performing a Warm Boot — Any time the DDT hyphen (—) prompt
is displayed, enter a CTRL-C (by pressing the C key while holding
down the CTRL key). CP/M will display the system prompt.

® Jumping to the Operating System’s Execution Address — Any time
the DDT hyphen (—) prompt is displayed, you can trigger execu-
tion of the operating system, by entering the DDT command GO
(where “0” is zero). This command sends the program counter
to computer memory 0000H (zero), where the operating system
resides. CP/M will display the system prompt.

Page 2-124

You must proceed immediately to entry of the SAVE command. The
SAVE command is entered in the form:

A>SAVE {pages} {file name} RETURN

Where {pages} are 256-byte units of data that are expressed in decimal
(not hexadecimal) numerals, and

where {file name} specifies the file name under which you wishes to
store the results of the debugging session.

You can SAVE the entire program by determining the (decimal) number
of pages between the “pppp” value and the “aaaa” value displayed
when DDT initially loads the program into the TPA, as shown:

NEXT PC
aaaa pppp

Unless the program has been moved from the beginning of the TPA,
the two left-hand digits in the “aaaa” value will be the hexadecimal
number of pages the program occupies, as long as the two right-hand
digits are not zeros. If the two right-hand digits are zeros, one should
be subtracted from this total to determine the number of hexadecimal
pages. In either case, the hexadecimal number of pages should be con-
verted to a decimal number suitable for the SAVE command.

3 DDT COMMANDS

The DDT utility has its own assortment of commands. They are entered
in response to the DDT hyphen (-) prompt. DDT command lines begin
with a single command letter. These command letters are defined in
the following list:

A Assemble: Assembly language mnemonics are inserted

D Display: Display memory contents in hexadecimal an
ASCII form

Fill: Fill a block of memory with a specified data constant
Go: Go to specified address to run a program

Hex: Hexadecimal computation of sums and differences
Insert: Insert file name into file control block

List: List assembly language mnemonics of a program
Move:Move a data block

Read: Read a file into memory from disk

Substitute: Substitute hexadecimal values

Trace: Trace program execution

Untrace: Untrace program execution

eXamine: Examine or change registers or flags

XocHwEZIE=omo™

Most of these command letters can be followed by parameters such
as hexadecimal values or a file name. All DDT command lines must
end with a carriage return.

When hexadecimal parameters are used, these values consist of one
to four digits. (Longer numbers are automatically truncated on the
right.) One, two, or three such values can be entered in some command
lines. Values are separated by commas or single blank spaces.

Only one DDT command can be entered in response to a single DDT
hyphen (-) prompt. Each DDT command line, however, can be com-
posed using most of the same line editing keys and techniques as are
used for commands entered at the CP/M system prompt.

No DDT command line can exceed 32 characters in length. If a thirty-
third character is entered, it is interpreted as a carriage return and
execution begins based on the first 32 characters in the command line.

Page 2-125

Page 2-126

Many DDT commands operate under a “CPU state” which corresponds
to the program being tested. The CPU state holds the program’s regis-
ters. Initially, all registers and flags contain zeroes—except for the pro-
gram counter (P} and the stack pointer (S), which default to the value
100H.

The program counter is a CPU register that is used as a movable refer-
ence point for DDT commands. It keeps track of the last hexadecimal
address that was displayed and/or altered by a DDT command. The
address immediately after this last address will be the starting address
for the next DDT command you enter (unless the next command
specifies a different starting address).

3.1 A Assembly Language Mnemonics are
Inserted

The A (assembly) command enables you to insert assembly language
instructions into the program being tested. The command is entered
in the form:

As

Where s is the memory address at which you desire to start inserting
assembly language instruction statements.

DDT responds to such an entry by echoing the value (”s”) entered.
You can then enter an assembly language statement to the right of the
echoed “s” value. The statement must end with a carriage return.

DDT will display the next available memory address after the new state-
ment is appended to the program. You can enter another statement
to the right of the displayed address, or enter a carriage return alone
to end A command operations and retrieve the DDT prompt.

For example, if you want to insert a “MOVE IMMEDIATE to register
C” statement into a program at memory address 0104H, the following
entry should be made in response to the DDT prompt:

A104 RETURN

DDT will echo the address with the display:

0104

To the right of the address display, you can insert the statement:
MVIC,{data} RETURN
Where {data} is the data to be moved into register C.

DDT will then display the value for the next available memory location.
Since the “MVI” statement takes up two locations, DDT displays:

0106

You can enter another statement at location 0106H or end the opera-
tions of the A command by entering a carriage return alone.

NOTE: When the A command inserts a statement at a particular memory
address, the statement(s) that formerly occupied that part of memory
will be overwritten, and therefore destroyed. If you insert an statement
that does not occupy the same number of locations as the statement(s)
being replaced, the meaning of subsequent statements might be
changed. You should use the L command immediately after finishing
A command operations, to verify that the desired results were achieved
during use of the A command.

The following example demonstrates this problem. You want to replace
a “jump” instruction (JMP) with a “return from subroutine” statement
(RET). The JMP statement occupies three locations, and the RET in-
struction will occupy one. Inserting the one-byte RET into the first
location of the three-byte JMP will leave the last two-thirds of the JMP
statement in the program. This partial statement could cause problems
when the program is run.

Page 2-127

Page 2-128

3.2 D Display Memory Contents in Hexadeci-
mal and ASCII Form

The D (display) command allows you to view the contents of memory
in both hexadecimal and ASCII formats. The display appears in the
following form: '

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cceccecceeecececcee

Where “aaaa” is the address of the first memory location displayed in
this line;

where “bb” represents the hexadecimal contents of a memory location;
and

where “ccccccecceccecce” represents the ASCII translation of the contents
of each memory location.

If the contents of a memory location cannot be displayed as an ASCII
character, a period (.) will be displayed instead.

The display address acts as a pointer in memory which is initially
set to 100H. As each memory location is displayed, the pointer is incre-
mented by one so at the the end of a D command, the pointer is
positioned ready to display the next 256 memory locations.

The four forms of the command are:

D Display memory from the current display address until one
page of data (256 locations) have been shown. DDT will
display 16 lines, each representing 16 bytes of data.

Ds Change the starting display address to “s”, then display
memory beginning with address “s” and continuing until
one page of data (256 locations) is displayed.

Ds f Change the starting display address to “s”, then display
memory beginning with address “s” and continuing until
memory address “f” is reached.

Df

Displays triggered by any of these commands can be suspended if a
CTRL-S is entered during the display. The display will resume if any-

dress “f” is reached.

thing other than CTRL-C is entered.

A display will be aborted if any character other than CTRL-S is entered.
However, it is recommended that the display be intentionally aborted
by pressing the DELETE key, because other characters will appear at

Display memory from the current display address until ad-

the next DDT hyphen (-) prompt if they are used to abort the display.

For example if the file SYSGEN.COM had been loaded into memory
by DDT and the user wanted to see a hexadecimal and ASCII display
of it, then D should be entered at the DDT hyphen prompt. This entry

would cause a display something like the following:

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01A0
01BO
01CO
01D0
01EQ
01F0

Cc3
20
45
29
Cc9
41
23
01
01
01
CA
12
C3
07
32
07

79
31
53
29
S5F
01
Cc3
00
00
00

07
05
34
12
3A

02
39
45
Cc9
OE
c9
58
11
11
11
01
32
00
TE
07
0B

43
31
41
OE
02
E5
01
1B
21
217
F1
14
21
B7
E5
07

4F
38
52
01
cD
CD
D5
00
00
00
OE
07
00
CA
2A
BE

50
2C
43
CD
05
48
4F
19
19
19
00
OE
09
EB
10
CA

59
20
48
05
00
0L
2A
E9
E9
ES
c2
01
22
01
07
78

52
44
20
00
C9
El
01
2A
2A
21
B7
El
08
3A
22
02

49
49
6F
FE
3E
TE
00
01
01
14
01
E9
01
OF
0D
4E

47
47
26
61
0b
B7
11
00
00
017
OE
OE
3E
017
017
CD

48
49
00
D8
CD
Cc8
18
11
11
3A
02
14
FF
32
E1l
6F

54
54
29
FE
41
E5
00
1E
24
12
C3
C3
32
0C
3A
01

20
41
29
B
01
CD
19
00
00
07
B7
05
05
07
12
3E

28
4C
29
DO
3E
41
D1
19
19
BE
01
00
017
3A
07

43
20
29
E6
0A
01
E9
E9
E9
F5
F1
OE
21
13
32
32

29 .y.COPYRIGHT (C)
52 1978, DIGITAL R
29 ESEARCH 0&.)))))

coean g

El A....H. .~....A. .

