NETETRIE S0 ==~ P

Using the the demo programs

The following instructions will allow you to run the demo programs
without having to read the whole instruction manual. By running the programs
you will gain an appreciation of the various capabilities provided by the
graphics support package. This will provide you with a frame of reference
when reading the manual. Several functions in these programs assume that
there is a joystick connected to A-to-D channels 0 and 1. If you do not have
a joystick simply roll a finger over the joystick connector pins on the
graphics board. Your body resistance will cause minor changes in the digital
values read by the program. Since the A-to-D circuits are low voltage (10
volt) dividers you should not experience any sensations in your finger.

When working with the H89 graphics board it is recommended that you at least
connect one of the flat ribbon cables to the top most connector (blue stripe
up) and then roll your finger over the free end of the cable. This will
allow you to do the tests and still keep your hand out of the H89 terminal. u
1f you have any reservations about performing the tests, using your finger as:
described above, the general idea and capabilities of the graphics boards can '
be gained without them. ¢

Running the SOUND demo
Load SOUND8 or SOUNDBY and follow the next steps.

Select option 1 and depress (CR). The message on the 25th line will
describe the type of noise which will be generated when you press the (CR)
again. You will depress the (CR) four times while executing the different
sounds demonstrated in option 1.

Select option 2 and depress (CR). The prompt on the 25th line will
indicate which hardware controlled amplitude shape will be demonstrated when
you next press the (CR).

Select option 3 and depress (CR). This will demonstrate a sweep of the
tones from S0HZ to 8000HZ.

Select option 4 and depress (CR). This demonstrates sweeping the tone
period values from 50 to 8000.

If you have a joystick connected to A-to-D channels 0 and 1 select
option 5 and depress (CR). The initial tone produced will be 1000HZ. As
this demo runs it will display the joystick ‘Y’ value and frequency on the
25th line. If ‘Y’ is less than 100 the tone will go down in frequency and if
‘Y’ is greater than 140 the tone frequency will increase. When the joystick
is about in the center postition (Y between 100 and 140) the tone frequency
will remain constant. The lowest frequency which will be produced is SOHZ
and the highest has been limited to 8000HZ. Depress the joystick switch to
stop this portion of the demo

Select one of the previous options or ‘0’ to end the program.

Running the the TEST program

Load the TEST8 or TEST89 program as appropriate. Although the functions
in TEST can be selected randomly without crashing the program, compatable

Using the the demo programs

The following instructions will allow you to run this demo programs
without having to read the whole instruction manual. By running the programs
you will gain an appreciation of the various capabilities provided by the
graphics support package. This will provide you with a frame of reference
when reading the manual. Several functions in these programs assume that
there is a joystick connected to A-to-D channels 0 and 1. If you do not have
a joystick simply roll a finger over the joystick connector pins on the
graphics board. Your body resistance will cause minor changes in the digital
values read by the program. Since the A-to-D circuits are low voltage (10
volt) dividers you should not experience any sensations in your finger.

When working with the H89 graphics board it is recommended that you at least
connect one of the flat ribbon cables to the top most connector (blue stripe
up) and then roll your finger over the free end of the cable. This wil

allow you to do the tests and still keep your hand out of the H89 terminal.

1f you have any reservations about performing the tests, using your finger as:
described above, the general idea and capabilities of the graphics boards can!
be gained without them.

Running the SOUND demo
Load SOUNDB or SOUNDBY and follow the next steps
Select option 1 and depress (CR). The message on the 25th line will
describe the type of noise which will be generated when you press the (CR)

again. You will depress the (CR) four times while executing the different
sounds demonstrated in option 1

Select option 2 and depress (CR). The prompt on the 25th line will
indicate which hardware controlled amplitude shape will be demonstrated when
you next press the (CR)

Select option 3 and depress (CR). This will demonstrate a sweep of the
tones from 50HZ to 8000HZ

Select option 4 and depress (CR). This demonstrates sweeping the tone
period values from 50 to 8000

If you have a joystick connected to A-to-D channels 0 and 1 select
option 5 and depress (CR). The initial tone produced will be 1000HZ. As
this demo runs it will display the joystick ‘Y’ value and frequency on the
25th line. If ‘Y’ is less than 100 the tone will go down in frequency and if
‘Y’ is greater than 140 the tone frequency will increase. When the joystick
is about in the center postition (Y between 100 and 140) the tone frequency
will remain constant. The lowest frequency which will be produced is SOHZ
and the highest has been limited to 8000HZ. Depress the joystick switch to
stop this portion of the demo

Select one of the previous options or ‘0’ to end the program.

Running the the TEST program

Load the TEST8 or TEST89 program as appropriate. Although the functions
in TEST can be selected randomly without crashing the program, compatable

functions should be selected if reasonable displays are to be obtained. For
example, the VDP must be initialized in the G2 mode (G_INIT) before you can
expect the high resolution line and circle drawing routines to produce lines
and circles. The following steps will demonstrate some of the capabilities
of the VDP and graphics support package. If you have not read the manuals
some of the following terminology may seem confusing but you will still be
able to gain a visual understanding of your hardware and this support
package. Column one below indicates the selection which is to be made and
column two discribes the result which should take place.

SELECTION ACTION
====z==== ==za=z
1 Initialize in the multi color mode
2 Draw multi color lines
3 Draw multicolor circles. =
11 Define four 8x8 sprites.
29 Change the sprites to a 2X magnification.
18 Change the color of the lower three sprites.
1 Reinitialize in the 62 mode (192 x 256).
11 Define four sprites (8x8).
29 Change sprites to 2X magnification.
22 Attach sprite 3 (blue) to the joystick on channels 0 and 1.

Move the joystick around and notice how the blue sprite will
slide over the yellow sprite (4) which is of a lower priority.
The X-Y coordinates will be dynamically displayed on the 25th
line of the H89/H19 CRT until the joystick switch is depressed
If the motion of the sprite seems jumpy it is due to the time it
takes to write to the H89/H19 screen.

2 Draw G2 mode lines.

23 Fill a subarea of the display.

24 Change the on/off colors to white/magenta

3 Draw G2 mode circles.

25 Clear the GZ mode screen. Notice that the sprites not cleared

as they are not part of the pattern plane on which lines and
circles are drawn

19 Turn the VDP off.
20 Turn the VDP on.
H Put the 62 mode line and circle drawing routines in the toggle

mode. Nothing visiable will happen
2 Toggle lines on.

3 Toggle circles on.

3 Toggle circles off.
23 Fill the subarea again.

27 Test for screen pixels being turned on. The upper left corner
of the red sprite is used as the reference point for locating the
sprite. Use the joystick to move the sprite around the screen.
As the upper left corner of the sprite goes over a pixel which is
turned on the color of the sprite in the center of the screen
will change. Depress the joystick switch to end this function.

17 Turn on the ‘early bit’ for sprites one thru three. This moves
the sprites 32 pixels to the left.

31 Reset the ‘early bits’.

16 Move the first three sprites such that one half of them is off
the screen

1 Reinitialize in the G2 mode for 8x8 sprites.

11 Define four sprites.

29 Make them 2X in size.

13 Define three more sprite patterns not attached to attributes

and thus they will not be seen on the screen.

15 Assign the new patterns to the attributes originally used by
by sprites 1 thru 3.

26 Initialize in G2 mode for 16x16 sprites with magnification set
for 2X.

12 Define four 16x16 sprites at a magnification of 2X

28 Put sprites back to 1X magnification.

14 Define three new 16x16 sprite patterns. You should not see any

change to the screen.

15 Assign the new patterns to sprites 1 thru 3.

21 Draw a fan of lines using MOVE and DRAW rather than PLOT and DRAW
commands .

30 Initialize in the pattern mode

2 Draw G2 mode lines. This is an incompatable operation and

results in a messed up screen but does not crash the program or
harm the hardware.

3 Draw G2 mode circles. Again, this is incompatable and further
messes up the screen

Now you are on your own to experiment with the functions in any order
you like or you may stop the program by entering a selection of ‘0°.

ACIRC and CCIRC programs

The ACIRC and CCIRC programs are provided in the languages you ordered
The comments in these programs should assist you in understanding how the the
graphics calls work and provide you with a foundation upon which you can
write vour own programs.

When run, the CCIRC program draws concentric circles and generates tones
proportional to the radius of the circles. To stop the program depress any
joystick switch which in connected to the ‘A’ input/output port on the
graphics board. Hold the switch down until the circles are all erased. If
you do not yet have a joystick then vou will have to do a hard reset or ‘Z°'Z
under HDOS to stop the program.

ACIRC draws circles and a ‘rubber band’ line using the toggle mode of
line drawing. 1In the toggle mode the lines and circles are rapidly drawn and
erased such that figures can be dynamically moved around the screen. In
ACIRC, the color of the lines and 8x8 pixel sprite change each time the
joystick switch is depressed. The radius of the circle is proportional to
the Y coordinate of the sprite. One end of the ‘rubber band’ linme is
connected to the center of the display area and the other is connected to the
X-Y coordinates read from the joystick position. To stop the program move
the sprite off of the screen or use ‘Z°Z under HDOS or a hard reset under
CP/M

NOTE: Due to the size fo the executable load modules, support programs
and data sets for COBOL and MBASIC only the source code for ACIRC is included
for these languages. Thus, users of COBOL will have to compile and link the
ACIRC.COB file. MBASIC users will use the ACIRC.DAT file as input to BASLOAD
to generate the ACIRC.MEM file and first part of the MBASIC program. Follow
the instructions in the language supplement. Also, be sure that you do do
this with data sets copied from the distribution disks. You will also have
to generate an I0H8 REL or I0OH89.REL file as described in Appendix A of the
user manual This will give you practice generating graphics programs as you
will be starting with correct source code.

PASCAL MT+ LANGUAGE SUPPLEMENT

The components of this support package have been designed
such that they may be used in a wide variety of system
configurations. Programmers using Pascal MT+ may use the
considerable flexability of that system to customize that
compiler to their hardware. The GSLs are set up so that the
same program code can be used to drive both the H8 and H89
versions of the graphics boards

A way of having programs with the same basic name on the
same disk is to use different extensions, such as .H8 and .H89
instead of .ABS. or .COM. Such programs can be run by changing
the desired version so that it has the .ABS or .COM extension.

The file EXTDECS.PAS contains the declarations necessary to
use the MT+ compatible H8PAS and H89PAS files. Note that not
all of these declarations are needed for any particular program.
Note also that if you try to compile a program using the whole
EXTDECS.PAS file you may run out of symbol table space. The
proper technique to use is to delete from a copy of EXTDECS.PAS
the declarations for all functions and procedures which will not
be used by the program. This will free up considerable symbol
table space. To gain additional table space you can also use
the "K" toggles which are documented in the Pascal MT+ user
manual. See the TEST.* files on the demo disk for an example of
a reduced EXTDECS.PAS include file. The reduced file is named
TEST.DEC to indicate that the file is the external declarations
for the program TEST.

Linking the GSL modules with your program is done using the
standard MT+ linking techniques. Representative compile and
link command lines are provided below.

Compile; PAS YOURPROG

Link; LINKMT YOURPROG,H8PAS/S,10H8,PASLIB/S

Note the data set SYn:IOH8. This is the file vou produced
by running the SETHOS8 or SETCPM8 program as described in
Appendix A of the main manual If you are using an H89 then
link in IOHB9 instead of IOH8. 1If you are using floating point
math you will need to include the appropriate library file for
the math routines in between the I0OH8 or IOH89 and PASLIB.

GRAPH-PAC-11

HARDWARE DEVICE DRIVER AND BASIC SUPPORT ROUTINES
FOR THE
HA-8-3 AND HA-89-3

COLOR GRAPHICS AND SOUND GENERATION BOARDS

(C) copyright 1983 by

Fred Pospeschil

Dave Troendle

CONTENTS

General Introduction
Basic Primitives

Read Analog Channel

Read VDP Status -

Set VDP Option Reqzster

Set VDP Address Offset Reg)sters
Set Pattern Name Table Address
Set Color Generator Table Address
Set Pattern generator Table Address
Set Sprite Name Table Address 3
Set Sprite Pattern Generator Table Addrass

Set Border Color .

Reading and Writing VDP Display Memorv (VRAM)
Write Byte Directly to VRAM .

Read Byte Directly From VRAM
Read Byte From Next VRAM Address

Enable/Disable Video Display

Clear VDP Screen

Pause . .

Composite Pr!lltlves

Initialize VDP

VRAM Allocation . . .

Plotting Points and Drawlna Lines and Clrcles
Plot Points . . T I
MOVEXY The X,Y Coordina(as &

Test The State Of A Specified GZ Mode Plxel
Draw Lines .

G2 Point Plo!l!nq And Llne Drawina Control
Draw Circle

Graphics 2 Modé Area Hanipulatlon Procedurss

Area Color Control
Area Color Fill
Random numbers
Reset G2 Mode "ON/OFF" colors
Change line colors
Graphic bars . .
Graphics Text and Svnbols
GRAPH-PAC-II Standard Fonts
User Generated Fonts
Define sprite bit patterns
Define 8x8 sprite patterns
Define 16x16 sprite patterns
Define Sprites . . .
Define 8x8 sprites :
Define 16x16 sprites
Position Sprite . .
Early Bit Control
Sprite Pattern Creut:on
Sprite Pattern Assignment
Sprite Color Update

COEBUV VG NS -

Programmable Sound Generator (PSG) Support

Overview
PSG Basic Pr:nxtives

Direct Read/Write of PSG neqisters'

Write PSG Register/Port
Read PSG Register/Port
Composite Primitives .
Set/Reset PSG Options
Set Tone Frequency .
Set Channel Amplitude N
Set Noise Gemerator Frequency .

