Page 12-9

g IEATIHKEITS
HEATH ANSI
KEY ESCAPE ESCAPE
CODE CODE
0 ESC 7 p ESCOp KEY OCTAL ANSI
CODE | CODE
1 ESC 7 g ESCO q
2 ESC?r ESCOr
3 ESC ? s ESC O s RETURN 015 015
. ESC 7t ESC Ot LINE FEED 012 012
- ESC 7 u ESC O 4 BACKSPACE 010 010
] — ESC O v SPACE BAR 040 040
7 ESG 7 w ESC O w TAB 011 011
o ESC 7 x ESC O x DELETE 177 177
9 ESC ?y ESC Oy ESC 033 033
) ESCTn ESCOn CONTROL KEYS
ENTER ESC ? M ESC O M
ALTERNATE KEYPAD MODE
HEATH ANSI
KEY ESCAPE | ESCAPE
CODE CODE

F1 Escs | Escos

F2 EscT | EscoT

F3 Escu | Escou

F4 Escv | Escov

F5 ESCw | EScow

BLUE ESCP - | ESCOP

RED ESCQ | EscoqQ

GRAY ESCR | ESCOR

SPECIAL FUNCTION KEYS

Page 12-10
g EATHEITS

HEATH
ESCAPE SEQUENCES

Summary Of Sequences

Escape Mnemonic Definition

Sequence

CURSOR FUNCTIONS

ESCH HCUH Cursor Home

ESC C HCUF Cursor Forward

ESCD HCUB Cursor Backward

ESCB HCUD Cursor Down

ESC A HCUU Cursor Up

ESC1 HRI Reverse Index

ESCn HCPR Cursor Position Report

ESCj HSCP Save Cursor Position

ESC k HRCP Set Cursor To Previously Saved Position
. ESCY HDCA Direct Cursor Addressing (Same as VT52)

ERASING AND EDITING

ESCE HCD Clear Display (Shift Erase)

ESChb HBD Erase Beginning Of Display

ESC]} HEQOP Erase To End Of Page {Erase Key)
ESC1 HEL Erase Entire Line

ESC o HEBL Erase Beginning Of Line

ESCK HEOL Erase To End Of Line

ESC L HIL Insert Line

ESCM HDL Delete Line

ESCN HDCH Delete Character

ESC @ HEIM Enter Insert Character Mode
ESCO HERM Exit Insert Character Mode
CONFIGURATION

ESC z HRAM Reset to Power-Up Configuration
ESCr B, HMBR Modify Baud Rate (B,=; A=110, B=150, C=300,

D=600, E=1200, F=1800, G=2000, H=2400,
I1=3600, J=4800, K=7200, L=9600)

ESCx P, HSM Set Mode(s): P,=
1 = Enable 25th line
2 = No key click
3 = Hold screen mode
4 = Block cursor
5 = Cursor off
6 = Keypad shifted
7 = Alternate keypad mode
8 = Auto line feed on receipt of CR
9 = Auto CR on receipt of line feed

Page 12-11

= i EATIHKITS
ESC y P, HRM Reset Mode(s): P,=
1 = Disable 25th line
2 = Enable key click
3 = Exit hold screen mode
4 = Underscore cursor
5 = Cursor on
6 = Keypad unshifted
7 = Exit alternate keypad mode
8 = No auto line feed
9 = No auto CR
ESC < HEAM Enter ANSI Mode
MODES OF OPERATION
ESC [HEHS Enter Hold Screen Mode
ESC \ HXHS Exit Hold Screen Mode
ESCp HERV Enter Reverse Video Mode
ESC g HXRV Exit Reverse Video Mode
ESCF HEGM Enter Graphics Mode
ESC G HXGM Exit Graphics Mode
ESCt HEKS Enter Keypad Shifted Mode
ESCu HXKS Exit Keypad Shifted Mode
ESC = HAKM Enter Alternate Keypad Mode
ESC > HXAM Exit Alternate Keypad Mode
ADDITIONAL FUNCTIONS
ESC } HDK Keyboard Disabled
ESC{ HEK Keyboard Enabled
ESC v HEWA Wrap Around At End Of Line
ESC w HXWA Discard At End Of Line
ESC Z HID Identify As VT52 (ESC / K)
ESC] HX25 Transmit 25th Line
ESC # HXMP Transmit Page

NOTE: The Terminal will transmit the following sequences, but it will not respond to
them if they are received by the Terminal.