2A

Page 2-129

Page 2-130

3.3 F Fill a Block of Memory with a
Specified Data Constant

The F (fill) command allows you to fill a block of memory with a specif-
ic constant. The form of the command is:

Fsfc
Where s is the address at which the filling should begin;
where fis the address at which the filling should end; and

where c is the data constant that should occupy each memory address
in between.

Any data that resided between addresses “s” and “f” prior to the entry
of the command will be overwritten by the constant, and therefore de-
stroyed.

Only hexadecimal values should be entered in such a command, and
value “f” must be greater than value “s”. If “s” is greater than “f”,
the operation will not be executed and the DDT prompt will reappear.

For example, the following command:
-F9200 B400E5 RETURN

would fill every memory location from address 9200H through address
B400H with the hexadecimal value “E5”’.

3.4 G GotoSpecified Address to Run a
Program

The G (Go to) command enables you to begin execution of the program
from any address, and to specify one or two execution breakpoints
if desired. (A breakpoint is the address of an instruction which, when
reached, will stop the execution of the program and redisplay the DDT
prompt.) Execution begins with the instruction at the memory address
immediately following the one specified in the command. The instruc-
tion at the specified address is not executed.

If no breakpoint is entered, the only other way in which the control
of the program may be returned to you is if an “RST 7” instruction
is encountered within the program. This instruction will immediately
stop program execution and redisplay the DDT prompt to allow further
DDT commands from you.

The G command can be entered in the following forms:

G

Gs

G,b

Gsb

Gbc

Gsbc

Begins execution of the program at the current value of the
program counter, with no breakpoints set. The program will
run to completion.

Sets the program counter to address “s” and begins execu-
tion of the program from that address, with no breakpoints
set. The program will run to completion.

Begins execution of the program at the current value of the
program counter and continues until the instruction at ad-
dress “b” (the breakpoint) is reached. Then program execu-
tion stops.

Sets the program counter to “s” and begins execution of
the program at address “s”. When the instruction at address
“b” (the breakpoint) is reached, program execution stops.

Begins execution of the program at the current value of the
program counter and continues until either address “b” or
address “c” is reached. When either of these breakpoint
addresses is reached, program execution stops.

Sets the program counter to address “s” and begins execu-
tion of the program at this address. When either address
“b” or address “c” is reached, program execution stops.

At a breakpoint, program execution stops and DDT displays:

*bbbb

Where “bbbb” is the address at which program execution stopped; and

where “-” is the DDT prompt

Page 2-131

Page 2-132

For example, you could “go to” the very beginning of computer memory
(address 0000H) and trigger execution of the program that is situated
there. This program is, of course, the CP/M operating system. Its execu-
tion can be triggered by entry of the following command:

-G0 RETURN

The operating system would respond by displaying the system prompt,
as shown:

A>

This command has the same effect as a warm boot.

3.5 H Hexadecimal Computation of Sums and
Differences

The H (hexadecimal value) command simultaneously adds and sub-
tracts two hexadecimal values. This command is entered in the follow-
ing form:

Ha,b
Where a is a hexadecimal value; and

where b is another hexadecimal value.

The resulting display appears in the form:
ssss dddd
Where “ssss” represents the sum of two values; and

where “dddd” represents the difference between the two values.

This command is helpful in determining addresses to which programs
will be relocated with DDT command “M”.

For example, if you have a program that begins at address 0311H, and
wishes to move this program 0126H bytes higher in memory, then the
H command could be used to calculate the new starting address, as
shown:

-u311,126 RETURN
0437 O1EB

0437H would be the new starting address for the program.

However, if you enter an “a” value that is smaller than the “b” value,
the sum (“ssss”) will be the same, but the difference (“dddd”) will
be equal to 10000H minus the amount that “b” is greater than “a”.

Such a case is demonstrated by the following entry:

-H1,2 RETURN

which will produce the following displayed solution:

0003 FFFF

3.6 I InsertFile Name Into File Control Block

The I (input) command allows you to insert a file name into the area
of memory that is used to store the names of files to be read from
the disk. This area of memory begins at address 5CH. This is one of
the memory areas from which the Console Command Processor (a func-
tioning part of the CP/M operating system) distributes control to utilities
and resident commands. This DDT command is entered in one of the
following forms:

-I{primary file name} RETURN

-I{primary file name}.{extension} RETURN

If the second form of the command is used and the {extension} entered
is either “HEX” or “COM”, then subsequent R commands can be used
to read the pure binary or hexadecimal machine code.

The I command will not read the file from the disk and store it into
memory. It will only insert the filename into the File Control Block
portion of the Console Command Processor, so that a subsequent R
command can read the named file into memory.

Page 2-133

Page 2-134

3.7 L List Assembly Language Mnemonics of
a Program

The L (list) DDT command enables you to disassemble the instructions
wthin a span of memory, and to display the assembly language
mnemonics of the disassembled code on the console. The command
can be entered in any of the following three forms:

L Lists 12 lines of disassembled machine code, beginning at
the current list address. The list address acts as a pointer
in memory which is initially set to 100H. As each memory
location is disassembled, the pointer is incremented by one.

Ls Changes the list address to “s”, and then lists 12 lines of

669

disassembled machine code beginning at address “s”.

Lsf Lists disassembled code from starting address “s” to the
final address “f”.

The list appears in the form:
aaaa mmmm 0000

Where “aaaa” is the address of the instruction,
where “mnnnm” is the mnemonic of the operator, and
where “o000” is the operand.

Listings triggered by an L command can be suspended if a CTRL-S
is entered during the listing. The listing will resume if anything other
than CTRL-C is entered.

A listing will be aborted if any character other than CTRL-S is entered
during the listing. If the listing is to be aborted intentionally, we recom-
mend that the DELETE key be pressed, because other characters might
appear at the next DDT hyphen (-) prompt if they are used to abort
the listing.

If an invalid mnemonic is encountered in a statement of a disassembled
program, question marks (“??”) will be used to represent the invalid
mnemonic in the listing.

The disassembled mnemonics from address 0919 through address 091D
of the program in memory can be listed with the entry of the following
command:

-L0919,091D RETURN

Such a listing might appears as follows:

0919 OUT F2
091A INX H
091B MOV A,M
091D ORA A

3.8 M Move aDataBlock

The M (move) command allows you to move a block of data from one
area of memory to another. This command is entered in the form:

Msfd
Where s is the starting address;
where fis the final address of the block of data to be moved; and

where d is the starting point of the memory area to which the data
is moved.

The data is moved to the area of memory beginning at the address
“d”. An example of the command follows:

M100 2001000 RETURN
This command would take the contents of the block of memory starting

at address 0100H and running through address 0200H, and move these
contents to the area of memory beginning with the address 1000H.

Page 2-135

Page 2-136

3.9 R Read aFile Into Memory From Disk

The R (read) command is used after the I command to read COM and
HEX files from the diskette into the transient program area in prepara-
tion for a debugging operation. The R command requires a previous
I command, specifying the name of the HEX or COM file to be read.
The command can be entered in either of the following two forms:

R Reads the file whose name is in the file control block at
address 5CH from the disk and places it in the Transient
Program Area. (The file name was placed in this location
with the I command.)

Rb Reads the file whose name is in the file control block at
address 5CH from the disk and places it in the Transient
Program Area with the addition of a bias factor, “b”, which
is a hexadecimal number added to each program instruction
address or data address as it is read. This factor allows you
to locate the program at any location in memory. When
the bias factor is omitted, then b= 0000 is assumed.

The read operation must not place the file in the first page of memory
(0-0FFH) because this would write over the system parameters which
are stored in this area. If the file specified in the preceding I command
is a HEX file, the load address is derived from each individual HEX
record. If the file to be loaded is a COM file, a load address of 100H
is assumed. Any number of R commands may be issued following an
I command to reread the program under test.