Set Envelope Cycle (Duration) Time

Set Envelope Shape/Cycle Shape

P56 Control Considerations .
Routines Used only by the HA-89- 3

VOTRAX Speech Synthesizer

Test VOTRAX SC-01

Set Speech Inflection

Output a Speech Phoneme
Output a Speech Phoneme x
Digital to Analog Convers:on (DAC)

APPENDIX A - Setting the Input and Dutﬁut Port Addressas
APPENDIX B - Rewiring the JVC-40 Joy Stick

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXXXXKEXX3

General Introduction

GRAPH-PAC-1I provides an integrated set of utility
procedures and functions which allow the programmer to directly
access and manipulate the hardware components of the HA-8-3/HA-
89-3 graphics boards from MBASIC and compiled MBASIC (CP/M),
FORTRAN, COBOL, C80, Pascal MT+ and MACRO-80 assembler language
code. These routines provide all of the capabilities contained
in the HA-8-3/HA-89-3 distribution disk files. In addition,
they provide higher level composite calls which facilitate
sprite manipulation, line drawing, and circle generation within
the display area.

Although the graphics hardware manuals should be read and
studied before initial programming efforts are begun, the use of
these routines will greatly reduce the depth of understanding
needed to program the graphics board. Use of these routines
will also speed up program development, improve program
reliability, and improve code level communication between
graphics users and programmers. If you are just beginning to
use the graphics/sound board it is recommended that you:

1. Read this manual for general orientation to the
capabilities of the board and support provided by this set of
software routines.

2. Study the hardware manuals which were supplied with the
board to gain familiarity with their organization and basic
content .

3. Study each section of this manual along with the
referenced portions of the hardware manuals.

4. Study the language supplement and Appendix A before
trying to write or compile a program.

Considerable effort has been devoted to optimizing the
algorithms and code used to control the hardware and to perform
drawing lines and circles. Since these routines are written in
8080 assembly language, the final application program
performance should be optimized thru the use of these routines.
In addition, they can be used with any language which supports
the MICROSOFT .REL load module format on both 8080- and Z80-
based systems. Special interfaces have been developed for users
of MBASIC. Refer to the language and run-time supplement for
additional information data representations and program
preperation considerations which apply to the host language vou
are using.

XRXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXXXXXEXX3Z

The documentation for these routines is arranged such that
the basic, or most primitive, functions and procedures are
described first. These are followed by the higher level
composite functions and procedures which will tend to be used in
the vast majority of graphic application programs. Thus, most
programmers will find the initial portion of this documentation
most useful as & transition, or bridge, from the hardware level
descriptions and considerations covered in the manuals
distributed with the HA-8-3/HA-89-3. References back to the
hardware manuals are provided where appropriate.

As appropriate, the recommended system constants to be used
with this package are included with the language specific
supplements which are included with this manual.

For maximum cross-language compatibility, all procedure and
function (subroutine) parameters are passed as 16 bit values.
In some of the routines it was practical to allow MACRO-80
programs to pass arguments in the 8080/Z80 registers. By using
this approach the calling and called routines can normally save
several instructions per call. For each routine in which this
technique can be used a special "MACRO-80 NOTE:" is provided.
MACRO-80 programs should not include the underscore in
subroutine names. For example, R_CHAN should be written as
RCHAN. All assembly language programs must save any registers
which have needed data in them as the subroutines do not save
and restore registers upon entry and before exit. Since
language implementations change over time, the coding and
calling conventions in your programs may have to be changed as
vour language implementation changes.

For maximum speed and to keep these basic routines small,
it is assumed that only legal values are passed to them. If the
user of the application can input illegal or out-of-range values
then the application program must provide appropriate editing of
the input data before calling these routines.

Appreciation is extended to Mr. Larry Reeve with whom we
have had many discussions on how best to support the graphics
boards. Due to this common involvement, users of the Lucidata
Pascal Graphics Compiler from Polybytes will find considerable
similiarities between these packages. That these software
packages should have a similiar approach, and in some cases use
the same words, was an explicit design goal to facilitate
communication between programmers and users of the graphics
boards.

Appreciation is also extended to Phil Evans, Bob Cole, and
Mark Kroska of the OMAHA Heath Users Group for their help in
editing this manual and testing the software. The users of
GRAPH-PAC-I1 with whom we have had many pleasant discussions are
also to be commended for their many ideas and suggestions which
lead to this version.

XXXXXXX%%x%x GRAPH-PAC-1I USER DOCUMENTATION (C) XXXXXXX2xxX2

Although some of the early programs for the HA-8-3 used the
H19 key pad as an input device, the use of joysticks is strongly
recommended for the most natural and effective use of your
system. Appendix B provides instructions on how to wire
inexpensive, yet effective, joysticks to the system.

In Pascal MT+ and Tiny Pascal the underscore (_) can be
used to improve program readability. It does not count as a
significant character in variable and procedure/function names.
Thus P_NAME is the same as PNAME. All names used in this
support package were limited to six characters so as to be
compatible with languages such as MACRO-80 and FORTRAN.

The routines provided in this package may be used on any
number of CPU‘’s directly owned by the purchaser and making
backup copies is strongly recommended. Selling or giving these
routines to others violates United States copyright laws.
However, selling or sharing programs which have the relocatable
modules linked into them is permitted and encouraged.

When writing with respect to specific coding problems
please include as much printed documentation as possible and
clearly indicate which language support package is being used.
When practical, providing source code and executable load
modules which demonstrate the problem will facilitate diagnosing
problems. The user is fully responsible for testing and
certifying all programs which use these routines

Suggested changes and corrections to this document should
be sent to:

Fred Pospeschil
3108 Jackson St.
Bellevue, NE 68005

TRADEMARKS

Pascal MT+ is a trademark of Digital Research.
MACRO80 is a is a trademark of Microsoft

HDOS is a trademark of Heath Co.

CP/M is & registered trademark of Digitial Research.
MBASIC and CBASIC are a trademarks of Microsoft.

C80 is a trademark of The Software Toolworks.

XXXXXXXKX%X GRAPH-PAC-II USER DOCUMENTATION (C) XXXEXXXKXXX

BASIC PRIMITIVES

READ ANALOG CHANNEL

==ss=ssssssssssss===
PASCAL ADVALUE := A_D_CHAN(CHANNEL);
FORTRAN ADVAL = ADCHAN(CHAN)

c8o advalue = adchan(channel);

MBASIC CALL ADCHAN(CHAN%)
CALL BASVAL(ADVAL%)

COBOL CALL "ADCHAN" USING CHANNEL.
CALL "COBVAL" USING ADVALUE.

The graphics board contains eight analog-to-digital input
channels (numbered 0 thru 7) which can be used by the
application program. The analog-to-digital hardware converts
the analog input voltage to a digital value between 0 and 255.
This value is read by the function A_D_CHAN. The calling
program specifies the desired analog channel in the agrument
"CHANNEL". Legal values for "CHANNEL" are "0" thru "7".
A_D_CHAN returns an integer value of 0 thru 255 depending on the
position and type of joystick being used. The argument
“CHANNEL" can be either the numbers 0 thru 7 or a variable name
of type integer which has been assigned a value of 0 thru 7. It
is the responsibility of the calling program to ensure that only
values 0 thru 7 are passed to the function.

The analog-to-digital converters require about 35 micro
seconds, to convert an analog value to a digital representation.
The A_D_CHAN procedure for the HA-8-3 uses a software timing
loop which will handle both two- and four-megahertz CPUs. The
HA-89-3 version of the procedure uses the HA-89-3’'s Programmable
Interrupt Controller (PIC) to determine if the A-To-D conversion
has been completed. The VD? initialization routines G_INIT,
P_INIT and M_INIT initialize the PIC to support this operation.

MACRO-80 NOTE: The alternate entry point for A_D_CHAN is
RCHAN. To read an A-to-D channel, load the desired channel (0-
7) in the A register, CALL RCHAN, and the value will be returned
on the stack. For example:

LDA © ;SET FOR READING CHAN 0
CALL RCHAN ;CALL A-TO-D FUNCTION
POP H ;H = UNDEFINED, L = A-TO-D VALUE

4
%

XXXXXXXXXX% GRAPH-PAC-II USER DOCUMENTATION (C) *XXXEXXRXX3

READ VDP STATUS

s==ss=s=s======
PASCAL STATUS := STATS;

FORTRAN STATUS = STATS

cso status = stats();

MBASIC CALL STATS
CALL BASVAL(STATUS%)

COBOL CALL "STATS".
CALL “"COBVAL" USING STATUS.

STATS returns the contents of the eight bit read-only VDP
status register. VDP status register layout is shown at the
bottom of VDP manual page 10. The contents are described in
paragraphs 2.5 thru 2.5.3, VDP manual page 12. One of the main
uses of the VDP status register is to detect when sprites have
pixels which overlap (the sprites have collided).

MACRO-80 NOTE: STATUS is returned on the stack. To obtain
the contents of the VDP status register CALL STATS and then POP
HL. After these instructions are executed, the contents of the
VDP status register will be in the L register

XXXXXXXX%XX GRAPH-PAC-II USER DOCUMENTATION (C) XXXX2XX3%%3

SET VDP OPTION REGISTER

PASCAL V_OPTS(OPTIONS);

FORTRAN CALL VOPTS(OPTS)

c8o vopts(options);

MBASIC CALL VOPTS(OPTIONS)

COBOL CALL "VOPTS" USING OPTIONS.

Procedure V_OPTS loads the integer value of "OPTIONS" into
VDP registers 0 and 1. The most significant byte of "OPTIONS"
is loaded into register 0 and the least significant byte into
register 1. Refer to VDP manual pages 9-11 for the description
of the bit positions used in these registers.

MACRO-80 NOTE: The alternate entry point for V_OPTS is
VP.SOP. Load the bit pattern for VDP register 0 in the H
register and the pattern for VDP register 1 in the L register.
Follow these instructions with a call the VP.SOP. For example:

MVI H,00000010B ;Pattern for VDP reg 0
MVI L,10000000B iPattern for VDP reg 1
CALL VP.SOP ;Set the options

AXXXXXXXXX% GRAPH-PAC-1I USER DOCUMENTATION (C) X&XXEXXKEXXX

SET VDP ADDRESS OFFSET REGISTERS

In the following five procedures the argument "ADDRESS" is
an integer value in the range of 0-16K. The calling program
must ensure that the arguments are within this range and on the
proper memory boundaries. These procedures perform the
necessary transformations of the addresses before loading them
into the VDP offset registers. To be on an acceptable boundary
the address must be evenly divisible by the boundary value
listed with each procedure. Initial recommended values (IRV)
for each register are provided below. These values allow full
use of the VDP while only using one quarter of the available
graphics memory. Thus four complete sets of tables can be
defined at one time when working in the pattern mode. The high
resolution mode (G2) uses all of the 16K graphics memory and
thus does not permit multiple images to be defined at the same
time (see G_INIT below).

SET PATTERN NAME TABLE ADDRESS
PASCAL P_NAME(ADDRESS) ; Boundary = 1024 IRV = 1024
FORTRAN CALL PNAME(ADDRS)
cseo pname (addrs);
MBASIC CALL PNAME(ADDRS%)
COBOL CALL "PNAME" USING ADDRESS.
SET COLOR GENERATOR TABLE ADDRESS
smssssssssssssssssssssssssssss=s®
PASCAL C_GEN(ADDRESS) ; Boundary = 64 IRV = 1792
FORTRAN CALL CGEN(ADDRS)
c8o cgen(addrs);
MBASIC CALL CGEN(ADDRS%)

COBOL CALL "CGEN" USING ADDRESS.

XXXXKKXKXXX GRAPH-PAC-II USER DOCUMENTATION (C) **¥XX3XX3%X3

SET PATTERN GENERATOR ADDRESS

smss=ssssssssssssssssss=ss=ss==
PASCAL P_GEN(ADDRESS) ; Boundary = 2048 IRV = 2048
FORTRAN CALL PGEN(ADDRS)

cso pgen(addrs);

MBASIC CALL PGEN(ADDRS%)

COBOL CALL "PGEN" USING ADDRESS.

SET SPRITE NAME TABLE ADDRESS

s=========
PASCAL S_NAME(ADDRESS); Boundary = 128 IRV = 1920
FORTRAN CALL SNAME(ADDRS)
[=1-1] sname(addrs);
MBASIC CALL SNAME(ADDRS%)
COBOL CALL "SNAME" USING ADDRESS.
SET SPRITE PATTERN GENERATOR TABLE ADDRESS
sssssssssssssEssssssssssssssssssssssssss=s
PASCAL S_GEN(ADDRESS); Boundary = 2048 IRV = 0
FORTRAN CALL SGEN(ADDRS)
cso sgen(addrs);
MBASIC CALL SGEN(ADDRS%)

COBOL CALL "SGEN" USING ADDRESS.

KXERXEXK%%% GRAPH-PAC-II USER DOCUMENTATION (C) *XXXXXXXXXX

The VDP offers considerable flexibility in assigning memory
usage. Because of this, the user is cautioned to carefully
study the VDP manual before using the above five procedures
(refer to VDP manual pages 9-12).