ESC S HF1 Function Key #1 (1)
ESCT HF2 Function Key #2 (f2)
ESCU HF3 Function Key #3 (f3)
ESCV HF4 Function Key #4 (f4)
ESCw HF5 Function Key #5 (f5)
ESCP HF7 Function Key (BLUE)
ESC Q HF8 Function Key (RED)

ESCR HF9 Function Key (GRAY)

Page 12-12

R

= IEATHKITS

Heath Escape Sequences Defined

CURSOR FUNCTIONS

HCUH Cursor Home ESCH
Moves the cursor to the first character position on the first line (home).

HCUF Cursor Forward ESC G
Moves the cursor one character position to the right. If the cursor is at the right end of the
line, it will remain there.

HCUB Cursor Backward ESCD
Moves the cursor one character position to the left (backspaces). If the cursoris at the start
{left end) of a line, it will remain there.

HCUD Cursor Down ESCB

Moves the cursor down one line without changing columns. The cursor will not move
past the bottom (24th) line and no scrolling will take place. Use HDCA (Direct Cursor
Addressing) to move the cursor to line 25 — when line 25 is active.

HCUU Cursor Up ESCA
Moves the cursor up one line. If the cursor reaches the top line, it remains there and no
scrolling occurs.

HRI Reverse Index ESCI
Moves the cursor to the same horizontal position on the preceding line. If the cursoris on
the top line, a scroll down is performed.

HCPR Cursor Position Report ESC n
The Terminal reports the cursor position in the form of ESC Y line# column#.

HSCP Save Cursor Position ESC j
The present cursor position is saved so the cursor can be returned here later when given
the HRCP (Set Cursor to Previously Saved Position) command.

HRCP Set Cursor To Previously Saved Position ESC k
Returns the cursor to the position where it was when it received the HSCP (Save Cursor
Position) command.

HDCA Direct Cursor Addressing ESCY

Moves the cursor to a position on the scceen by entering the escape code, the ASCII
character which represents the line number, and the ASCII character which represents
the column number.

The first line and the left column are both 32,, (the smallest value of the printing
characters) and increase from there. Since the lines are numbered from 1 to 25 (from top
tobottom) and the columns from 1 to 80 (from left to right), you must add the proper line
and column numbers to 31,. Then convert these decimal numbers to their equivalent
ASCII characters and enter them in the following order:

ESC Y line # (ASCII character) column # (ASCII character)

= P EATHEITS

Page 12-13

If the line number entered is too high, the cursor will not move. If the column number is
too high, the cursor will move to the end of the line.

This is the only way to move the cursor to the 25th line, but the 25th line must first be
enabled.

ERASING AND EDITING

HCD Clear Display (Shift Erase) ESCE
Erases the entire screen, fills the screen with spaces, and places the cursor in the home
position.

HBD Erase Beginning of Display ESC b
Erases from the start of the screen to the cursor, and includes the cursor position.

HEOP Erase to End Of Page (Erase Key) ESC]
Erasesall the information from the cursor (including the cursor position) tothe end of the
page.

HEL ERASE Entire Line ESC 1
Erases all of the line, including the cursor position.

HEBL Erase Beginning of Line ESC o
Erases from the beginning of the line to the cursor, and includes the cursor position.

HEOL Erase to End Of Line ESC K
Erases from the cursor (including the cursor position) to the end of the line.

HIL Insert Line ESCL
Inserts a new blank line by moving the line that the cursor is on, and all following lines,
down one line. Then the cursor is moved to the beginning of the new blank line.

HDL Delete Line ESCM
Deletes the contents of the line that the cursor is on, places the cursor at the beginning of
the line, moves all the following lines up one line, and adds a blank line at line 24.

HDCH Delete Character ESC N
Deletes the character at the cursor position and shifts any existing text that is to the right
of the cursor one character position to the left.

HEIM Enter Insert Character Mode ESC @

Lets you insert characters or words into text already displayed on the screen. As you type
in new characters, existing text to the right of the cursor shifts to the right. As each new
character is inserted, the character at the end of the line is lost.

HERM Exit Insert Character Mode ESC O
Exits from the insert character mode.

Page 12-14

I I ATEIKITS

CONFIGURATION

HRAM Reset to Power-Up Configuration ESC z
Nullifies all previously set escape modes and returns to the power-up configuration.

HMBR Modify Baud Rate ESCr Bn
Modifies the baud rate, where Bn equals:
A=110, B=150, C=300, D=600,
E=1200, F=1800, G=2000, H=2400,

1=3600,]=4800, K=7200, L=9600

HSM Set Mode(s) ESC x P,
Sets the following modes, where P, equals:
1=enable 25th line
2=no key click
3=hold screen mode
4=block cursor
5=cursor off
6=keypad shifted
7=alternate keypad mode
8=auto line feed on receipt of CR
9=auto CR on receipt of line feed

HRM Reset Mode(s) ESCy P,
Resets special modes, where P, equals:
1=disable 25th line
2=enable key click
3=exit hold screen mode
4=underscore cursor
5=cursor on
6=keypad unshifted
7 =exit alternate keypad mode
8=no auto line feed
9=no auto CR

HEAM Enter ANSI Mode ESC <
Enters the ANSI mode.