The R command reads the desired file from the default drive. If the
desired file resides on a non-default drive, the command S5C should
be entered, and the value for the non-default drive should be substituted
according to the following table:

Drive Number Drive Letter
00 DEFAULT
01 A
02 B
03 C
04 D
05 E
06 F

This substitution should be performed between the I command and
the R command.

When the R command loads a named file into the Transient Program
Area, a message in the following form is displayed:

NEXT PC
nnnn pppp

Where “nnnn” is the the address immediately following the loaded pro-
gram; and

where “pppp” is the current value of the program counter (100H for
COM files, or it is taken from the last record if a HEX file
is specified.)

The next address “nnnn” can be used to determine the size of the file
which was loaded. If the beginning address is 100H, then subtracting
100H from “nnnn” will display the size of the program in bytes. The
size derived in this manner is in hexadecimal units, and may have
to be converted to decimal units before it is used.

3.10 S Substitute Hexadecimal Values

The S (substitute) command enables you to examine—and optionally
alter—the contents of specified memory locations. This command is
entered in the form:

Sb

Where b is the hexadecimal address of the first memory location to
examine.

DDT responds with a display of addresses and bytes in the form:
aaaa ccC

Where “aaaa” is the hexadecimal address, and
where “cc” is the hexadecimal contents of the memory location.

You may substitute a new value for “cc” by entering the new value
(in one or two hexadecimal digits) and a carriage return when DDT
displays “aaaa” and “cc”. Your entry will appear on the right side of
this display, and it will replace “cc” in the memory image of the pro-
gram.

Page 2-137

Page 2-138

The next address “aaaa” and its contents “cc” are then displayed, invit-
ing you to substitute a new value for this “cc”’. When you are finished
altering address contents in this sequence of addresses, a period (.)
and a carriage return should be entered, rather than a new value. Your
alterations will be retained in memory, and the DDT hyphen (-) prompt
will reappear.

If you wish to skip an address without changing it, then a carriage
return (without a period) should be entered in response to one of the
“aaaa” “cc” displays. The DDT hyphen (-) prompt will reappear.

For example, if you enter the following command:

-5100 RETURN

then memory addresses and their contents will be displayed on the
screen, starting with address 0100H, as shown. your substituted values
for the address contents are in boldface print on the right side of the
following example display:

0100 ¢c3 3C RETURN
0101co C RETURN
010201 10 RETURN
010320 RETURN
010443 RETURN
01054F F4 RETURN
010650 . RETURN

3.11 T Trace program execution

The T (trace) command allows to trace the execution of one to 65,535
(0OFFFFH) program steps. During the trace, the contents of all registers
and the status of all flags within the central processing unit (CPU) are
displayed. This command can be entered in either of the following
forms:

T Displays the contents of the CPU registers and the status
of the flags; then executes one program instruction. The
DDT hyphen promnpt (-) reappears.

Tn Displays the contents of the CPU registers and the status
of the flags; then executes “n” program instructions and
stops. The DDT hyphen prompt (-) reappears.

Displays caused by the T command take the following form:
CEXfMfEfIf A=bb B=dddd D=dddd H= dddd S=dddd P=dddd inst *hhhh

Where “t” is a 0 or 1 flag value;
where “bb” is a byte value;
where “dddd” is a double byte quantity corresponding to a register pair;

where the “inst” field contains the disassembled instruction which oc-
curs at the location addressed by the program counter; and

where “hhhh” is the next address available for execution.

The display address (used in the D command) is set to the value of
the H and L registers. The list address (used in the L command) is
set to the value of “hhhh” so it will be ready to list the next program
steps to be executed if desired. Since the state of the flags and registers
of the CPU displayed by the T command occur before each instruction
is executed, it may be helpful to use an X command to view the state
of the CPU after the trace command.

Page 2-139

Page 2-140

The second form of the T command will trace the execution for “n”
steps (“n” is a hexadecimal value) before a program breakpoint occurs.
A breakpoint can be forced during long trace displays by using the
DELETE key. The state of the CPU is displayed before each program
step is executed in the trace mode.

If the program being tested must access the disk or input/output (I/O)
devices through the CP/M system, the program tracing is discontinued
at the interface to CP/M, and resumes after returning from CP/M to
the program being tested. Thus, CP/M functions which access /O de-
vices, such as the disk drive, operate at the proper speed (real time),
thereby avoiding I/O timing problem:s. Programs running in the trace
mode execute aproximately 500 times slower than real time because
DDT gets control after each user instruction is executed. In programs
which use interrupt instructions, the interrupts are always enabled dur-
ing the trace mode.

3.12 U Untrace Program Execution

The U (untrace) command allows you to trace the execution of one
to 65,535 (OFFFFH) program steps. During the untrace, the contents
of all registers and the status of all flags within the central processing
unit (CPU) are displayed. Intermediate program steps are not displayed.
This command can be entered in either of the following forms:

U Displays the contents of the CPU registers and the status
of the flags. Then executes one program instruction. The
DDT hyphen prompt (-) reappears.

Un Displays the contents of the CPU registers and the status

of the flags. Then executes “n” program instructions, and
stops. The DDT hyphen prompt (-) reappears.

Displays caused by the T command take the following form:
CIXfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst *hhhh

Where “t” is a 0 or 1 flag value;
where “bb” is a byte value;
where “dddd” is a double byte quantity corresponding to a register pair;

where the “inst” field contains the disassembled instruction which oc-
curs at the location addressed by the program counter; and

where “hhhh” is the next address available for execution.

The display address (used in the D command)1 is set to the value of
the H and L registers. The list address (used in the L. command) is
set to the value of “hhhh” so it will be ready to list the next program
steps to be executed if desired. Since the state of the flags and registers
of the CPU displayed by the U command occur before each instruction
is executed, it may be helpful to use an X command to view the state
of the CPU after the trace command.

The second form of the U command will untrace the execution for
“n” steps (“n” is a hexadecimal value) before a program breakpoint
occurs. A breakpoint can be forced during long untrace displays by
using the DELETE key. The state of the CPU is displayed before each

program step is executed in the untrace mode.

If the program being tested must access the disk or input/output (I/O)
devices through the CP/M system, the program tracing is discontinued
at the interface to CP/M, and resumes after returning from CP/M to
the program being tested. Thus, CP/M functions which access /O de-
vices operate at the proper speed (real time), thereby avoiding I/O tim-
ing problems. Programs running in the untrace mode execute aproxi-
mately 500 times slower than real time because DDT gets control after
each user instruction is executed. In programs which use interrupt in-
structions, the interrupts are always enabled during the untrace mode.

Page 2-141

Page 2-142

3.13 X eXamine or Change Registers or Flags

The X (examine) command enables you to display and alter the state
of the registers and flags of the CPU at any time during the debugging
process. This command can be entered in either of the following forms:
X
Xr

Where r is one of the 8080 CPU registers in the following table:

8080 CPU RANGE OF
REGISTER REGISTER REGISTER
SYMBOL NAME CONTENTS
C Carry Flag (0/1)

Z Zero Flag (0/1)

M Minus Flag (0/1)

E Even Parity Flag (0/1)

I Inter-Digit Carry (0/1)

A Accumulator (0-FF)

B BC Register Pair (0-FFFF)

D DE Register Pair (0-FFFF)

H HL Register Pair (0-FFFF)

S Stack Pointer (O-FFFF)

P Program Counter (0-FFFF)

The first form of the command displays the state of the GPU in the
following form:

CfXIMFEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

Where “t” is a 0 or 1 flag value;
where “bb” is a byte value;

where “dddd” is a double byte quantity corresponding to a register pair;
and

where the “inst” field contains the disassembled instruction which oc-
curs at the location addressed by the program counter.

The second form of the command displays the flag or register value
of the specified register, and allows alteration of the hexadecimal value
within this flag or register. You can substitute a new value for the
value held in the register. You makes this substitution by entering the
new value and a carriage return to the right of the existing value.

This example demonstrates how the value in a register can be altered.

-XS
s=00Fe EFO0 RETURN

When you substitute a value into a flag or register, ending the substitu-
tion with a carriage return, the DDT hyphen prompt (-) reappears. If
you wish to make no changes to the values, then a carriage return alone
should be entered.