MACRO-80 NOTE: Alternate entry points for the above
routines are:

P_NAME = VDPSPN
C_GEN = VDPSCG
P_GEN = VDPSPG
S_NAME = VDPSSN
S_GEN = VDPSSG6

To use these alternate entry points, load the HL register
pair with the desired address and then call the appropriate
routine. For example, to set the pattern name table address to
6144, use the following instructions: LXI H,6144 followed by
CALL VDPSPN.

SET BORDER COLOR VALUE

PASCAL BORDR(VALUE);

FORTRAN CALL BORDR(VALUE)

cso bordr(value);

MBASIC CALL BORDR(VALUE%)

COBOL CALL "BORDR" USING VALUE.

“VALUE" is an integer value in which the right most four
bits (values 0 thru 15) set the border color for all VDP display
modes. In the text mode they also set the display background
color (color 0). Bits 5 thru 8 are the text color 1 value. In
the non-text modes, bits 5 thru 8 are ignored. See VDP manual
pages 10 and 12.

MACRO-80 NOTE: Alternate entry point for BORDR is VDPSTB
and it expects the VALUE to be in the L register. Values in the
H register are ignored.

XXXXXXX%%%% GRAPH-PAC-11 USER DOCUMENTATION (C) XX¥XXRXkikxi

READING AND WRITING VDP DISPLAY MEMORY (VRAM)

WRITE BYTE DIRECTLY TO VRAM

===s=s===ssassszss==ss=s==s
PASCAL W_B_DIR(DATA, ADDRESS);

FORTRAN CALL WBDIR(DATA, ADDRS)

c8ao wbdir(data, addrs);

MBASIC CALL WBDIR(DATA%, ADDRESS%)

COBOL CALL "WBDIR" USING DATA, ADDRESS.

This procedure causes the "DATA" (must be a integer value
in the range of 0 thru 255) to be written into VRAM at the
specified address (an integer value value in the range of 0 thru
16K) .

MACRO-80 NOTE: The parameters for this routine must be
passed on the stack. Recommend using the following

instructions:

LXI H,DATA_VALUE

PUSH H
LXI H,ADDRESS_VALUE
PUSH H

CALL WBDIR

10

XXXXXXXXX%% GRAPH-PAC-1I USER DOCUMENTATION (C)

WRITE BYTE TO NEXT VRAM ADDRESS

===
PASCAL W_NEXT(DATA);

FORTRAN CALL WNEXT(DATA)

cso wnext(data);

MBASIC CALL WNEXT(DATA%)

COBOL CALL “WNEXT" USING DATA.

The W_NEXT procedure loads the "DATA" value
location following the last one written. Since
exploits the auto-increment feature of the VDP,
preceded by a call to W_B_DIR which sets the ini

address. After the initial call to W_B_DIR one
W_NEXT can be made.

AEERRRKRKXE

in the VRAM
this procedure
it must be
tial write
or more calls to

MACRO-80 NOTE: The alternate entry point for this routine
is VP.WRV. After using WBDIR to set the write address and write
the first byte, successive bytes can be written by loading them

into the A register and calling VP.WRV

XXXKKXXK%X% GRAPH-PAC-II USER DOCUMENTATION (C) AXRXERKRARXD

READ BYTE DIRECTLY FROM VRAM

s==msmssssssss=ss=sssssss===
PASCAL PROGRAM_VARIABLE := R_B_DIR(ADDRESS);
FORTRAN PVAR = RBDIR(ADDRS)

cso pvar = rbdir(addrs);

MBASIC CALL RBDIR(ADDRS%)
CALL BASVAL(PVAR%)

COBOL CALL “RBDIR" USING ADDRESS
CALL "COBVAL" USING PROGRAM-VARIABLE.

R_B_DIR causes the VRAM address pointer to be set to the
indicated value (in the range of 0 to 16K) and then assigns the
byte value found at that location to the program variable. This
procedure has the necessary wait loop built into it to handle
the VDP address settling time requirements. Thus, when reading
a series of bytes from VRAM, RBDIR should be used for reading
the first byte and RNEXT should be used for reading all
following successive bytes.

MACRO-80 NOTE: To use this routine, PUSH the VRAM address
onto the stack, CALL RBDIR, and then POP the stack into a
register pair. If, for example, the stack is POPed into the HL
registers, the VRAM data will be in the L register and the H
register will contain 0.

12

XXXRLXXEXX% GRAPH-PAC-II USER DOCUMENTATION (C) XREXRXXXXX3

READ BYTE FROM NEXT VRAM ADDRESS

PASCAL PROGRAM_VARIABLE := R_NEXT;
FORTRAN PVAR = RNEXT
c8o pvar = rnext();

MBASIC CALL RNEXT
CALL BASVAL(PVAR%)

COBOL CALL “RNEXT".
CALL "COBVAL" USING PROGRAM-VARIABLE.

The function R_NEXT assigns the value stored in the next
VRAM memory location to the program variable. This function
also uses the VDP auto-increment feature and therefore must be
preceded by a call to R_B_DIR. After an initial call to R_B_DIR
one or more calls to R_NEXT can be made.

MACRO-80 NOTE: Calling RNEXT puts the contents of the next
VRAM location on the stack. If the stack is POPed into the HL
register pair, the H register will contain 0 and the VRAM data
will be in the L register.

)

XXXXKXXKXXXX GRAPH-PAC-II USER DOCUMENTATION (C) KX¥XXKXXXRXX3

ENABLE / DISABLE VIDEO DISPLAY

PASCAL VDP_ON; Turn VDP display on
FORTRAN CALL VDPON

c8o0 vdpon();

MBASIC CALL VDPON

CoBOL CALL "VDPON".

PASCAL VDP_OFF; Turn VDP display off
FORTRAN CALL VDPOFF

c8o0 vdpoff();

MBASIC CALL VDPOFF

COBOL CALL "VDPOFF".

These procedures are used to control whether on not the
patterns and sprites defined in the VRAM are displayed. The
procedures can be used with the Pattern, Multicolor, and
Graphics 2 modes. If major updates to the the color or pattern
tables cause distracting displays, the procedures should be used
to turn off the display momentarily

CLEAR VDP SCREEN

PASCAL G_CLEAR;
FORTRAN CALL GCLEAR
cso gclear();
MBASIC CALL GCLEAR
COBOL CALL “GCLEAR".

G_CLEAR will rapidly clear the display screen by writing
0‘s to all pattern generator table storage locations. It is
designed to work in conjunction with the VRAM allocation set up
by G_INIT and thus assumes that the pattern generator table
begins at VRAM location 0. Clearing the display with G_CLEAR is
considerably faster than using G_INIT to reinitialize all VRAM
storage tables. In addition, it does not disable the sprites,
thus permitting the pattern plane to be cleared without
disturbing any sprites which may be in the display area.

14

XXXXXEXKXXX GRAPH-PAC-II USER DOCUMENTATION (C) ®XXXXXXXXXX

PAUSE

=====
PASCAL PAUSE(TIME);

FORTRAN CALL PAUSE(TIME)

cso pause(time);

MBASIC CALL PAUSE(TIME%)

COBOL CALL "PAUSE" USING TIME.

PAUSE provides an easy way of halting further program
execution for a specified length of time. When using PAUSE, the
argument TIME is in two milli-second increments to be consistant
with the PAUSE procedure in Tiny Pascal. (also see "PSG CONTROL

CONSIDERATIONS"). The system software clock MUST be running
when this procedure is called.

XXKEXRXXK%% GRAPH-PAC-1I USER DOCUMENTATION (C) ARKRRKKEKKS

COMPOSITE PRIMITIVES

The following procedures provide more advanced capabilities
for controlling the images to be displayed by the VDP. Through
the use of these procedures, the programmer can concentrate more
on the actual application being developed and less on the VDP
hardware characteristics. In all of the following functions and
procedures the horizontal and vertical position arguments are
defined with 0,0 being in the lower left corner of the screen.
The range of the horizontal and vertical coordinates for each
function depends on the mode being used. In Graphics z mode, or
when controlling sprite positions, the horizontal coordinate (X)
system varies from 0 at the left border of the screen, to 255 at
the right border. In Multicolor mode, the horizontal coordinate
system varies from 0 at the left border of the screen to 63 at
the right border. The vertical coordinate (Y) system ranges
from 0 at the bottom to 191 at the top in the Graphics 2 mode,
and from 0 at the bottom to 47 at the top in the Multicolor
mode. NOTE: The VDP hardware has the 0,0 point at the upper
left corner of the screen (see VDP manual page 10). Since many
existing algorithms and thought patterns are set up to work with
the 0,0 point at the lower left, the VRAM address calculation
routine has been written to logically shift the X=0 and Y=0
point to the lower left as it could be done faster in assembly
language (one instruction) than in any higher level language
routine or statement.

It should be noted that not all software and not all
joysticks are set up for the 0,0 location being at the lower
left corner of the screen. The question then becomes, how does
one use a joystick wired for GRAPH-PAC, which has 0,0 at the
lower left? It‘s really quite simple. One way is to exchange
the "ground" and "vref" wires on the Y-AXIS pot of the joystick.
Another is to install a small double pole switch and use it to
switch these wires as needed. Yet another way is to change the
software to retranslate the "Y" coordinate. For example, if vou
are reading a joystick plugged into analog channels 0 and 1 by
using statements such as

X = A_D_CHAN(O0); Y := A_D_CHAN(1);
simply change the second statement to
Y := 191 - A_D_CHAN(1);

and the desired results will be achieved.

16

XXXXXXXXXX%X GRAPH-PAC-II USER DOCUMENTATION (C) K¥¥XXXXRXX%

INITIALIZE VDP

PASCAL G_INIT(MAG, SIZE, COLORO, COLOR1, BORDER); Mggz
FORTRAN CALL GINIT(MAG, SIZE, COLORO, COLOR1, BORDER)

cso ginit(mag, size, color0, colori, border);

MBASIC CALL GINIT(MAG%, SIZE%, COLORO%, COLOR1%, BORDER%)

COBOL CALL "GINIT" USING MAG, SIZE, COLORO, COLOR1, BORDER.

PASCAL P_INIT(MAG, SIZE, COLORO, COLOR1, BORDER); PATTERN
FORTRAN CALL PINIT(MAG, SIZE, COLORO, COLOR1, BORDER) Hone
cso pinit(mag, size, color0, colorl, border)

MBASIC CALL PINIT(MAG%, SIZE%, COLORO%, COLOR1%, BORDER%)

COBOL CALL "PINIT" USING MAG, SIZE, COLORO, COLOR1, BORDER.

PASCAL M_INIT(MAG, SIZE, COLOR1, BORDER); MULTICOLOR
MODE

FORTRAN CALL MINIT(MAG, SIZE, COLOR!1, BORDER)

c8o minit(mag, size, colorl, border);

MBASIC CALL MINIT(MAG%, SIZE%, COLOR1%., BORDER%)

COBOL CALL "MINIT" USING MAG, SIZE, COLOR1, BORDER.

MAG ----- 0 for small sprites (NOMAG)
1 for large sprites (MAG)
SIZE ---- 0 for 8x8 sprites (SSIZE)
1 for 16x16 sprites (LSIZE)
COLORO -- Color for OFF pixels (0 - 15 in G1/6G2 only)
COLOR1 -- Color for ON pixels (0 - 15 in G1/G2 modes)

This is the initial color of all pixels in the
multi-color mode.

BORDER -- 0 thru 15 for desired color
NOTE: In the Pattern mode the pattern name and generator tables

are initialized to a default value of "0". All 32 color table

17

XXXEXKXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) AXXKAXKEXRS

entries are set to the colorli/color0 values

The procedures on the previous page allocate VRAM and
initialize the VDP to the proper state for the specified mode .
It is important to note that the G_INIT,P_INIT, and M_INIT
procedures should not be used together, because one will cancel
the actions of the other.

WARNING! The VDP must be properly initialized by calling
one of the above procedures before calling any of the other
graphics routines in this package or else a system crash can be
expected. This initialization can be accomplished by calling
any of the above routines or by using the more basic primitives
to load the VDP registers and fill the graphics buffers with
proper data.

VRAM ALLOCATION

G_INIT P_INIT M_INIT

0 2048 2048 -- Pattern Generator Table
6144 1024 1024 -- Pattern Name Table
7168 1920 1920 -- Sprite Attribute Table
8192 1792 N/A -- Pattern Color Table
14336 0 0 -- Sprite Generator Table

18

XXXXXKXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) ¥¥XXRRXXXXX

PLOTTING POINTS AND DRAWING LINES AND CIRCLES

mmsmssssssssEssEssssssESsssssssssssssssEEE=Ss
PLOT POINTS
s==s=s======

PASCAL PLOT(X, Y); - G2 mode

FORTRAN CALL PLOT(X, Y)

cso plot(x, y);

MBASIC CALL PLOT(X%, Y%)

COBOL CALL “PLOT" USING X, Y.

PASCAL MCPLOT(X, Y, COLOR); - Multicolor Mode
FORTRAN CALL MCPLOT(X, Y, COLOR)

ceo mcplot(x, y, color);

MBASIC CALL MCPLOT(X%, Y%, COLOR%)

COBOL CALL "MCPLOT" USING X, Y, COLOR.

X ————— Horizontal position
Y e Vertical position
COLOR -- Color for point in Multicolor mode only.

This procedure will plot the smallest definable cell in
either plotting mode. In Multicolor mode the COLOR argument
specifies the color which is to be used at the X,Y location.

XXXXXEXKKXX GRAPH-PAC-II USER DOCUMENTATION (C) ®XXXXXXXXXX

MOVE THE X,Y COORDINATES

PASCAL MOVEXY(X, Y);
FORTRAN CALL MOVEXY(X, Y)
cso movexy(x, Vv);
MBASIC CALL MOVEXY (X%, Y%)
COBOL CALL "MOVEXY" USING X, Y.
X w==s== Horizontal position
¥ =vmee= Vertical position
The MOVEXY procedure is used to change the X,Y coordinates

to a new location without affecting the pixel at that location.
It operates the same in both the multi-color and pattern modes.

TEST THE STATE OF A SPECIFIED 62 MODE PIXEL

s=m=sssssss-_3sEsEsSssEsEsEsssssEssssssssss
PASCAL PIXEL_STATE := TEST_XY(X, Y);

FORTRAN PSTATE = TESTXY(X, Y)

cso pstate = testxy(x, vy);

MBASIC CALL TESTXY(X%, Y%)
CALL BASVAL(PSTATE%)

COBOL CALL “TESTXY" USING X, Y.
CALL “"COBVAL" USING PIXEL-STATE.

X ecm=e= Horizontal position

¥ s Vertical position

The TEST_XY procedure is used to test the status of an X,Y
location without affecting the pixel at that location. It is a

boolean function in that it returns TRUE (1) if the pixel is on
and FALSE (0) if the pixel is off.

20

AXRKKXXXEXX GRAPH-PAC-II USER DOCUMENTATION (C) ®AXXRXXXXX3

DRAW LINES

as=ss=s====
PASCAL DRAW(X, Y); - G2 mode
FORTRAN CALL DRAW(X, Y)

cso draw(x, v);

MBASIC CALL DRAW(X%, Y%)

COBOL CALL "DRAW" USING X, Y.

PASCAL MCDRAW(X, Y, COLOR); - Multicolor Mode
FORTRAN MCDRAW(X, Y, COLOR)

cso mcdraw(x, y, color);

MBASIC CALL MCDRAW(X%, Y%, COLOR%)

COBOL CALL "MCDRAW" USING X, Y, COLOR.

S Horizontal position
Y mmm——— Vertical position
COLOR -- Color for point in Multicolor mode only

This procedure draws a line from the last point referenced
in either a DRAW/MCDRAW, PLOT/MCPLOT or MOVEXY call. In
Multicolor mode COLOR defines the color of the line to be drawn.

21

XXRKXEXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXXXXXXXXX

G2 POINT PLOTTING AND LINE DRAWING CONTROL

ssss=sssssssssssssssEsssEsEsssssssssssssss
PASCAL G2_ON; Turn pixels on

FORTRAN CALL G20N

cso gzon();

MBASIC CALL G20N

COBOL CALL "G20ON".

PASCAL G2_OFF; Turn pixels off
FORTRAN CALL G20FF

cso g2off();

MBASIC CALL G20FF

COBOL CALL “"G20FF".

PASCAL G2_TOGG; Toggle the pixels
FORTRAN CALL G2TOGG

c8o g2togg();

MBASIC CALL G2TO0GG

COBOL CALL "G2TOGG".

The G2_ON, G2_OFF,and G2_TOGG procedures are used to
control the operation of the PLOT and DRAW procedures. After a
mode is set, the PLOT and DRAW procedures will continue to turn
on, turn off, or toggle (reverse or flip) the pixels until a
different mode is set.

22z

XXXXXXXX%%X GRAPH-PAC-II USER DOCUMENTATION (C) XXXXXXXXXX%

DRAW CIRCLE

massszm====
PASCAL CIRCLE(X, Y, R); - 62 mode
FORTRAN CALL CIRCLE(X,Y, R)

cso circle(x, y, r);

MBASIC CALL CIRCLE(X%, Y%, R%)

COBOL CALL “CIRCLE" USING X, Y, R.

PASCAL M_CIRC(X, Y, R, COLOR); - Multicolor Mode
FORTRAN CALL MCIRC(X, Y, R, COLOR)

cso mcirc(x, y, r, color);

MBASIC CALL MCIRC(X%, Y%, R%, COLOR%)

COBOL CALL “"MCIRC" USING X, Y, R, COLOR.

-- Horizontal position of circle center

Y -=---e Vertical position of circle center

-- Radius of circle in screen pixels

COLOR -- Color of line used to draw circle in MC mode

These procedures are used to rapidly draw circles in both
the G2 and Multicolor modes. When a portion of the circle would
fall outside of the display area, the circle drawing routine
will connect the visible portions of the circle with straight
lines which run along the outermost pixels of the display area.

23

XXXXXXXXXX% GRAPH-PAC-II USER DOCUMENTATION (C) XXXXEXX3XX3

GRAPHICS 2z MODE AREA MANIPULATION PROCEDURES

AREA COLOR CONTROL

PASCAL G2_FILL(XMIN, XMAX, YMIN, YMAX, COLORO, COLOR1);

FORTRAN CALL GZFILL(XMIN, XMAX, YMIN, YMAX, COLORO, COLOR1)

cso gzfill(xmin, xmax, ymin, ymax, color0, colori);

MBASIC CALL G2FILL(XMIN%, XMAX%, YMIN%, YMAX%, COLORO0%, COLOR1%)

COBOL CALL "G2FILL" USING XMIN, XMAX, YMIN, YMAX, COLORO, COLORI1.

XMIN ---- Left side of the area

XMAX ---- Right side of the area

YMIN ---- Bottom side of the area

YMAX ---- Top side of the area

COLORO -- Color of OFF pixels in the area
COLOR1 -- Color of ON pixels in the area

This procedure defines the two colors that will be used for
an area of the screen. All pixels within the bounds of the area
defined by XMIN, XMAX, YMIN, and YMAX will be affected by this
procedure. In addition, because of the method used by the 9918A
VDP for color definition in the Graphics 2 mode, some areas to
the left and to the right of the defined area may be affected.
The actual left and right borders can be computed with the
following equations:

ACTUAL_XMIN = (XMIN DIV 8) x 8§

ACTUAL_XMAX = XMAX - (XMAX MOD 8) + 7

24

XXXXXXXXX%%x GRAPH-PAC-II USER DOCUMENTATION (C) *XXXXXRXXX%

AREA COLOR FILL

PASCAL A_FILL(XMIN, XMAX, YMIN, YMAX);
FORTRAN CALL AFILL(XMIN, XMAX, YMIN, YMAX)
c80 afill(xmin, xmax, ymin, ymax);
MBASIC CALL AFILL(XMIN%, XMAX%.‘YMIN%, YMAX%)
COBOL CALL “AFILL" USING XMIN, XMAX, YMIN, YMAX.
XMIN -- Left side of the area
XMAX -- Right side of the area

YMIN -- Bottom side of the area

YMAX -- Top side of the area

This procedure is used to control the on/off state of
pizels in a sub-area of the graphics display. Since it uses the
line drawing routine to paint the sub-area, this routine will
turn on/off/or toggle all of the points in the specified area
depending on the last G2-mode set.

RANDOM NUMBERS

PASCAL SEED(NEW_SEED); RANDOM_NUMBER := RAND;
FORTRAN CALL SEED(NSEED) RNUM = RAND

c8o seed(nseed) ; rnum = rand();

MBASIC CALL SEED(NSEED%) CALL RAND

CALL BASVAL(RNUM%)

COBOL CALL"SEED" USING NEW-SEED. CALL“RAND"
CALL "COBVAL" USING RAND-NUMB.

NEW_SEED - Any integer number other than 0 (zero). Used to
initialize the stream of random numbers returned
by successive calls to RAND.

The random numbers returned by RAND are in the range of +/-
32K. The numbers are basically CRC-16 numbers. The method used
to compute the CRC-16 is an adaptation of the method described
by Suresh Vasa in the May, 1976 issue of COMPUTER DESIGN. After
once calling SEED, RAND can be called any number of times. SEED
can also be called whenever desired to start a new series of
random numbers.

25

X¥XXXXXXXRXX GRAPH-PAC-I1 USER DOCUMENTATION (C) XERKRXKRXK%S

RESET VDP G2 MODE "ON/OFF" COLORS

===s=szsssssssss=ss=ass=ssssssasza=
PASCAL SET_G2_C(COLOR_OFF, COLOR_ON);
FORTRAN CALL SETG2C(COFF, CON)
cso setg2c(coff, con)
MBASIC CALL SETG2C(COLOROFF%, COLORON%)
CcoBOL CALL “"SETG2C" USING COLOR-OFF, COLOR-ON.
COLOR_OFF - 0 thru 15. Sets color for “OFF" pixels
COLOR_ON -- 0 thru 15. Sets color for "ON" pixels.
The SET_G2_C procedure will rapidly reset the G2 mode
pattern plane colors without disturbing the sprite or border
colors. Any lines, circles, etc., which are displayed will have

their colors changed to the new color specified by COLOR_ON and
the background will be changed to COLOR_OFF.

26

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXKXKXRXX%

LINE AND POINT COLOR CONTROL

PASCAL LCOLOR(LINE_COLOR, BACKGROUND_COLOR);
FORTRAN CALL LCOLOR(LCOLOR, BCOLOR)

cso lcolor(lcolor, bcolor);

MBASIC CALL LCOLOR(LCOLOR%, BCOLOR%)

COBOL CALL "LCOLOR" USING LINE-COLOR, BACKGROUND-COLOR.

LINE_COLOR ------- Color of lines and points drawn
subsequent to calling this
procedure. Color can be called
as many times as needed to change
and rechange the line and point
colors.

BACKGROUND_COLOR - Color of background area surrounding
the lines and points drawn subsequent
to last calling this procedure.

The LCOLOR procedure allows establishing new colors for
lines and points without resetting the color of points and lines
already drawn. Due to the manner in which the 9918A manipulates
the color plane some of the pixels close to the new lines and
points may also be changed. If the background color specified
in this procedure is different than that already displayed then
an eight pixel wide area of the background will be set to the
new background color. This process can be used to create some
interesting effects. However, it can also cause some possibly
undesired effects. Although difficult to explain in words, its
is readily understood when the effects are seen. The ACIRC
demonstration program is designed to illustrate the results of
using this procedure.

27

XXXXXXX%X%%% GRAPH-PAC-I1I USER DOCUMENTATION (C) XXKXEXXEXXX

GRAPHIC BARS

PASCAL G_BAR(XSTART, DELTAX, YSTART, DELTAY, COLOR);

FORTRAN CALL GBAR(XSTART, DELTAX, YSTART, DELTAY, COLOR)

cso gbar(xstart, deltax, ystart, deltay, color);

MBASIC CALL GBAR(XSTART%, DELTAX%, YSTART%, DELTAY%, COLOR%)

COBOL CALL "GBAR" USING XSTART, DELTAX, YSTART, DELTAY, COLOR.

XSTART - Starting position of the bar on the X axis.
Since this procedure changes the background
colors on the pattern plane each X-increment
of a bar is eight pixels wide. Thus there is
4 maximum of thirty two bar positions on the
X axis. They are numbered 0 thru 31.

DELTAX - Width of bar in eight pixel increments. A
DELTAX of 2 will produce a bar 16 pixels wide
XSTART + DELTAX should be less than or equal
to 31.

YSTART - Starting position of the bar on the Y axis.
YSTART can be in the range of 0 thru 191 where
Y = 0 is at the bottom of the screen.

DELTAY - Length of the bar on the Y axis. DELTAY is
expressed in one pixel increments. To avoid
drawing off the top of the screen, YSTART +
DELTAY should be less than or equal to 191

COLOR -- Color of the bar - 0 thru 15.

GBAR draws the colored bars by changing the colors which
are displayed on the background plane. This routine should only
be used when the VDP is initialized in the G2 mode by using
GINIT. Because the bars are drawn by changing the colors on the
background plane there are a maximum of thirtytwo bars (0 thru
31) which can be drawn on the X axis. Vertical bar 0
corresponds to X axis pixels 0-7, bar 1 corresponds to X axis
pixels 8-15, etc. The height of the bar is controllable in one
pixel increments. Thus, the use of vertical bars is most
appropriate when there are fairly few - 32 or less - bars but
their height needs to be finely controlled down to one pixel
increments. To draw a dark red vertical bar 8 pixels wide at X
axis position 16 and which starts at the bottom of the screen
and goes up 96 pixels use the call:

28

XXXXXXXXXX%X GRAPH-PAC-I1 USER DOCUMENTATION (C) XXXXXXXXXX%

GBAR(16, 1, 0 96, DRED);

The bars do not have to start at the bottom of the screen.
If you want to leave room for annotations or a message at the
bottom of the screen then use a non-zero value, such as 12, for
YSTART. When doing this, be sure to add the YSTART value to the
DELTAY value or your bars will all be too short by a YSTART
amount .