If a value in the proper range is typed, then the flag or register value
is altered. Note that BC, DE, and HL are displayed as register pairs.
Thus you enter the entire register pair when B, C, or the BC pair is
altered.

4 DDT Error Signals

DDT does not display entire messages when you make an erroneous
entry. However, DDT will display a question mark (?) if your entry
does not conform to valid entry syntax restrictions.

In addition, DDT will display question marks (??) in place of invalid
mnemonics that it encounters when dealing with the assembly language
form of a program.

Page 2-143

Page 2-144

DIR

The Resident Command that Displays Disk File Direc-
tories

The DIR resident command is issued to determine the presence of (1)
all of the files on a disk, (2) a specified file, or (3) a group of specified
files. After command entry, DIR displays file names to the console (4).
Some file names cannot be accessed by DIR (5).

1 DIRECTORY OF All FILES ON A DISK

DIR can be used to determine the names of all files on a disk by answer-
ing the system prompt with the following entry:

A>DIR RETURN

If you desire a DIRectory of the files on a disk that does not reside
in the default drive (drive B for instance) the DIR command should
be entered with a drive specification, as shown:

A>DIR B: RETURN

NOTE: Because DIR is a resident command, it is automatically loaded
into the computer with the rest of the operating system. Therefore,
it is never necessary (or valid) to specify a drive at the beginning of
a DIR command line. For example, the command a>B:DIR RETURN
is invalid.

Page 2-145

Page 2-146

2 DIRECTORY OF A SPECIFIED FILE

To find out whether one particular file resides on a disk, the complete
name of that file is entered one space after the resident command
specification “DIR”. For example, the entry of the following command
line will check the disk in default drive A for the file named “THIS-
FILE.DOC”:

A>DIR THISFILE.DOC RETURN

The presence of a specific file on a disk in a non-default drive can
be determined by entering the appropriate drive name and a colon im-
mediately before the name of the specified file.

3 DIRECTORY OF A GROUP OF FILES

To inquire about several files that belong to a group with similar names,
the you can enter an ambiguous file name (a file name with wildcard
characters “*” and “?”). For instance, to check the default drive disk
for all of the files with the extension “BAK”, you would enter the fol-
lowing command line:

4>DIR *.BAK RETURN

The command line:

A>DIR PROGRAM?.HEX RETURN

will check the disk for files such as “PROGRAM1.HEX”, “PROGRAM-
2.HEX”, and “PROGRAM3.HEX"”. In addition, the command:

A>DIR S*.COM RETURN

will check the disk for files such as “SC.COM”, “STAT.COM”, and
“SYSGEN.COM?”,

4 CONSOLE DISPLAY OF FILE DIRECTORY

The entry of a DIR command line will produce a console display show-
ing up to four file names in a horizontal line, with the name of the
logged drive preceding each line. The following example shows a DI-
Rectory display of all of the files on the disk in drive A:

A: MOVCPM5 COM : LIST COM : PIP COM : SUBMIT COM
A: STAT COM : XSUB COM : ED COM : ASM COoM
A: DDT COM : LOAD COM : CONFIGUR COM : SYSGEN COM
A: DUMP COM : DUMP ASM : DUP COM : FORMAT COM
A: CPM48 COM : BATCH SUB : DUMP PRN : DUMP HEX

If a specified file or group of files is not found on the disk being investi-
gated, the console will display the message:

NO FILE

This message will also appear if a DIR command line references files
on an empty disk.

5 FILES NOT ACCESSIBLE BY DIR

DIR commands will not produce a display indicating the presence of
files that maintain the “SYS” status. (See STAT 2.3.)

Files assigned to an unlogged user area are also inaccessible to a DIR
command unless a USER command is issued before the DIR command.
(See USER.)

Page 2-147

Page 2-148

DUMP

The Utility that Displays a File in Hexadecimal Form

The DUMP utility is invoked with the name of a file (1) to display
the hexadecimal contents of each address in file (2). The file contents
appear in lines containing 16 bytes of data each. To the left of each
line is the address of the first byte in each line. This display will con-
tinue to the end of the program, unless suspended or aborted (3).

1 DUMP INVOCATION

The hexadecimal contents of a file can be displayed on the console
by responding to the system prompt with the command:

A>DUMP {file name} RETURN

Where file name is the complete file name of the disk file that you
wish to examine in a hexadecimal display.

Page 2-149

Page 2-150

2 EXAMPLE DUMP DISPLAY

The command DUMP THISFILE.HEX RETURN might produce this dis-
play:

0000 C3 CO 01 20 43 4F 50 59 52 49 47 48 54 20 28 43
0010 29 20 31 39 37 39 2C 20 44 49 47 49 54 41 4C 20
0020 52 45 53 45 41 52 43 48 20 44 49 53 4B 20 4F 52
0030 20 44 49 52 45 43 54 4F 52 59 20 46 55 4C 4C 24
0040 46 49 4C 45 20 45 58 49 53 54 53 2C 20 45 52 41
0050 53 45 20 49 54 24 4E 45 57 20 46 49 4C 45 24 2A
0060 2A 20 46 49 4C 45 20 49 53 20 52 45 41 44 2F 4F
ete. . .

3 SUSPENDING LONG SCROLLING DISPLAYS

The displays produced by the DUMP utility often scroll by quickly
on the console. However, they can be halted temporarily by entering
a CTRL-S at any time during the scroll. The display can then be re-
sumed by entering any keyboard character except CTRL-C (which exe-
cutes a warm boot and aborts the program). A run of the DUMP utility
can be aborted altogether by entering any keyboard character (other
than CTRL-S) during the display.

4 DUMP ERROR MESSAGE

NO INPUT FILE PRESENT ON DISK

EXPLANATION: The file specified to be dumped does not exist on
the specified disk. Command should be re-entered specifying the proper
file name or drive name, or inserting the proper disk.

DUP

The Utility for Copying and/or Verifying Entire Disks

The DUP utility can be used to duplicate all of the data from one disk
to another disk. It can also compare the two disks to verify whether
the data recorded on one disk correspond exactly to the data recorded
on another disk. If desired, DUP will even perform both operations
consecutively, to ensure accurate duplication of a disk.

NOTE: Both of the disks involved in a DUP operation must be prepared
in the exact same fashion by the FORMAT utility. Thus the density
and number of sides used for data storage on each disk must be identi-
cal. Furthermore, you can not duplicate disks that were initialized with
a different operating system, such as HDOS or MS™-DOS.

You can use the DUP utility through either of two methods: the DUP
Prompt Method or the System Prompt Method.

1 DUP PROMPT METHOD

With this DUP method, you invoke the DUP utility from a disk by
entering a command at the system prompt. Then you answer a series
of DUP prompts to define the duplication operation.

®MS is a trademark of Microsoft Corporation.

Page 2-151

Page 2-152

1.1 DUP Invocation

Invoke DUP by typing a command at the system prompt in the following
form:

A>DUP RETURN

The DUP utility will present the following display when invoked:

Disk Utility Program
Version 2.04

Do you want to:

A copy and verify
B copy only
C verify only

Z exit to operating system

Selection:

This display includes a menu listing the four operations DUP offers.
You can begin execution of an operation by typing the letter listed
to the left of that operation. Each operation is explained in the following
sections.

1.2 A copy and verify

The “copy and verify” operation makes an exact duplicate of a disk,
and then verifies that the operation was performed flawlessly, by com-
paring the two disks.

To begin this operation, type A at the “Selection:” prompt. (No carriage
return is necessary.)

DUP will ask, in a series of consecutive prompts, for the letter of the
drive that contains the disk to be copied from (“Source unit:”) and
for the letter of the drive that contains the disk to be copied to (“Destina-
tion unit:”). Enter the appropriate drive letter for each prompt. (No
carriage return is necessary.)

When you have specified both a source and destination, DUP will in-
struct you to put the appropriate disks in the specified drives (even
if you have already done so). Then the screen display will look some-
thing like the following:

Source unit:C

Destination unit:D

Put source disk in drive C.

Put destination disk in drive D.

Press RETURN to begin:

The last three lines in this display give you a final opportunity to make
certain that you have specified the proper drives and inserted the prop-
er disks. (It is important to make certain of these factors, lest you acci-
dentally duplicate the contents of a blank disk over to a disk that has
useful data.)