GBAR can also be used to draw horizontal bars. There can
be up to 192 (0 thru 191) horizontal bars. They would, however,
only be one pixel wide/high. Thus, you will usually want to use
less bars and make them several pixels wide so they can be more
easily seen. Note that when drawing horizontal bars it is the
DELTAX parameter which controls the length of the bar. The
length increases in eight pixel increments. Thus, the length of
a bar will range from 0 thru 31 increments. To leave some space
for annotations on the left side of the screen use a XSTART of
one (1) or more depending on the amount of space you need. To
draw a dark red horizontal bar half way across the middle of the
screen use the call:

GBAR(O0,16, 96, 3 DRED);

Note that, since the bars are drawn by changing the colors
in the background plane, vou can use the DRAW, PLOT, and GTYPE
procedures to draw, plot, and write over the bars. The bars can
also be redrawn without changing anything which was drawn,
plotted, or written over them. The following program fragment
will draw vertical bars eight pixels wide which slope up to the
top of the right side of the screen. It will then fill the rest
of the screen with four pixel wide horizontal bars. The
horizontal bars will have a four pixel space between them.

FOR X := 1 TO 31 DO

GBAR(X, 1, 0, X¥6, X); {DRAW VERTICAL BARS}
FOR Y := 31 DOWNTO 1 DO
GBAR(1, Y, Y*6, 4, Y); {DRAW HORIZONTAL BARS}

Because the COLOR parameter uses the loop control variable
the bars will walk thru the graphics color range.

29

XXXXXXXXXXX GRAPH-PAC-I1I USER DOCUMENTATION (C) XXXXEKXXXKXX

GRAPHICS TEXT AND SYMBOLS

PASCAL G_TYPE(SIZE, ORIENTATION, S_LENGTH, G_STRING);
FORTRAN CALL GTYPE(SIZE, ORIENTATION, SLENGTH, GSTRING)

c8o gtype(size, orient, sleng, gstr)

MBASIC CALL GTYPE(SIZE%, ORIENTATION%, SLENGTH%, GSTRING%);

COBOL CALL “GTYPE" USING SIZE, ORIENTATION, SLENGTH, GSTRING.

SIZ2E -----=-=- Is an integer value in the range of 1
thru 8. A size of 1 produces the minimum
sized character in a 7 by 9 pixel area
with a blank column of pixels on the left
of the character. Lower case letters
with desenders are shifted down three
pixels and thus, in effect, use a 7 by 12
font. To avoid character overlap, rows
of size 1 text which use lower case
letters need a row spacing of at least
thirteen pixels. Size 2 letters use 14
by 18 pixels, size 3 use 21 by 28 pixels,
etc

= 0 degrees (normal left to right)
= 90 degree rotation

= 180 degree rotation

= 270 degree rotation

ORIENTATION -

WN o

LENGTH ------ This is the number of characters passed
in the string. This includes any special
characters included so as to use the
special symbols, greek letters, or user
defined letters or symbols. These
special characters are discussed below.
See the description of the FONT procedure
for defining and using your own fonts.

STRING ------ This is the actual string of characters,
plus any special characters discussed
below, which are to be displayed on the
graphics monitor.

The procedure GTYPE makes it fairly easy to write the ASCII
character set, special symbols, and the greek alphabet on your
graphics monitor. When vou call GTYPE it causes the linker to
also include in your program the font table which contains the
bit patterns which define the above characters and symbols.
Printing the normal printable characters and special symbols is

30

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XAXXXXXEXX3

done by simply including them in the G_STRING argument. To get
to the greek alphabet and the other special symbols in the font
table requires the use of a special control character. GTYPE
uses the tilde (") as the control character to shift GTYPE into
the first 32 (0 thru 31) patterns in the font table. Since the
tilde has this special use you must use two tilds (~~) to cause
the tilde to be printed. The programs FONT8 (for H8‘s) and
FONT89 (for H89‘s) on the distribution disks will display all
the characters and symbols in the standard GRAPH-PAC-II font
table. It displays them in the order in which they are stored
in the table. Source code for these programs is in FONT.C and
shows the use of GTYPE to write on the monitor.

Using size 1 letters allows up to 28 letters or symbols on
a line. Clearly, the larger the letters you use the fewer you
can put on a given line. If you try to write too many
characters on a line GTYPE will move back to the beginning of
that line and keep on writing until all characters in the string
are displayed. Although writing a string which is too long will
cause a messed up display it will not cause the program to
crash.

The MOVEXY procedure is used to position the text string on
the screen. Thus, the position of the letters and symbols can
be controlled on a pixel by pixel basis anywhere on the screen.
The MOVEXY and GTYPE procedures update the same internal GRAPH-
PAC-II variables as do PLOT and DRAW. These internal variables
keep track of the last X,Y coordinates which were used. Thus,
if you draw a line and then call GTYPE the first character in
the string will be located at the end of that line. Similarly
if a DRAW command follows a GTYPE command then the line will be
drawn from the end of the string to the X,Y specified in the
DRAW command. Multiple calls to GTYPE do not require computing
where the previous string ended as GRAPH-PAC-II keeps track of
it for you. For example:

MOVEXY(S5,10);

GTYPE(1,0,13, "6GRAPH-PAC-11 ");
GTYPE(1,0,9,"Standard ");
GTYPE(1,0,5,"Fonts");

will write
GRAPH-PAC-II Standard Fonts

in the lower left portion of the screen using size 1 letters in
the normal left to right manner (0 degrees of rotation).

In addition to the characters and symbols described above,
GTYPE can display any character sets which have been defined by
the programmer using the FONT procedure which is described
below. If these characters are defined to be above the standard
characters in the font table, font table positions 128 thru 255
then the veritcal bar (!) must be used to add 128 (80 hex) to
the character which follows it in the STRING. Because of this

31

XXXXXXXXXXX GRAPH-PAC-1I USER DOCUMENTATION (C) XXXXSXXEXX%

use of the vertical bar it, like the tilde, must be preceded by
a tilde to have it printed on the graphics monitor. Both the
tilde and vertical bar must be included in determining the
length of the string which is passed to GTYPE. They will,
however, not take space on the monitor as GTYPE will remove them
from the displayed string. You will see this when you compare
the code in FONT.C and the video display generated by FONT8 or
FONT89.

Each computer language usually has one or more characters
which must be handled in a special way when they are included in
a string. The character used to mark the beginning and end of
the string is usually one of them. Otherwise, that character
could not be included within the string. For example, in Pascal
if an apostrophe is to be printed within a string then two of
them must be used so that the compiler will know that you want
to print an apostrophe instead of terminating the string. With
the C language the backslash (\) must immediatly preceed a
backslash, an open quote ('), or a double quote (") if such
characters are to be printed. Such characters, when used for
this purpose, must be included in the strings passed to GTYPE.
They must not be included in the string length value passed to
GTYPE as the compiler will remove them from the string passed to
by GTYPE.

To summerize the above - when a tilde (~) or vertical bar
(1) is used as a special control character it IS counted as part
of the string length. When a quote ('), backslash (\) or other
character is used because your programming language requires it
as a control character then it is NOT counted as part of the
string length.

32

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) *X¥XXEXXEXXX

The following table lists the character sequences used for
the first thirty two entries in the font table and the
corresponding character or symbol which will be displayved on the
graphics monitor. The remaining part of the font table is the
standard ASCII character set.

GRAPH-PAC-11 STANDARD FONTS

Mnemonic Description Mnemonic Description
e Up arrow P pi
~A alpha ~a rho
“B beta “R sigma
“c gamma “s tau
D delta T upsilon
~“E epsilon ~u phi
~“F zeta “v chi
“6 eta “w psi
"H theta “X omega
~1 iota Y OMEGA
~J kappa ~Z Right arrow
“K lambda “C Left arrow
“L mu “\ Up arrow
“M nu] Divide sign
] omicron = Approximatly =
or double tilde
1 Vertical bar Eb Tilde

33

XXXXXXXXXXX GRAPH-PAC-1I USER DOCUMENTATION (C) XXXXEXXAXX3

USER GENERATED FONTS

PASCAL FONT(FTN, TOP_LINE, ... , BOTTOM_LINE);

FORTRAN CALL FONT(FTN, TOPLINE, ... , BOTTOMLINE)

cso font(ftn, topline, ... , bottomline);

MBASIC CALL FONT(FTN%, TOPLINE%, ... , BOTTOMLINE%)

COBOL CALL "FONT" USING FTN, TOPLINE, ... , BOTTOMLINE.
FIN ----==e=- Format table number. This integer

identifies which one of the 256 format
table entries is to be defined. Table
entries are numbered 0 thru 255. 0
thru 127 contain the standard fonts
described above. Entries 128 thru 255
are set aside for user definitions.
FONT can just as easily be used to
redefine the standard ASCII characters
totally or selectively as desired.
Each format table entry uses nine
bytes to store each symbol or
character.

TOP_LINE,

BOTTOM_LINE - These nine values/parameters define
the pixels which are to be turned on
to define the character or symbol
The first value is the topline and the
last value is the bottom line. The
high order (left most) bit is normally
0 as that is the inter-character space
position. Characters which have
desenders have the high order bit of
the last parameter/value turned on.
This causes GTYPE to shift the 7 by ¢
pattern down three positions.

34

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXXRXXXXX2

The following example shows the generation of the upper and
lower case letters J and j.

Bit Pattern Decimal Bit Pattern Decimal
00011111 31 00000010 2
00000100 4 00000010 2
00000100 4 00000010 2
00000100 4 00000010 2
00000100 4 00000010 2
00000100 4 00000010 2
00000100 4 00000010 2
01000100 68 00000010 2
00111000 56 10111100 188

Note that the high order bit of the bottom row of bits for
the lower case “j" is "on" to tell GTYPE that this is a desender
character. This bit will not be displayed. The FONT calls for
these letters are as shown below.

J = FTN of 74 -- FONT(74,31,4,4,4,4.,4, 68,56);
j = FTN of 106 - FONT(106,2,2,2,2,2,2,2,2,188);

The font tables use nine bytes of memory for each
character. Therefore, to conserve memory, the GRAPH-PAC-1II
library font table contains only the standard fonts (first 127
characters). FONT can be used to redefine any or all of these
characters. A seperate font table CHRTB (REL or ERL) is
provided for those applications which require over 127
characters and symbols. Since this table will store twice the
characters it uses twice the memory. To use this larger font
table simply include H8CHRTB or HB9CHRTB before the GRAPH-PAC-
II library in your link command line or the MBASIC module name
(.DAT) file. This will cause the linker or BASLOAD to include
the expanded font table in your program and skip over the
standard one in the graphics library. Remember that, regardless
of which font table you use, FONT only changes the characters in
the program in which it is used. Using FONT will not change the
characters and symbols stored in the GRAPH-PAC-II libraries.
This allows each program to have whatever fonts it needs without
impacting the fonts used in other programs. It also insures
that the code you get from other people will produce the same
results for you as it did for the original author.

35

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXXXXXEXX%

SPRITE SUPPORT

The sprite manipulation routines offer facilities for
sprite definition and movement. The VDP supports the
simultaneous display of 32 sprites, or pattern objects. The
addressing capabilities of the VDP allow the definition of up to
256 separate sprite patterns (64 if SIZE=1 in the VDP
initialization call).

Sprites should be initially created by defining their bit
patterns with the procedures SPAT8 (8x8 sprites) or SPAT8 and
SPAT16 (16x16 sprites). D_8_SPR or D_16_SPR is then called to
load the bit patterns into the sprite table and define the other
sprite properties such as initial color and location. Thus,
defining an 8x8 sprite uses the call:

SPAT8(arguments);
16x16 sprites are defined by the calls:

SPAT8(arguments);
SPAT16(arguments);

The actual arguments for these calls are described on the
following pages. These procedures allow the sprite position,
color, and pattern to be defined in a logical manner. The
D_8_SPR and D_16_SPR procedures associate sprite pattern #N to
logical sprite #N. Additional patterns which are not connected
to a specific set of sprite attributes can be created with the
sprite definition procedures. An effectively instantaneous
sprite pattern change can then be made with the ASG_SPR
procedure. This is the main technique that is used to perform
animation. For additional details on how the graphics
controller internally handles sprite definition and movement
refer to the VDP manual, pages 25-29.

The sprite handling routines use the same X,Y coordinate
system (0,0 at the lower left corner of the display screen) as
the line and circle drawing routines. As explained on page 27
of the VDP manual, the sprite X,Y coordinate values refer to the
upper left corner of the sprite. Thus, the sprite will smoothly
slide on/off the screen as the ‘Y’ values move thru the ranges
of 8/16 to 0 and 192 to 221. Similiarly, the sprite will slide
off the the screen as the ‘X’ coordinate approaches 255 or 0 if
the ‘early bit’ is turned on (refer to VDP manual page 27).

Note that the manner in which sprites are defined in GRAPH-
PAC-1I is changed somewhat form that used in GRAPH-PAC-II. The
current method is the result of requests and suggestions of
GRAPH-PAC-1 users.

36

XXXXXXXEXX% GRAPH-PAC-11 USER DOCUMENTATION (C) XX¥XXRXKRXX3

DEFINE SPRITE BIT PATTERNS

DEFINE FIRST EIGHT ROWS OF A SPRITE

PASCAL S_PAT8(8 PATTERN VALUES);
FORTRAN SPAT8(8 PATTERN VALUES)

cao spat8(8 pattern values);
MBASIC CALL SPAT8(8 PATTERN VALUES%)

COBOL CALL "SPAT8" USING 8 PATTERN VALUES.

DEFINE SECOND EIGHT ROWS OF A SPRITE

PASCAL S_PAT16(8 PATTERN VALUES);
FORTRAN SPAT16(8 PATTERN VALUES)

cso spatl6(8 pattern values);
MBASIC CALL SPAT16(8 PATTERN VALUES%)

COBOL CALL “"SPAT16" USING 8 PATTERN VALUES.

PATTERN VALUES - These are eight integers which represent the
bit patterns of each row of the sprite. The
first value is the top row and the last value
is the bottom row. If an 8x8 sprite is being
defined then only the low order eight bits of
the integer are used. When 16x16 sprites are
being defined all sixteen bits of the integer
are used. Thus, negative values will often
be used when defining 16x16 sprites.

£

XXXXXRXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) ¥¥XXAXKXRXX

DEFINE SPRITES

DEFINE 8 X 8 SPRITES

PASCAL D_8_SPR(SPRITE_NUMBER, X, Y, COLOR, EARLY_BIT);
FORTRAN CALL D8SPR(SPRNUM, X, Y, COLOR, EBIT);

cso d8spr(sprnum, X, vy, color, ebit);

MBASIC CALL D8SPR(SPRNUM%, X%, Y%, COLOR%, EBIT%)

COBOL CALL "D-8-SPR" USING SPR-NUM, X, Y, COLOR, EBIT.

DEFINE 16 X 16 SPRITES

ss=ss=ss=sssss=s==s===
PASCAL D_16_SPR(SPRITE_NUMBER, X, Y, COLOR, EARLY_BIT);
FORTRAN CALL D16SPR(SPRNUM, X, Y, COLOR, EBIT)

cso diéspr(sprnum, x, y, color, ebit);

MBASIC CALL D16SPR(SPRNUM%, X%, Y%, COLOR%, EBIT%);

COBOL CALL "D-16-SPR" USING SPR-NUM, X, Y, COLOR, EBIT.

SPRITE_NUMBER -- Sprite number IN [0..31]

K =omesesmsaane Sprite horizontal position

Y —cemmmrceceeaa Sprite vertical position

COLOR --===-==-=- Color for ON bits in the sprite definition

EARLY_BIT ------ 0 = sprite position controlled by X and Y
1 = 32 is subtracted from the displayed X
position

38

)

XXKEKXRXRXXE GRAPH-PAC-II USER DOCUMENTATION (C) XAXXEXXXXX3

These procedures define or redefine sprites. Calls to GINIT,
PINIT, and MINIT set up the sprite tables so as to disable all
sprites. Because of the manner in which this is done, it is
important that all sprites defined be consecutively numbered
starting with “0‘. Failure to do this will give unexpected
results. When this support package is used, the VDP internal
address adjustments mentioned on page 28 of the VDP manual are
taken into account.

Sprite numbers in the range of 0..31 may be used. Sprite 0
has the highest priority on the video screen. Higher numbered
sprites can be "hidden" behind lower numbered sprites. The VDP
hardware takes care of this automatically based on the X,Y
coordinates used to position the sprites.

Refer to page 27 of the VDP manual for additional
explanation of the position and EARLY_BIT arguments in the
sprite attribute table.

The pattern for the sprite will be placed in the sprite
generator table with the same “name" as the sprite number; i.e.,
sprite #1 will be connected to sprite pattern #1.

For SIZE=0 sprites (8x8 pixels) the sprite pattern is
defined in the sprite generator table with 8 bytes. In this
case, only the least significant bytes of the integers are used
in building the sprite patterns. When SIZE=1 (16x16 pixel
sprites) both bytes of the 16 integers are used to build the
sprite pattern. The sprite pattern consists of 16 rows of 16
columns (or bits) each. The first integer passed is the first
row of the pattern, the second integer is the second row,
continuing thru all 16 rows. When working with or defining
16x16 sprites the all-base calculator program available from the
Heath Users’ Group is most handy

39

XXXXXXXRXXX GRAPH-PAC-I11 USER DOCUMENTATION (C) XXXXEXXRXX%

POSITION SPRITE

=====ss==s==s===
PASCAL POS_SPR(SPRITE_NUMBER, X, Y):
FORTRAN CALL POSSPR(SPRNUMB, X, Y)
cso posspr(sprnumb, x, v);
MBASIC CALL POSSPR(SPRNUMB%, X%, Y%)
COBOL CALL "POSSPR" USING SPRITE-NUMBER, X, Y.
SPRITE_NUMBER - Sprite number IN [0..31)
X ==m=srsnssess New horizontal position
Y ==msssssssesm New vertical position
This procedure is used to change the position of a

previously defined sprite. Refer to VDP manual pages 26-27 for
additional data on sprite movement

EARLY BIT CONTROL

S

PASCAL E_BIT(SPRITE_NUMBER, EARLY);

FORTRAN CALL EBIT(SPRNUMB, EARLY)

cso ebit(sprnumb, x, v);

MBASIC CALL EBIT(SPRNUMB%, EARLY%)

COBOL CALL "EBIT" USING SPRITE-NUMBER, EARLY.
SPRITE_NUMBER - Sprite number IN [0..31]

EARLY --------- 0 - Sprite position controlled by previously
defined X and Y positions

1 - Subtracts 32 from X position value

This procedure changes the EARLY_BIT in the sprite
attribute table. See VDP manual page 27.

40

XXXXXXXXXXX GRAPH-PAC-11 USER DOCUMENTATION (C) XXXXEXXEkX%2

SPRITE PATTERN CREATION

DEFINE 8 X 8 PATTERN

PASCAL D_8_PAT(PATTERN_NUMBER) ;

FORTRAN CALL D8PAT(PATNUM)

c8o d8pat(sprnumb);

MBASIC CALL D8PAT(SPRNUMB%)

COBOL CALL “DBPAT"

USING SPRITE-NUMBER.

DEFINE 16 X 16 PATTERN

PASCAL D_16_PAT(PATTERN_NUMBER) ;

FORTRAN CALL D16PAT(SPRNUMB)

csao diépat(sprnumb);

MBASIC CALL D16PAT(SPRNUMB%)

COBOL CALL "D16PAT"

PATTERN_NUMBER - 0
-0

These procedures
to update an existing
PATTERN VALUES is the
S_PAT16 procedures.

USING SPRITE-NUMBER.

thru 255 if SIZE = 0 (8x8 pixel sprites)
thru 63 if SIZE = 1 (16x16 pixel sprites)

are used to load & new sprite pattern, or
pattern. The method of loading the
same as discussed under the S_PAT8 and

The D_8_PAT and D_16_PAT procedures do not

associate the pattern with entries in the sprite attribute
table. See VDP manual pages 28 and 29 for additional
information on the internal operation of graphics controller
with respect to sprite handling. To define a new 8 x 8 pattern

use:

SPAT8(arguments);
D8PAT(argument);

A new 16 x 16 pattern

is defined with

SPAT8(arguments);
SPAT16(argruments);
D16PAT(argument);

41

XXXXXXXX%%% GRAPH-PAC-II USER DOCUMENTATION (C) XXXXEXX%XX%

SPRITE PATTERN ASSIGNMENT

.

PASCAL ASG_PAT(SPRITE_NUMBER, PAT_NUMBER);

FORTRAN CALL ASGPAT(SPRNUMB, PATNUM)

cso asgpat(sprnumb, patnum);

MBASIC CALL ASGPAT(SPRNUMB%, PATNUM%)

COBOL CALL "ASGPAT" USING SPRITE-NUMBER, PATTERN-NUMBER.
SPRITE_NUMBER -- 0 thru 31

PATTERN_NUMBER - 0 thru 255 if SIZE = 0 (8x8 sprites)
- 0 thru 63 if SIZE = 1 (16x16 sprites)

This procedure assigns a previously defined pattern to the
attributes of the specified logical sprite. The original sprite
pattern is not changed but simply disconected from its entries
in the sprite attribute table. This procedure is provided to
facilitate rapid changing of the patterns associated with sprite
attributes so as to simulate animation See VDP manual pages 26
and 27 for additional details on the sprite attribute table and
the pattern tables.

SPRITE COLOR UPDATE

s==s==ss=s=sss=s===

PASCAL S_COLOR(SPRITE_NUMBER, COLOR);

FORTRAN CALL SCOLOR(SPRNUMB, COLOR)

cso scolor(sprnumb, color);

MBASIC CALL SCOLOR(SPRNUMB%, COLOR%)

COBOL CALL "SCOLOR" USING SPRITE-NUMBER, COLOR.
SPRITE_NUMBER - 0 thru 31

COLOR - 0 thru 15. This value will control the
color of the sprite ON bits.

This procedure is used to change the color of the sprite

without changing its location or pattern/shape. See VDP manual
page 26.

4z

XXXXXXXXXKXX GRAPH-PAC-II USER DOCUMENTATION (C) XXKXEXXXkX%

RESET SPRITE MAGNIFICATION STATE

PASCAL MAGO; Set the sprites to their defined size
FORTRAN CALL MAGO

cso mag0();

MBASIC CALL MAGO

COBOL CALL "MAGO".

PASCAL MAG1; Set the sprites to twice their defined size
FORTRAN CALL MAG!
cso magl();
MBASIC CALL MAG1
COBOL CALL "MAG1".

The MAGO and MAG1 procedures permit the sprite
magnification state to be reset during program execution without
using one of the initialization routines described above. This

allows the size/magnification of the sprites to be changed
without disturbing the other aspects of the VDP display.

43

XXXXXKXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) *XXXXXXXX%X

PROGRAMMABLE SOUND GENERATOR (PSG) SUPPORT

OVERVIEW

The following functions and procedures facilitate control
of the PSG chip used on the color graphics boards. It is
assumed that the reader is generally familiar with the operation
of this chip from reading and studying the PSG hardware manual.

In the following function and procedure definitions,
CHANNEL is a character parameter. CHANNEL is an A, B or C
(upper case) corresponding to the PSG channel which is to be
controlled. To reduce CPU loading, all data written to the PSG
registers remains active and stable until a new value is
written. All eight bits of the PSG parallel ports (registers 14
and 15) are data bits inasmuch as handshaking is not used or
required. The P_OPTS procedure is used to set the ports to
input or output under program control. The PSG chip provides
internal pull-up resistors which keep all bits in a port
configured for input, set high, unless an external device, such
as a joystick switch, is closed. At such time the corresponding
bit is brought low. As soon as the switch is released, the PSG
chip returns the bit to a high condition. Although the port
values follow the signals (switch closures, etc.) applied to the
port, these values are available for use in the program only
after a port READ operation is performed.

In & similar manner, when a port is in the output mode, the
data will remain on the port until (1) new data are written to
the port, (Z) the port is switched to the input mode, or (3) the
chip/system is reset. Refer to PSG manual pages S5, 8, 10, 11
14, 17 and 28 for further details and diagrams.

Note that in the following procedures and functions,
CHANNEL and CONTROL must be the upper case A, B, C, V, or F.

44

XXXXXXXXEXX GRAPH-PAC-I1I1 USER DOCUMENTATION (C) *XXXXXXXkX%

BASIC PRIMITIVES

DIRECT READ/WRITE OF PSG REGISTERS

For those who wish to interface directly with the P5G, the
following function and procedure are provided. They simply read
or write the specified register without providing any
conversions. The one exception to simply reading or writing the
register is when reading or writing the ENABLE register
(register 7). This is the only register in which the bit
patterns specified in the hardware manual must be inverted
before being loaded into the register. Therefore, the
WRITE_PSG_REGISTER (W_P_REG) procedure inverts the bits before
writing to the ENABLE register. The READ_PSG_REGISTER (R_P_REG)
function also complements the ENABLE register bits after reading
them from PSG register 7.

WRITE PSG REGISTER/PORT
=======ss=z==s==s===s===

PASCAL W_P_REG(REGISTER, DATA);

FORTRAN CALL WPREG(REG, DATA)

cso wpreg(reg, data);

MBASIC CALL WPREG(REGISTER%, DATA%)

COBOL CALL "WPREG" USING REGISTER, DATA.

MACRO-80 NOTE: The alternate entry point is W.REG, which

expects the PSG register number to be in the accumulator and the
DATA value to be in the E register.

45

XXXXXXXXX%X% GRAPH-PAC-11 USER DOCUMENTATION (C) *XXXXXXKXkXX

READ PSG REGISTER/PORT

====s====s=s====s==s=====
PASCAL VALUE := R_P_REG(REGISTER);

FORTRAN VALUE = RPREG(REG)

cso value = rpregl(reg);

MBASIC CALL RPREG(REGISTER%)

COBOL CALL “RPREG" USING REGISTER.

MACRO-80 NOTE: The alternate entry point is R.REG which
expects that the number of the PSG register to be read will be
found in the accumulator. The value read from the specified PSG
register is returned on the stack.

When using W_P_REG and R_P_REG described on the previous
page, VALUE and DATA are integers in the range of 0 thru 255
REGISTER is is also and integer in the range of 0 thru 15.

Since all PSG registers are eight bits wide, W_P_REG merely
loads the eight least significant bits of data and discards the
eight high order bits of the argument passed to it. Although
the use of the PSG parallel ports A and B (registers 14 and 15)
is considerably different from that of the other PSG registers,
they are read and written in exactly the same manner. Program
readability will be improved if the common definitions are used
to equate PORTA to the numeric value "14" and PORTB to "15"
When these common definitions or equates are used, the statement
W_P_REG(PORTB, 108); would write the value "108" to PSG port 15
VALUE is an integer or byte and the function returns values in
the range of 0 thru 255. 1If none of the switches connected to
the port are depressed, the function returns a value of 255. If
all of the switches are closed, it returns a value of 0. See
PSG manual pages 7, 16-17, and 44-45.