When both disks are positioned in the proper drives, enter a carriage
return to start the copying process. The lights on the specified drives
will glow alternately to signify DUP activity. (The duration of the copy
and verify operation varies depending on the density and number of
sides used on the disks.] When finished copying, DUP will display
the message:

Copy finished.

The verification process will begin automatically. DUP will compare
the source and destination disks to verify the accuracy of the copy.
Then DUP will display the message:

Verification finished.

and redisplay the DUP selection menu.

Page 2-153

Page 2-154

1.3 B copy only

The “copy only” operation makes an exact duplicate of a disk.

To begin this operation, type B at the “Selection:” prompt. (No carriage
return is necessary.)

DUP will ask, in a series of consecutive prompts, for the letter of the
drive that contains the disk to be copied from (“Source unit:”) and
for the letter of the drive that contains the disk to be copied to (“Destina-
tion unit:”). The screen display for this operation may appear as:

Source unit:C
Destination unit:D

Put source disk in drive C.
Put destination disk in disk D.

Press RETURN to begin:

The last three lines in this display give you a final opportunity to make
certain that you have specified the proper drives and inserted the prop-
er disks. (It is important to make certain of these factors, lest you acci-
dentally duplicate the contents of a blank disk over to a disk that has
useful data.)

When both disks are positioned in the proper drives, enter a carriage
return to start the copying process. The lights on the specified drives
will glow alternately to signify DUP activity. (The duration of the copy
operation varies depending on the density and number of sides used
on the disks.) When finished, DUP will display:

Copy finished.

Then DUP will redisplay the selection menu.

1.4 C verify only

The “verify only” operation helps you determine whether two disks
are identical in media and data contents.

To begin this operation, type C at the “Selection” prompt. (No carriage
return is necessary.)

DUP will ask, in two consecutive prompts, for the letter of the drives
that contain the disks to be compared. (These prompts will ask you
to specify “Source unit:” and “Destination unit:”, although “source”
and “destination” are not pertinent to this operation.)

Answer each prompt with the name of one of the drives containing
a disk to be compared. The screen display for this operation might
appear as follows:

Source unit:C

Destination unit:D

Put source disk in drive C.

Put destination disk in drive D.

Press RETURN to begin:

Enter a carriage return to start the verification process. The lights on
the specified drives will glow alternately to signify DUP activity. (The
duration of the verification operation varies depending on the density
and number of sides used by the disks.)

If DUP finishes comparing the two disks and finds that they are abso-
lutely identical, DUP will display the message:

Verification finished

Then DUP will redisplay the selection menu.

If the two disks do not correspond exactly, in data content or data
position, then DUP displays the following message:

Verification error

Then DUP will redisplay the selection menu.

NOTE: Conceivably, two disks could contain the exact same data, but
in different positions on the disk surface. DUP verification would regard
such disks as different.

Page 2-155

Page 2-156

1.5 Z exitto operating system

When the DUP selection menu is displayed, you can end the program
and return to the operating system by typing the Z alternative at the
“Selection:” prompt. Such an entry will produce the prompt:

Place a bootable disk in drive A and type any character:

At this prompt, you should insert the disk you used to perform
bootstrap into drive A (if you have removed it since bootstrap) and
enter a carriage return.

1.6 Invalid Entries During a DUP Prompt
Operation

If you answer a DUP prompt with an invalid character, either the
prompt or the menu will be repeated in most cases. However, if you
specify a drive that does not exist in the hardware environment (when
responding to the “Source unit:” prompt or the “Destination unit:”
prompt) then the terminal may “hang up”, freezing the keyboard. In
such a case, you must reset the computer and perform bootstrap to
proceed with any CP/M operation.

2 SYSTEM PROMPT METHOD

The System Prompt Method enables you to include all of the specifica-
tions necessary for the DUP operation in a single command line entered
at the CP/M system prompt.

2.1 Command Line Entry

System Prompt Method DUP commands are entered in the following
form:

A>DUP {destination}: = {source}:{[option]} RETURN
Where DUP is the command line function;

where {destination} is the letter of the drive containing the blank disk
that you wish to receive the copied data;

where {source} is the letter of the drive containing the data disk that
you wish to duplicate; and

where {[option]} represents letters enclosed in square brackets [] and
separated by a comma , to specify how the DUP operation
should be conducted. One or two of the letters C, V, or N can
be used, although none of these options are mandatory.

NOTE: In a command line equation, the data source is always on the
right and the data destination is always on the left.

Page 2-157

Page 2-158

2.2 DUP Options

Through the System Prompt Method, you can enter the following op-
tions to perform a DUP operation as indicated. These option letters
should always be enclosed in square brackets. If two option letters are
used, they should be separated by a comma.

C

Without
the C
orV

Options

Copy only: DUP will copy all of the data from the source
disk to the destination disk, without comparing them to
verify the accuracy of the copy.

Verify only: DUP will compare the source and destination
disks to verify that they contain the exact same data in the
exact same locations on the disk surface. When this option
is specified, either disk can be the “source” or “destina-
tion”.

No inquiry prompt: DUP will perform the operation you
have specified without displaying a prompt to confirm
whether the disks are in the appropriate drives.

Copy and verify: DUP will copy all of the data from the
source disk to the destination disk, and then automatically
compare the two disks to verify that the copying was accu-
rate. This operation will be performed by default if you
enter a DUP command with source drive and destination
drive specifications but without specifying a C or V option.

2.3 DUP Defaults

If you enter a System Prompt Method DUP command line (specifying
destination and source drives) and abstain from specifying certain op-
tions, the following default conditions will be in effect during the DUP
operation:

e Copy and Verify operation will be performed. Hence, the entire
contents of the source disk will be copied to the destination disk
and then the two disks will be compared to verify whether they
are exact duplicates. Occurs if neither the C nor the V options
are specified.

® Prompts are displayed to encourage you to insert the source and
destination disks in the specified drives, and then to trigger the
start of the DUP operation with a carriage return. These prompts
appear as shown:

Disk Utility Program
Version 2.04

Put source disk in drive A.
Put destination disk in drive B.

Press RETURN to begin:

Prompts in this form will appear if the N option is not specified.

Page 2-159

Page 2-160

2.4 System Prompt Examples

A>DUP B:=A: RETURN

A>B:DUP C:=D:[C,N] RETURN

a>DUP D:=E:[V,C] RETURN

a>dup c:=e:[v,n] RETURN

DUP will prompt you to insert the
proper disks into drives B and A, then
copy all of the data from drive A to
drive B, and then verify whether the
copy was performed accurately.

The DUP utility, in this case, is stored
on the disk in non-default drive B. It
will copy all of the data from the disk
in drive D to the disk in drive C. As
specified in the options, DUP will neot
prompt you to insert the disks in the
appropriate drive and DUP will not
verify the accuracy of the copy.

If your command line options are con-
tradictory, (both C and V use in same
line) DUP will acknowledge only the
last one. Hence, in this case, DUP will
prompt you to insert the proper disks
into drives D and E, then copy all of
the data from drive E to drive D, DUP
will not verify whether the copy was
performed accurately.

DUP will verify that the data stored
on the disks in drives C and E is
exactly the same and arranged in the
same locations on the surfaces of
these disks. As specified in the op-
tions, DUP will not copy any data and
it will not prompt you to insert your
disks. Notice that the letters in a DUP
command line do not have to be upper
case (capitalized).

NOTE: Conceivably, two disks could contain the exact same data, but
in different positions on the disk surface. A DUP verification operation
would regard such disks as different, and display a “Verification Error”

message.

3 DUP ERROR MESSAGES

Media incompatible on diskettes.

EXPLANATION: Disks used for duplication must be identical in size,
density, number of sides, and tracks per inch.

Drives incompatible for copy operation.

EXPLANATION: DUP operations can only be performed between two
drives that write the same type of disk media. If you have Z-37 drives,
make certain that the drives you have selected as your “Source unit”
and “Destination unit” have been set to write data at the same step
rate and number of tracks per inch (tpi). Specify drives that write to
identical disk types for your “Source unit” and “Destination unit”.

Drive not available in current configuration.

EXPLANATION: Drives specified as source or destination must be
drives that are connected in the hardware environment, turned on and
recognized by the operating system. Specify such drives.