NOTE: when using the following procedures, sound channel
arguments are “A", “B", or “C" for the PSG channels A, B, C. An
“F" or "V" is used to tell the procedures whether to use fixed
or variable sound level control (see PSG manual page 24).

46

XXXXXXKXX%% GRAPH-PAC-I1 USER DOCUMENTATION (C) XXKXEXXXXXE

COMPOSITE PRIMITIVES

SET/RESET PSG OPTIONS
==c===z=sssss==sss==s===
PASCAL P_OPTS(ENA, ENB, ENC, ENNA, ENNB, ENNC, ENPAI, ENPBI);
FORTRAN CALL POPTS(ENA, ENB, ENC, ENNA, ENNC, ENPAI, ENPBI)
ceo popts(ena, enb, enna, ennb, ennc, enpai, enpbi);
MBASIC CALL POPTS(ENA%,ENB%,ENC%, ENNA%, ENNB%, ENNC%, ENPAI%, ENPBI%)
COBOL CALL "POPTS" USING ENA,ENB,ENC,ENNA,ENNB,ENNC,ENPAI,LENPBI.
The arguments are BOOLEAN variables or integer constants

according to the following definitions where TRUE = 1 and FALSE
= 0:

Channel A enabled
Channel A disabled
B
B

enabled
disabled

Channel
Channel

Channel C enabled
Channel C disabled

Noise enabled on channel A
Noise disabled on channel A

Noise enabled on channel B
Noise disabled on channel B

Noise enabled on channel C
FALSE Noise disabled on channel C

ENPAI ---- TRUE Port A enabled for input
FALSE Port A enabled for output
ENPBI ---- TRUE Port B enabled for input

FALSE Port B enabled for output

See PSG manual page 21 for a complete description of the
ENABLE register (7) loaded by this procedure.

47

XXXXXXXXXXX GRAPH-PAC-I1 USER DOCUMENTATION (C) XXXXEXXXXX3

SET TONE FREQUENCY

ssssssssssssszssas
PASCAL T_FREQ(CHANNEL, FREQUENCY);
FORTARN CALL TFREQ(CHAN, FREQ)

cs8o tfreq(chan, freq);

MBASIC CALL TFREQ(CHANNEL%, FREQUENCY%)

COBOL CALL “TFREQ" USING CHANNEL, FREQUENCY.

PASCAL T_PER(CHANNEL, PERIOD);

FORTRAN CALL TPER(CHAN, PERIOD)

cso tper(chan, period);

MBASIC CALL TPER(CHANNEL%, PERIOD%)

COBOL CALL "TPER" USING CHANNEL, PERIOD.

FREQUENCY is an integer representing Hertz (cycles per
second). The tone frequency can range from 27 Hz to 111,861 Hz
although the highest part of this range is beyond the capability
of most audio equipment. Satisfactory results from most
equipment should be obtained if the frequencies are kept in the
range of 40 Hz thru about 9000 Hz. In the T_PER procedure the
period value is directly loaded into the frequency register of
the specified channel. This is an alternate method of
controling the frequency and is, at times, more convenient
depending on the nature of the program code/loop structures
being used. See PSG manual pages 18-19

48

XXXXXXXAXXX GRAPH-PAC-11 USER DOCUMENTATION (C) XXXXRXXi%X3

SET CHANNEL AMPLITUDE

==================s===

PASCAL C_AMP(CHANNEL, CONTROL, AMPLITUDE);

FORTRAN CALL CAMP(CHAN, CONT, AMP);

c8o camp(chan, cont, amp);

MBASIC CALL CAMP(CHANNEL%, CONTROL%, AMPLITUDE%)

COBOL CALL "CAMP" USING CHANNEL, CONTROL, AMPLITUDE.
AMPLITUDE is an integer in the range of 0 thru 15 were “0°

is minimum and "15" is maximum volume. CONTROL is an "F" for

fixed volume level and a "V" for variable level control. A

channel can be turned off by sending it an amplitude value of

“0" or by disabling it with the P_OPTS procedure. In the "V*

mode the amplitude value is ignored since the PSG hardware

electronics sweep the volume/amplitude of the sound thru the

full range using the envelope shape set by the E_SHAPE
procedure. See PSG manual pages 22-23.

SET NOISE GENERATOR FREQUENCY

=sszssssss=ss==ss=sss=ss==sss=s===
PASCAL NOISE(FREQUENCY);

FORTRAN CALL NOISE(FREQ)

c8o noise(freq);

MBASIC CALL NOISE(FREQUENCY%)

COBOL CALL "NOISE" USING FREQUENCY.

FREQUENCY is an integer representing Hertz with a minimum
value of 3609. See PSG manual page 20.

49

XXXXXXXXXX% GRAPH-PAC-II USER DOCUMENTATION (C) XXXKEKXRXXE

SET ENVELOPE CYCLE (DURATION) TIME

PASCAL E_CYCLE(TIME);
FORTRAN CALL ECYCLE(TIME)

cso ecycle(time);

MBASIC CALL ECYCLE(TIME%)

COBOL CALL "ECYCLE" USING TIME.

TIME is an integer representing tenths of seconds. This
the amount of time between repeating cycles of the envelope
generator or the duration of a single tone/sound if envelope
shapes 1, 3, 5, or 7 (see E_SHAPE) are used. Legal values for

TIME are from 1 (.1 second) thru 93 (9.3 seconds). See PSG
manual pages 24-25.

50

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XEKXEXXEXX3

SET ENVELOPE SHAPE/CYCLE SHAPE

===s===sss=s=ss==ssssssss=ss==
PASCAL E_SHAPE(SHAPE);
FORTRAN CALL ESHAPE(SHAPE)
cso eshape(shape);
MBASIC CALL ESHAPE(SHAPE%)
COBOL CALL "ESHAPE" USING SHAPE.
SHAPE is an integer in the range of 0 thru 7. It is used
to select one of the following eight shapes:
[AT A AR AN AT AN AN
1 2N

2 NINININININININY

3\
4 - Jrrvpvrvririg
S/
6 : /INININININININY

70

See pages 25 and 26 of the PSG manual for a complete
description of the available envelope shapes.

51

AXXXXXXXXX%X GRAPH-PAC-II USER DOCUMENTATION (C) *XXXEXXRKX%

PSG CONTROL CONSIDERATIONS

It should be noted here that certain timing considerations
should be followed when attempting to program the PSG for
transient effects, such as explosions. The action of the chip
is such that the instant the envelope cycle time is defined
through the E_CYCLE procedure, the envelope begins counting
through its previously defined shape and cycle combination.
Because of the finite speed of the computer language load
module, it is important that things be done in the correct order
to result in the anticipated sound. The shape of the sound
envelope should be set immediatly after the cycle time is set.
This is somewhat different than what is shown in the PSG manual
However, tests have shown this to produce more reliable results.
For example, the following code extract demonstrates the
technique for creating the sound of an explosion:

VAR
1 : INTEGER;

NOISE(4000); { SET UP 4000 HZ NOISE FREQUENCY }
P_OPTS(0,0,0,1,0,0,0,0); { ENABLE NOISE ON CHANNEL A }
C_AMP(‘A’, ‘V’, 15); { CHAN ‘A’ = VARIABLE, VOLUME = max }
I := 10; { 10 = 1 SECOND IN E_CYCLE)}
E_CYCLE(I); { DO IT NOW, 1 SECOND DURATION }
E_SHAPE(1); { USE AN EXPLOSION SHAPE)}

{

PAUSE(I % 50); 500 = 1 SECOND IN PAUSE)

Note that at least one second should elapse before another
PSG sound control statement is used. This is so that the
explosion sound can run thru the complete amplitude decay
profile established by the above statements. Thus it is often
necessary to include a ‘pause’ or ‘wait’ loop after the E_CYCLE
statement. An easy way of keeping the E_CYCLE and PAUSE times
in sync is to use a variable to express the the E_CYCLE duration
time. The value of this variable can then be multiplied by
fifty (50) to obtain the correct value for the PAUSE procedure.
This technique is illustrated in the program fragment provided
above.

52

XXXXXXXXXX% GRAPH-PAC-I1 USER DOCUMENTATION (C) *XXXXXXIXX3

ROUTINES USED ONLY BY THE HA-89-3

VOTRAX SC-01 SPEECH SYNTHESIZER

TEST VOTRAX SC-01

PASCAL PIDLE;
FORTRAN CALL PIDLE
cso pidle();
MBASIC CALL PIDLE
COBOL CALL “PIDLE".

PIDLE is a boolean function which uses the programmable
interrupt controller (PIC) to determine if the SC-01 is idle and
therefore ready to receive another phoneme. Since the various
phonemes require different amounts of time to be completed, the
program generating speech must determine when the current
phoneme has been completed. To simplify this task for the
programmer the PIDLE function reads the pic interrupt request

register, tests the PSS status bit and returns a TRUE (1) if the
5C-01 is ready for another phoneme or a FALSE (0) if it is not.

SET SPEECH INFLECTION
==s=s=s==ssss=s==s====
PASCAL INFLEC(INFLECTION);
FORTRAN CALL INFLEC(INFLEC)
cso inflec(inflec);
MBASIC CALL INFLEC(INFLECTION%)
COBOL CALL "INFLEC" USING INFLECTION.
In the procedure INFLEC, the values of 0 thru 7 are used to
set the vocal inflection from the lowest to the highest pitch
This procedure has a built-in test using PIDLE to ensure that it

does not output the inflection value until the SC-01 is ready
for it.

53

XXXXXXXXXXX GRAPH-PAC-II USER DOCUMENTATION (C) X¥XXRXXXXKXX

OUTPUT A SPEECH PHONEME

PASCAL PHONEM(PHONEME) ;

FORTRAN CALL PHONEM(PHONEM)

c8o phonem(phonem) ;

MBASIC CALL PHONEM(PHONEME%)

COBOL CALL "PHONEM" USING PHONEME.

The PHONEM procedure is used to output the sixty-four
phonemes listed on pages 3 and 4 of the PHONETIC SPEECH
DICTIONARY for the SC-01 SPEECH SYNTHESIZER. The phoneme codes
(0 thru 64 decimal, or 0 thru 3F hex) may be output by the
program without regard to phoneme durations inasmuch as this
procedure also uses the PIC to determine if the SC-01 is ready
for another phoneme.

DIGITAL-TO-ANALOG CONVERSION (DAC)

DAC OUTPUT

==m=======
PASCAL DACO(VALUE); DAC1(VALUE);
FORTRAN CALL DACO(VALUE) CALL DAC1(VALUE)
cso dacO(value); daci(value);
MBASIC CALL DACO(VALUE%) CALL DAC1(VALUE%)

COBOL CAL "DACO" USING VALUE. CALL “DAC1" USING VALUE.

The DACO and DAC! procedures are used to output digital
values in the range of 0 thru 4095 to the two twelve-bit
digital-to-analog converters. Although the values are passed as
sixteen-bit arguments the DACO and DAC1 procedures only output
the low order twelve bits the DACs. The rapidity with which new
values can be sent to the DACs will depend on the response times
of the analog devices attached to the DACs. Thus, the output
timing requirements are application dependent and are the
responsibility of the application programmer.

54

XXXXXXXXRXX GRAPH-PAC-I11 USER DOCUMENTATION (C) ¥XXXXXXXXXX

APPENDIX A

SETTING THE INPUT AND OUTPUT PORT ADDRESSES

One of the new features added to the graphics support
package is the ability to configure your programs to talk to
graphics boards using any port addresses. On each distribution
disk there are two programs which allow you to do this. They
are, for CP/M, SETCPM8.COM and SETCPM89.COM. For HDOS they are
SETHOS8 .ABS and SETHOS89.ABS.

One of the first things you should do after studying this
manual is to run these programs. The purpose of running these
programs is to generate special files which contain port
addressing information which will be used by the linker to
resolve symbolic port addresses which are contained in many of
the graphics routines. By using this approach you have the
ability to compile your programs such that they can be run at
any port addresses. In most situations the defaults built into
the programs will be the ones you will want to use as they are
the standard port addresses used by the HA-8-3 and HA-89-3 color
graphics boards. Once you have run these programs you should
not have to run them again unless you change the port addresses
of your graphics board, which is not recommended, or you want to
prepare programs for someone who has their baord at different
addresses.

To prepare the necessary input and output files follow
these steps.

1. Copy the above mentioned programs to a working disk and then
remove the distribution disk.

2. Run SETCPMB.COM or SETHOS8.ABS as appropriate. The program
will issue the following messages:

Recommended port address is 184 (270 OCTAL).

Enter base port address in decimal (184):

If you need to use other than the standard port addresses then
enter the base address you are using Otherwise simply depress
the RETURN key. When the program finishes vou will have a new

file called IOADDR.REL on drive "A" or "SY0:" Therefore make
sure that vou have a few K of free space on that drive.

55

XXXXXXXXXXX GRAPH-PAC-11 USER DOCUMENTATION (C) XXXXXXXXXXX

3. Rename this file to IOH8.REL or IOH8 ERL if you are using
Pascal MT+.

4. Run SETCPM89.COM or SETHOS89.ABS as appropriate. The
program will issue the following messages:

Recommended port address is 208 (320 octal).
Enter base port address in decimal (208):

As above, enter the port address you are using or simply RETURN
if you are using the standard configuration.

5. Rename this file to IOH89.REL or IOH89.ERL if you are using
Pascal MT+.

Well, that’s all there is to it. Exactly how you will use
these files is explained in the language supplement which is
included with this manual. It might be a good idea to make some
backup copies of these files on some of your working disks

56

XXXXXXXXXX% GRAPH-PAC-II USER DOCUMENTATION (C) XXXXEXXXXX%

APPENDIX B
==========
Rewiring the JVC-40 Joy Stick
To Work With The Heath HA-8-3/HA-89-3 Graphics Boards

The following steps are specifically related to the HA-8-3
model of the graphics board. The internal joystick
connections/rewiring steps are identical for both the H8 and H89
models. Read the note at the bottom of the page before doing
the rewiring with the standard 40K pots.

1. Clip off the white connector at the end of the cable

2. For use with the H8 model, solder Heath spring clips onto
each of the five wires and install them into a 10 position
socket (such as are used with the 4-port serial board) as shown
at the bottom of the diagram. For use with the H89 model,
simply tin the ends of the wires.

3. Carefully remove the bottom of the joy stick housing. This
can be done by squeezing the sides of the bottom and pulling the
two halves apart.

4. Disconnect the blue wire from the push button switch and
connect it to lug 1 of the Y-axis pot.

5. Disconnect the yellow wire from lug 3 of the X-axis pot and
connect it to lug 2 of the X-axis pot. As you do this, remove
the red wire which is connected to lug 2 of X-axis pot. Now
disconnect the other end of this red wire from lug 2 of the Y-
axis pot.

6. Connect the red wire removed in Step 5 to Y-axis lug 1 and
X-axis lug 1.

7. Connect a jumper from X-axis lug 3 to lug 1 on the push
button.

Connect a jumper from X-axis lug 3 to Y-axis lug 3. °

9. After carefully positioning the joy stick, cable stress
relief, and internal wires, snap on the bottom of the case. A
few simple resistance checks will verify the correctness of your
wiring.

10. For the H8 model, slide the spring clips into the housing
as shown in the diagram. For the H89, connect the joystick
wires to the flat ribbon cable as shown in the diagram.

NOTE: Using the pots which are standard in these joysticks will
result in the sprites moving over only the center 2/3 to 3/4 of
the screen. This is because the motion of the stick limits the
travel of the wipers. This is normal and can be compensated for
in your software. The JAMCO 100K pots appear to go the whole
resistance range. These pots are exact physical replacements

57

XXXXXXKXXX% GRAPH-PAC-II USER DOCUMENTATION (C) XXXXXXXXXXX

for the 40K pots which come with the joysticks. The connections
described above put the origin of the screen (X=0, Y=0) in the
lower left corner. Reversing the wires on Y-axis lugs 1 and 3
will put the origin at the upper left corner. The software in
this support packsge assumes the joy sticks are wired as
outlined above.

58

T

PLu e

ED

“
e
& -
¥ 3
3 X AYIS
=]
&
YELLOW
—1 L
BLACK
02

BOTTOM VIEW

<

GND

VREF

NP wn -

W

swirew 8
Y Axis 9
XAx)s 1o

HA-8-3

HA-89-3 JOYSTIEK
RigBon WIRES

AXXXXXXX%%% GRAPH-PAC-II USER DOCUMENTATION (C) XXXXRXXXXX3

0 origin, 16
16K graphics memory, 7
8080, 1, 2
8080 Assembly language, 1, 2
A-to-D

Channel, 4

Hardware, 4

Input, 4

Joystick, 4

MACRO-80 NOTE, 4

Reading analog channels, 4
Amplitude, 49
APPENDIX B - Rewiring the JVC-40 Joy Stick, 57
Auto-increment of VRAM address, 11
BORDR, 9

ASG_PAT - Sprite pattern assignment, 42

A_D_CHAN - Read analog channels, 4

A_FILL - Turn on/off/toggle all pixels in a display subarea, 25
BORDR - Set border color, 9

CIRCLE - Draw Circle, 23

C_AMP - Set channel amplitude, 49, 52

C_GEN - Set Color Generator Table Address, 7

DACO - Output to DAC 0, 54

DAC1 - Output to DAC 1, 54

DRAW - Draw lines, 21

D_16_PATT - Create 16x16 sprite pattern, 41
D_16_SPR - Define 16x16 sprite, 38

D_8_PATT - Create 8x8 sprite pattern, 41

D_8_SPR - Define 8x8 sprite, 38

E_BIT _ Early bit control, 40

E_CYCLE - Set tone period (duration) time, 50, 52
E_SHAPE - Set envelope shape/cycle shape, 51, 52
FONT - generate user defined fonts and symbols, 34
G2_FILL - Reset Display Subarea colors, 24

G2_OFF - Turn pixels off, 22

G2_ON - Turn pixels on, 22

G2_TOGG - Toggle the pixels, 22

GBAR - Draw histogram bars, 28

G_CLEAR - Clear VDP screen, 14 ?
G_INIT - Initialize VDP for G2 (192x256) mode, 17
G_TYPE - Type ASCII text and symbols on monitor, 30
INFLEC - Set speech inflection, 53

LCOLOR - Change line and point colors, 27

MAGO - Set sprites to defined size, 43

MAG1 - Magnify the sprites by 2X, 43

MCDRAW - Draw multicolor lines, 21

MCIRC _ Draw multicolor circle, 23

MCPLOT - Plot a multicolor point, 19

MOVEXY - Move the X,Y coordinates, 20

M_INIT - Initialize VDP for multi-color mode, 17
NOISE - Set noise generator frequency, 49, 52
PAUSE - Halt program execution for a specified time, 15
PHONEM - Output a speech phoneme, 53, 54

60

KEXRXKX

XXk%x% GRAPH-PAC-II USER DOCUMENTATION (C) XEXXXXXRXX$

PIDLE - Test state of the VOTRAX SC-01, 53

PLOT - Plot a point, 19

POS_SPR - Position sprite, 40

P_GEN - Set Pattern Generator Table Address, 8

P_INIT - Initialize VDP for pattern mode, 17

P_NAME - Set Pattern Name Table Address, 7

P_OPTS - Set/Reset PSG options register, 47, 52

R.REG - Read PSG register, 46

RAND - Random number function, 2§

R_B_DIR - Read byte directly from VRAM, 12

R_NEXT - Read byte from next VRAM address, 13

R_P_REG - Read PSG register, 46 3

SEED - Send the random number function a new seed, 25
SET_G2_C - Set/Reset pattern plane "ON/OFF" colors, 26
STATS - Read VDP status, S

S_COLOR - Sprite color update, 42

S_GEN - Set Sprite Pattern Generator Table Address, 8
S_NAME - Set Sprite Name Table Address, 8

S_PAT16 - Define 16x16 sprite pattern, 37

S_PAT8 - Define 8x8 sprite bit pattern, 37

TEST_XY - Test the state of a specified GZ mode pixel,
T_FREQ - Set tone frequency, 48

T_PER - Set tone period, 48

VDPSCG - Set color generator table address, ¢

VDPSPG - Set pattern generator table address, 9
VDPSPN - Set pattern name table address, 9

VDPSSG - Set sprite pattern generator table address, 9
VDPSSN - Set sprite name table address, 9

VDPSTB - Set border color, 9

VDP_OFF - Tupn VDP display off, 14

VDP_ON - Turn VDP display on, 14

VP.SOP - Set VDP option register, S

VP.WRV - Write byte to next VRAM address, 11

V_OPTS - Set VDP option register, §

W.REG - Write PSG register, 45

W_B_DIR - Write byte directly to VRAM, 10

W_B_DIR _Write byte directly to VRAM, 11

W_NEXT - Write byte to next VRAM address, 11

W_P_REG - Write PSG register, 45, 46

Changes and corrections, 3

Channe
Circle
COBOL,
Coding
Color,
Color

Compil
Contro
DACO,

DAC1,

1, 4
generation, 1
1
problems, 3
38, 42

table, 17

ed MBASIC, 1

1 variable, 44
54
54

Diagnosing problems, 3

Direct

interfacing, 45

D_16_SPR, 41
D_8_SPR, 41

Early

bit, 38

61

XXXXXXXX%%% GRAPH-PAC-II USER DOCUMENTATION (C)

Editing input data, 2 ¥
Enable register, 45, 47
Executable load modules, 3
E_CYCLE, 52
Fonts - user generated, 34
FORTRAN, 1, 3
Frequency, 48
GINIT, 39
Grahpics text and symbols, 30
GRAPG-PAC-II standard fonts, 34
GRAPH-PAC-11 standard fonts, 33
Graphic bars, 28
Graphics 2 mode, 16
G_INIT, 2, 7, 14, 17
H19 key pad, 3
H89 unique
Digital to Analog conversion, 54
Output a speech phoneme, 54
PHONEM, 53
Phonemes, 53
PIDLE, 53
Programmable interrupt controller, 53
5C-01, 53
Speech inflection, 53
VOTRAX, 53
INFLEC, 53
HA-8-3, 1, 3
HA-89-3, 1
Handshaking, 44
Hardware, 4
High resolution mode (G2), 7
Horizontal coordinates, 16

INFLEC, S3
Initial recommended values, ?
Input, 4

Joystick, 3, 4

Legal argument values, 2

Line Drawing, 1

Lucidata Pascal, 2

MACRO-80, 1, 2, 3

MACRO-80 NOTE, 2, 4, 5, 11, 12, 13, 45
MBASIC, 1

Memory boundaries, 7

MICROSOFT .REL, 1

MINIT, 39
Multi-color mode, 16
M_INIT, 17
Noise, 49

Parallel ports, 44

Pascal MT+, 1, 3

Pattern bytes/values, 37, 38
Pattern mode, 7

Pattern number, 42

Pattern values, 41

PHONEM, 53, 54

62

KXKKERXXK XS

AXXXXXXXX%XX GRAPH-PAC-I11 USER DOCUMENTATION
Phonemes, 53

Phonetic speech dictionary, 54

PIDLE, 53

PINIT, 39

Polybytes, 2

Port pull-up resistors, 44
Port read, 44
Port write, 44

Programmable

PSG Timing considerations,

PS6

Channel, 44

Channel Amplitude,
considerations,

Control

Control variable,
interfacing,

Direct
Enable register,
Envelope Cycle
Handshaking, 44
Input switches,

Noise Generator Frequency,

Overview, 44
Parallel ports,

44
44

Port read,
Port write,

Read register/port,
46

Registers, 44,
Tone Frequency,
Variable si

Write register/port,

P_INIT, 17

interrupt controller,

(Duration) Time,

44,
Port pull-up resistors,

level control,

53
52

49

52
44

45

45, 47

50

46
49

46

44
46

48

46
45

Reading analog channels, 4
Recommended system constants, 2

Registers, 44

Relocatable modules, 3

Retranslate
R_CHAN, 2
R_P_REG,

5Cc-01, 53
Selling and
Set Channel Amplitude,

0 origin,

46

Set Envelope Cycle (Duration) Time,
Set Noise Generator Frequency,
48

Set Tone Frequency,

16

sharing programs, 3

49
50
49

Setting the Input and Output Port Addresses,

Sound duration time,

S0

Sound envelope shapes, 51
Source code, 3

Speech inflection, 53
Speech synthesizer, 54
Sprite manipulation, 1
Sprite number, 38, 42
Sprite Support, 36
Sprites

¥

63

)

5§

XXKREXKRKXE

XXXXXXXXXXX GRAPH-PAC-1I USER DOCUMENTATION (C) XAXXERX2XX3

16x16, 37, 38
8x8, 37, 38
Animation, 36 % 9
Attributes, 36
Color, 38, 42
Coordinate system, 36
Early bit, 36, 38, 40 3 e f
Handling, 36
Manipulation, 36 ¢
Number, 40
Pattern bytes/values, 37, 38, 41
Pattern number, 41, 42
Positioning, 40
Sprite number, 42
STATS, S
Tables
Pattern color, 18
Pattern generator, 18
Pattern name, 18
Sprit name/attribute, 18
Sprite generator, 18
Testing and certifying programs, 3
Time, SO
Underscore (_), 3
United States Copyright laws, 3
User generated fonts, 34
Variable sound level control, 46
VDP

Aft

16K graphics memory, 7
Assigning ry usage, 9
Auto-increm of VRAM address, 11
Display background color, 9
G_INIT, 2, 7
High resolution mode (62), 7
Initial recommended values, 7
MACRO-80 NOTE, S5, 9
Memory boundaries, 7
Offset registers, 7
Pattern mode, 7
Read STATUS register, §
R_CHAN, 2
Set option register, §
status register, 5
VP.SOP, 5
VRAM, 10
VDPSTB, 9
Vertical coordinates, 16
VOTRAX, 53
VRAM, 10, 11, 12, 13, 14, 16, 17
VRAM address auto-increment, 11
VRAM address calculation routine, 16
VRAM allocation, 18

V_OPTS, §
W_B_DIR, 10
W_NEXT, 11

64

o

XXXXXXKXXXX GRAPH-PAC-II USER DOCUMENTATION (C) XXXKEXXEKX%

W_P_REG, 46

X, 16

X coordinate, 20, 21, 23, 36, 38, 40
Y,

Y coordinate, 20, 21, 23, 36, 38, 40
280, 1, 2

65