Hard read error on source disk. Copy/Verify aborted.

EXPLANATION: DUP failed in an attempt to read data from a source
disk. Try the operation again. If DUP failures persist, use the PIP utility
to copy files from the source disk, and the SYSGEN utility to copy
the operating system from the source disk.

Hard read error on destination disk. Copy/Verify aborted.

EXPLANATION: DUP failed in an attempt to write data to the destina-
tion disk. Use the FORMAT utility to prepare the destination disk be-
fore using DUP. If DUP failures persist, use a different disk as the data
destination. Make certain that the destination disk media is the same
as the source disk media.

Verification error.

EXPLANATION: DUP’s comparison of two disks found them to be dif-
ferent. Determine which disk contains the desired data, call this disk
the “source disk.” Then use the FORMAT utility to erase and prepare
the inferior disk, and perform DUP’s “copy and verify” operation. If
the second verification of these two disks produces this error, use a
new disk of the same media type for the destination and repeat the
“copy and verify” operation.

Page 2-161

Page 2-162

Source and Destination cannot be the same drive.

EXPLANATION: Different drive units must be specified as source and
destination unit.

Unable to copy to this disk. It is write protected.

EXPLANATION: Disk should be write enabled by removing the adhe-
sive tab from the write-enable notch in the disk jacket.

Command line syntax error

EXPLANATION: System Prompt Method command line was entered
incorrectly. Re-enter using the entry form explained in “2.1 Command
Line Entry.”

Unknown command line option

EXPLANATION: System Prompt Method command line was entered
with invalid characters used as options. Re-enter using only the options
listed in “2.2 DUP Options.”

Invalid Source Unit

EXPLANATION: The entry made at the “Source unit:” prompt did not
correspond to a valid disk drive within the hardware environment.
The DUP operation must be reselected, and a valid drive name letter
entered.

Invalid Destination Unit

EXPLANATION: The entry made at the “Destination unit:” prompt did
not correspond to a valid disk drive within the hardware environment.
The DUP operation must be reselected, and a valid drive name letter
entered.

ED

The Line Editing Utility that Creates and Edits Text Files

The ED utility enables you to compose, alter, and manipulate files con-
taining ASCII characters. The files composed by ED are often referenced
or manipulated by other system utilities and commands.

When invokiflg ED, you either create a new file or summon an old
file into the computer (1). ED works on files using an area of computer
memory known as the memory buffer (2). Files being edited can be
moved, altered, or displayed when you enter various ED commands

(3).

1 EDINVOCATION

The ED utility is invoked by the entry of a command line in the follow-
ing form:

A>ED {file name} RETURN

Where {file name} is the complete name of a file that you wish to com-
pose or edit. you must specify the name of the text file here.

If the file resides in a non-default drive, this drive should be specified
immediately before the file name in the command line. If the file does
not yet exist at all, ED will create it on the disk in the default drive,
or on a disk in a specified drive.

Page 2-163

Page 2-164

The following entry, for example, would cause ED to open the file
named “THISFILE.TXT”, which resides on the disk in non-default drive
B:

A>ED B:THISFILE.TXT RETURN

When ED “opens” a file, it checks the disk directory for the name of
the file. Then ED reserves the computer’s Transient Program Area (TPA)
as a memory buffer to be used for text editing and file manipulation.

If the name of the file is not in the disk directory, ED creates the empty
tile and displays both the “NEW FILE” message and the “: *” prompt.
Then you can begin inserting text into the empty file by using the
“I” command at the prompt.

If the name of the file does exist in the disk directory, then ED locates
it, and displays the “: *” prompt on the console. You can then move
the existing file into the memory buffer by using the “A” command
at the prompt.

2 ED STRUCTURE AND FEATURES

Text sections 2.1, 2.2, and 2.3 explain the structure and features of
the ED utility. It is recommended that you understand these concepts
before trying to implement ED commands.

2.1 TextFiles in the CP/M Environment

To be properly read from, written to, and transferred, CP/M text files
must be composed entirely of American Standard Code for Information
Interchange (ASCII) characters. Text files must end with the entry of
the CTRL-Z “end-of-file” character. Text can be moved to and from
the disk in units of “lines”. A line is defined as a string of ASCII charac-
ters that ends with the carriage return and line feed characters. (The
“carriage return and line feed” combination can be entered by pressing
the RETURN key.)

2.2 The Memory Buffer

The memory buffer is an area in the computer’s memory that the ED
utility uses as a “scratch pad” on which to compose and edit text before
it is transferred to a disk for storage.

You can send a specified number of lines of text to the buffer from
the disk or send text characters into the buffer by entering them directly
through the keyboard. The memory buffer in some computers can hold
about 36,000 text characters at one time. When full, you can purge

the buffer of text by writing a specified number of text lines from the
full buffer to the disk.

2.3 The Character Pointer

Text in the buffer is usually arranged on numbered lines. To help you
to access locations within the text, the buffer contains an invisible char-
acter pointer, which can be moved to specific locations within the text
by various user commands.

The character pointer resides before the first character in the text, after
the last character, or between any two text characters. When it is moved
to a position in the text, a specified number of characters or lines can
be inserted or deleted starting at the pointer’s current position. Text
is inserted through the use of special commands, sometimes followed
by direct keyboard typing.

The character pointer is positioned by user commands that move it
up or down to different lines, left or right along a line, or to the top
or bottom of the file. The character pointer can also search through
the text to locate a user-specified text string.

All ED commands are executed starting at the current position of the
character pointer.

Page 2-165

Page 2-166

3 ED COMMANDS

Commands used within the CP/M EDitor are entered in response to
the “:*” prompt, or to a prompt in the form “n:*” where “n” is the
number of the text line upon which the character pointer resides. All
ED commands (except those which end an ED session) can be entered
in a series on the same command line. The last command entered on
any line must be followed by a carriage return to initiate command
processing.

The ED utility uses four commands (A, W, X, and R) to transfer text
lines between the disk and the memory buffer (3.1).

When a file is in the memory buffer, four commands (B, C, L, and
n) can be used to move the character pointer to a specified line or
character (3.2).

Once the character pointer is in position, four commands (I, D, and
K} are used to insert text into or delete text from the buffer (3.3).

Whenever text is within the memory buffer, two commands (T and
P) can be used to display it to the screen. Three other commands (zZ,
V, and U) are used to alter characteristics of screen display (3.4).

When a file is in the memory buffer, four commands (F, S, N, and
J) can be used to move the character pointer to an occurrence of a
specified text string (3.5).

To remove an entire file from the memory buffer, four commands (E,
Q, H, and O) can be used to send it from the buffer to the disk, or
to dispose of it in some manner. These commands must be entered
alone and followed immediately by a carriage return (3.6).

One command (M) is used to trigger multiple execution of other ED
commands (3.7).

3.1

nW

Moving Text to or from Memory Buffer

Append lines from disk to buffer

This command will copy “n” lines of text from the disk file
specified in the invocation command to the memory buffer,
where the text image can be edited.

The nA command must be implemented when you wish to edit
text from an existing file. This command is entered in response
to the “:*” prompt, and causes the “1:*” prompt to be displayed.
The counterpart of the nA command, the nW command, trans-
fers edited text lines back to the disk.

If you do not specify the number (n) of lines to be appended,
ED will append one line from the disk. If the “#” character
is entered in place of “n” (#A), then all of the text lines in
the disk file will be copied to the memory buffer.

Write lines from buffer to disk

This command transfers “n” lines of edited text from the mem-
ory buffer to the disk. Text that is written to the disk in this
manner will no longer exist in the memory buffer.

The W command is implemented when the memory buffer be-
comes full during text editing. It is entered in response to the
“.x” or “n:*” prompt, and causes the “:*” prompt to be dis-
played.

The W command always starts at the top of the buffer, transfer-
ring the first line in the buffer through the “nth” line in the
buffer. The buffer text line that occurs after the “nth” line then
becomes the first line, moving up to the top of the buffer.

If you do not specify the number of lines to be transferred to
the disk, one line will be transferred. If the “#” character is
entered in place of “n” (#W), then all of the text lines in the
memory buffer will be transferred to the disk, and the buffer
will be empty.

As the edited text is written back to the disk, a few lines at
a time, it accumulates in a temporary file that has a “$$$” exten-
sion.

Page 2-167

Page 2-168

eXtradite text block from buffer to temporary library file

This command transfers a block of text from the memory buffer
to a temporary disk file, so that it can be transferred back to
the buffer (by the R command) at a desired location.

The block of text begins with the line containing the character
pointer, and ends “n” lines later. The block is stored on the
disk in a temporary file which is automatically named $$$.LIB
(the standard name for a temporary library file). After this file
is created on the disk, you should implement other ED com-
mands to move the character pointer to the text location at which

the temporary file should be inserted.

When the character pointer is at the desired location, the R com-
mand is used to transfer the $$$.LIB file back to the buffer at
the desired location. The letter “R” and a carriage return should
be entered to insert the text at the current location. The same
text can then be inserted at another text location by moving
the character pointer and, again, entering “R” and a carriage
return.

Before a different block of text is transferred to the $$$.LIB file,
the “0X” (a zero followed by an X) command should be entered
to clear the old text from the file.

If no number is specified in the space preceding the “X”, then
one line of text (starting from the current character pointer loca-
tion) is transferred to the temporary file. If the “#” symbol is
specified, then all of the text lines within the buffer which fol-
low the character pointer are transferred.

Read library file f from disk to buffer

This command copies the text from a disk library file to the
memory buffer, inserting this text at the current location of the
character pointer. ‘

3.2

+/—

The file being read into the buffer should usually be specified
in place of the “f” in the command “Rf”. However, these files
are always assumed to have the “LIB” extension. Therefore, you
need only enter the primary file name in such a command. For
example, the text from library file “ROUTINEX.LIB” could be
read into the buffer with the entry of the following command:

RROUTINEX

If you wish to read a temporary library file into the buffer text,
then no part of the file name need be entered with the R com-
mand. The standard temporary library file name “$$$.LIB” will
be assumed.

Positioning the Character Pointer

B Beginning/Bottom of text character pointer movement

This command will move the character pointer to the begin-
ning of the first line of the text in the buffer (if entered in
the form B), or to the end of the last line in the buffer (if
entered in the form — B).

+/-nL Line down/up character pointer movement

This command will move the character pointer from its cur-
rent line within the memory buffer text to another line a
specified number (n) of lines away.

When the command is entered in the form nL, the character
pointer will move ahead (down) the specified number of lines
to the beginning of a text line.

When the command is entered in the form —nL, the character
pointer will move backward (up) the specified number of lines
to the beginning of a text line.

If the number of lines to move is not specified when the L
command is entered, the pointer will move one line ahead
(down).

In order to move the pointer to the beginning of the line upon
which it currently resides, enter the “OL” command (with a
zero preceding the “L”).

Page 2-169

Page 2-170

+/—n

+/-nC

Advance to a line and display it

This command moves the character pointer a specified
number of lines (n) and displays the text of the line on which
it lands. This command produces the same results as the
simultaneous entry of both the “L” and “T” commands. If
no number is entered before the carriage return, ED assumes
the number one.

Character pointer movement to right/left

This command moves the character pointer a specified
number (n) of character spaces, usually toward the right or
left edge of a text line. (When a command-driven character
pointer reaches the edge of a text line, the carriage return
and line feed characters will cause it to change its direction
momentarily.)

When entered with a plus sign (“+”), this command will
move the pointer the specified number of spaces to the right,
and/or down to successive lines. When entered with a minus
sign (“—"), this command will move the pointer the specified
number of spaces to the left, and/or up to preceding lines.
If you wish to move the character pointer past the edge of
a text line using the “C” command, the number specified in
the command will have to include two character spaces to
get past the carriage return and line feed characters at the
end of the line.

3.3 Inserting or Deleting Text

I

Insert characters from keyboard to buffer

The “I” command enables you to insert characters directly
into the text at the current position of the character pointer.
This command is entered in response to the “: *” or “n: *”
prompt.

If you enter a carriage return immediately after the “I” com-
mand, then the “n:” prompt appears on the next line and
text characters can be inserted on successive lines until you
enter a CTRL-Z “end-of-file” character. The entry of a CTRL-Z
causes the ““: *” prompt to be displayed. After such an inser-
tion operation, the character pointer will be positioned at the
end of the last inserted text line.

+/—nD

+/-nK

If text is inserted on the same line as the “I” command, then
the insertion operation will end when the next carriage return
is entered, and a “*” command prompt will appear at the
left edge of the screen. After such an insertion operation, the
character pointer will be positioned at the beginning of the
line following the line of inserted text.

If upper and lower case insertion text is desired, enter the
“I” command with a lower case “i”. Entering the command
with an upper case “I” will automatically translate all inserted
text to upper case.

Delete characters from buffer text

This command will delete a specified number (n) of characters
from memory buffer text, starting at the location of the charac-
ter pointer.

Deletions will take effect to the right of the pointer if the
specified number of deletions is preceded by a “—" sign. If
the specified number of deletions is preceded by a “+” sign
or by nothing, then characters to the right of the pointer will
be deleted.

If no number of characters is specified for the deletion opera-
tion, then one character will be deleted. If “#” is specified
as the number of characters to be deleted, then all text charac-
ters before or after the pointer (depending on the sign preced-
ing the number) will be deleted.

The carriage return and line feed characters at the end of each
text line are counted as two separate characters, even though
they are produced by pressing only the RETURN key.

Kill lines from buffer text

This command will delete a specified number (n) of lines
from the memory buffer text, starting at the position of the
character pointer.

If a “+” (plus sign) precedes the number of lines to be killed,
then that number of lines occurring after the character pointer
will be killed. If a “—" (minus sign) precedes the number,

then that number of lines occurring before the pointer will
be killed.

Page 2-171

Page 2-172

If the character pointer is positioned in the middle of a line
during a “K” command, the portion of the text line to the
left or right of the pointer will be deleted as if it were one
entire line.

If no number (n) is specified for the deletion operation, then
one line will be deleted. If “#” is specified as the number
of lines to be deleted, then all text lines before or after the
pointer (depending on the sign preceding the number) will
be deleted.

3.4 Displaying Text to Console

+/—nT Type text lines on console

This command will cause a console display of a specified
number (n) of text lines, starting at the position of the charac-
ter pointer.

If the character pointer is in the middle of a line, the portion
of the line between the pointer and the end of the line will
be counted as an entire line. If such a command begins with
a minus sign (”-”), then the specified number of lines before
the line containing the character pointer and the line contain-
ing the pointer are displayed. If the pointer is positioned in
the middle of a line and a zero is specified in the command,
then only the portion of the line from its beginning to the
pointer will be displayed.

If no number (n) of lines is specified, then one line will be
displayed. If the “#” symbol is specified, then all of the lines
in one direction will be displayed.

You can interrupt a console display which scrolls too quickly
by entering a CTRL-S character. The scroll will resume when
another CTRL-S is entered. You can abort a long scrolling
screen display by entering any other keyboard character while
the display is in progress.

The “T” command will not effect the position of the character
pointer. Therefore, at the end of a “T” operation, the pointer
marks the position at which the operation began. This posi-
tion will be indicated by the number in the “n:*” prompt.

The “T” command can be entered in response to a “n:*” or
“:*” prompt.

Page display on console

This command causes text to be displayed on the video screen
in units of one page (23 lines), and deposits the character
pointer at the end of the display.

If a display of the first page (23 lines) beginning at the charac-
ter pointer is desired, then a zero should precede the P in
such a command. Hence, a OP command has the same effect
as a 23T command.

If the number one or no number is specified before the “P”, then one
page (23 lines) of text, starting 23 lines past the character pointer, will
be displayed. The command 2P will cause the display of two pages
starting 23 lines past the pointer. The command 3P will cause the dis-
play of three pages starting 23 lines past the character pointer, and
so on. Hence, a 2P command has the same effect as a 23L46T-23L.

nZ

Zone interruption of text display scroll

This command can be entered into a command line in front
of the “T” or “P” display commands to interrupt a long con-
sole display scroll at time-regulated intervals so you can view
the text one zone at a time.

When “T” and/or “P” commands are entered in a series within
the same command line, “Z” commands can be placed in be-
tween to interrupt their execution for time periods determined
by the number preceding the “Z”.

The number (n) preceding the Z in the command stands for
the number of half seconds that the display scroll will be
interrupted. Hence, if a command line contains a 10Z between
two display commands, the scrolling caused by the display
commands will be interrupted for five seconds.

Page 2-173

Page 2-174

+/=V

+/-U

aVert or replace line numbers in console displays
If you prefer not to use the line numbers, the ~V command
will eliminate them from the console display.

The command V will restore line numbers to the console dis-
play.

A special form of this command, in which a zero precedes
the V (0V), will produce a display showing how many loca-
tions remain unused in the memory buffer (r), and the total
number of buffer locations that are accessible through the ED
utility (t). The display appears in the form: “r/t”.

Uppercase/lowercase text translation

If you would like all characters entered into text through the
ED utility to be put into uppercase, the “U” command can
be entered.

The “—~U” command can be entered to allow the inserted
text to be displayed in both lower and uppercase.

3.5 Searching for Text Strings

nFt

Find text string t within buffer text

This command is used to locate the specified number of oc-
currences (n) of a particular string of characters (t) within
the text.

The string of characters (t) being sought is specified im-
mediately after the F in the command,and ended with the
entry of a CTRL-Z character and a carriage return.

If you do not specify the number of occurrences (n) of the
string to be found within the text, then only the first occur-
rence will be found.

If you desire to locate a string of characters (t) that contains
the carriage return and line feed characters, these two charac-
ters can be specified in the command line with the CTRL-L
character.

nSdt

The string specified in the command (t) must match the actual
text in spelling, spacing, capitalization, etc.

The specification of a string of characters that is not found
in the text will produce the error message:

BREAK "“#" AT

- sending the character pointer back to its position before the

search operation failed.

Search and replace text string

This command performs the operations of the “F”, “D”, and
“I” commands simultaneously, by finding a specified string
(d) within the buffer text, deleting it, and inserting a second
specified string (t) at the same location.

The number (n) in the command represents the number of
text string substitutions desired by you throughout the text.
The omission of this number will cause a substitution to be
made only at the first occurrence of the sought-after string
(d). The entry of the “#” symbol in place of this number will
cause the substitution to be made at every occurrence of the
sought-after string throughout the text.

The string of characters to be found and deleted in the buffer
text (d) is specified immediately after the “S” in the command,
and ended by a CTRL-Z character. Immediately after this
CTRL-Z, the text string to be inserted (t) is entered and ended
by a second CTRL-Z and a carriage return.

The specification of a string of characters that is not found
in the text will produce the error message:

BREAK “#" AT

sending the character pointer back to its position before the
failed search and replace operation.

Page 2-175

Page 2-176

njftd

fiNd text string on disk

This command performs the same search operation as the “F”
command except that it can search an entire file for a text
string (t).

If the specified string (t) is not found in the memory buffer,
then this command will automatically write the contents of
the buffer to the disk (into a temporary file, as the “W” com-
mand does) and append an image of another portion of the
disk file’s text to the buffer (as the “A” command does) until
the entire file has been searched for the string the specified
number of times (n).

Juxtaposition substitution and deletion

This command finds a first string (f), inserts a second string
(t) after the first, and then deletes all of the text between the
end of the inserted string (t) and the beginning of the third
string (d).

The “J” in the command is immediately followed by the first
text string (f), a CTRL-Z, the text string to be inserted (t), a
CTRL-Z, the third text string (d), a CTRL-Z, and a carriage
return.

The third string (d) serves as a restraining boundary for the
text deletion.

This multi-faceted operation is performed a specified number
of times (n), or once, if no number is specified. If the “#”
is specified, the operation will be performed for all occur-
rences of the first text string (f).

If the third command line string cannot be found in the buffer
text, then no text is deleted.

3.6 Closing a Text File

E

End session while buffer text becomes permanent disk file
All text in the memory buffer is copied to the disk, where it
is combined with any text that has accumulated in a temporary

file, and assigned the original file name.

At the same time, the version of the file that was copied to
perform the edit is assigned the extension « BAK” in place of
its original extension.

The operating system then regains control and displays the sys-
tem prompt.

Quit session by deleting edited copy of file

All text in the memory buffer and/or any temporary file created
during the session is deleted, and any existing versions of the
file on the disk maintain the status and names they held prior
to the editing session.

if the file being edited existed before the session, then the origi-
nal version remains intact, as if the editing session never took
place.

If the file in the buffer is an original composition (was created
as a “NEW FILE” during this editing session) then all copies
or versions of this file will be destroyed.

Since the accidental use of this command could delete important
text composed or edited during the session, its entry will pro-
duce the “Q- (YN)?” confirmation message. The Y character
must be entered before the deletion will be executed. If the N
is entered, the current editing session will continue.

Halt session temporarily to save alterations

All alterations made to text (or any text composed) will be saved
under the active file name, and the editing session will continue
with an image of the currently edited file automatically ap-
pended to the memory buffer. This command has the same effect
as entering a combination of both the “E” and “A” commands.

Page 2-177

Page 2-178

3.7

Omit recent alterations and restart edit session

Any text in the memory buffer or in a temporary disk file is
deleted, and the editing session continues, using the same text
with which it began.

In effect, this command nullifies any text alterations or composi-
tion performed in the most recent ED session and starts the ses-
sion over, as if the “Q” and “A” commands had been entered
consecutively.

Causing Multiple Command Execution

Multiple command execution

This command allows you to execute one or more commands
a specified number of times (n) without additional command
entries. Commands are entered on the same line, following the
nM command in a string terminated by either a carriage return
or a CTRL-Z.

All commands following the nM will be executed the number
of times specified at the beginning of the entire command line
(n), or until an error condition is encountered. If no number
(n) is specified, then the operations invoked by the command
line will be implemented from the position of the character
pointer through the end of the text, or until an error condition
is encountered.

This command is commonly used with the search and replace
command (“nS”), to facilitate text string substitution throughout
a large text area. When such a search reaches the end of the
text in the memory buffer, an error condition to indicate that
the substitution can no longer be executed.

Multiple commands are executed from the position of the char-
acter pointer toward the end of the text. Hence, the pointer
should be positioned at the beginning of the buffer text if multi-
ple commands are to be executed throughout the text.

4 THE FILE EDITING CYCLE

The following sequence of diagrams shows the file named “RE-
PORT.DOC” as it undergoes ED’s file editing cycle. The left side of
the diagrams represents the memory buffer, and the right side of the
diagrams represents the logged disk.

In Figure 2-1, you have opened the file “REPORT.DOC” by entering
ED REPORT.DOC at the “A>" system prompt. You then enter ED’s
1 command, and begin typing text into the memory buffer file. No text
has yet been recorded on the disk.

REPORT. DOC |
/ \

PO B az B 2 B s B ==l - - BT

L] * L L4 e & o L] ® . L] L] * L) . L]
. I 72 B — B

Figure 2-1

Page 2-179

Page 2-180

In Figure 2-2, you have inserted text into the file, and want to save
some number of text lines. First you end the insert by entering a CTRL-
Z. Then to save the text, you enter ED’s W command to send a specified
number of text lines from the buffer to a temporary file on the disk.
ED gives this temporary file the name “REPORT.$$$”. The buffer file
remains.

[] 1
]]]
t]
1 »]
i i\ REPORT. DOC | « | REPORT. $$3 | i
' i / N . / \ d
B} b ' '
U ' e H D
F ' e ' I
F i Ve ! S
£ ' e { K
R . ,
' . i
' . !
]]
1 .]
])
] .]
]]
| .]
3]
] . i
' :
]
Figure 2-2

In Figure 2-3 you end the editing session and save all of the text com-
posed for “REPORT.DOC” by entering ED’s E command. This saved
text is recorded on the disk under the file name “REPORT.DOC”. Both
the buffer file “REPORT.DOC” and the temporary disk file “RE-
PORT.$$$" are erased.

REPORT. DOC ¢
/ \

[}
1
I
1
[}
i
i
1
1
1
[}
i
1
)

L] L] ° ®» e o o . L] L Y L] L] . L]

e e et e s e - I M M M S G == —— — e .

. e mm e mr fm e R N — T mm mm mm - —- -

Figure 2-3