MODES OF OPERATION

HEHS Enter Hold Screen Mode ESC |

Controls when new information is printed on the screen.

— Type the SCROLL key and a new line of information will be printed on the bottom
line. The top line will scroll off.

— Type SHIFT SCROLL and a whole new page of text will scroll onto the screen and
stop as the old page scrolls up and off the screen.

Page 12-15

S Qe ATHEITS

HXHS Exit Hold Screen Mode ESC\
Exits the hold screen mode.

HERV Enter Reverse Video Mode ESC p
Enters the reverse video mode so that characters are displayed as black characters on a
white background.

HXRV Exit Reverse Video Mode ESC q
Exits the reverse video mode.

HEGM Enter Graphics Mode ESC F
Enters the graphics mode to display any of the 33 special symbols (26 lower-case keys
and seven other keys) that correspond to the graphic symbols.

HXGM Exit Graphics Mode ESC G
Exits the graphics mode and returns to the display of normal characters.

HEKS Enter Keypad Shifted Mode ESC t
Inverts the normal and shifted functions of the keypad. Now, if you hold down the SHIFT
key, you will get a normally unshifted character.

HXKS Exit Keypad Shifted Mode ESC u
Exits the keypad shifted mode.

HAKM Enter Alternate Keypad Mode ESC =
Entérs the alternate keypad mode, which will then allow the keyboard keys to transmit
the following escape codes instead of the normal ones.

KEY ESCAPE CODE

ESC?p
ESC?q
ESC?r
ESC7?s
ESC 7t
ESC?u
ESC?v
ESC 7w
ESC ? x
ESC?y
ESC?n
ENTER ESC M

© O N ULk W - O

These special escape codes are user defined and must be recognized by your software.

HXAM Exit Alternate Keypad Mode ESC >
Exits the alternate keypad mode and returns to the transmission of normal character
codes.

Page 12-16

——

=TI ATEIIITS

ADDITIONAL FUNCTIONS

HDK Keyboard Disabled ESC }
Inhibits the output of the keyboard.

HEK Keyboard Enabled ESC {
Enables the keyboard after it was inhibited by an HDK (Keyboard Disabled) command.

HEWA Wrap Around at End of Line ESC v
The 81st character on a line is automatically placed in the first character position on the
next line. The page scrolls up if necessary.

HXWA Discard at End of Line ESCw
After the 80th character in a line, the characters overprint. Therefore, only the last
character received will be displayed in position 80.

HID Identify as VT52 (ESC/K) ESC Z
The Terminal responds to the interrogation with ESC/K to indicate that it can perform as
VT52.

HX25 Transmit 25th Line ESC]
Transmits the 25th line. (The computer requires a special routine to use this feature.)

HXMP Transmit Page ESC #
Transmits lines 1 through 24. (The computer requires a special routine to use this
feature.)

HF1 Function Key #1 (F1) ESCS
Transmits a unique escape code to perform a user-defined function. The Terminal will
not respond to this code if it is received.

HF2 Function Key #2 (F2) ESCT
Same as above.

HF3 Function Key #3 (F3) ESCU
Same as above.

HF4 Function Key #4 (F4) ESCV
Same as above.

HF5 Function Key #5 (F5) ESCW
Same as above.

HF7 Function Key Blue ESCP
Same as above.

HF8 Function Key Red ESC Q
Same as above.

HF9 Function Key Gray ESCR
Same as above.

Page 12-17
= g fIEATEKITS

ANSI
ESCAPE SEQUENCES

Summary Of Sequences

NOTES:

1. Inthe ANSImode, the Terminal recognizes and responds only to escape sequences
whose syntax and semantics are in accordance with ANSI specifications.

2. “Default” is a value that is assumed when no explicit value, or a value of Zero, is
specified.

3. P, — Numeric Parameter. Any decimal value may be substituted for P,.
4. P; — Selective Parameter. Any decimal number that is taken from a list and used to

select a subfunction. You can select several subfunctions at once by putting one
number after another but separating them with delimiters {semicolons).

Example: To turn off the key click (ESC [> 2 h) and turn on the block cursor (ESC [>

4 h), type:
ESC[>24h
Escape Mnemonic Definition
Sequence

CURSOR FUNCTIONS

ESC [Hor ESC [g0 H cup Cursor Home

or ESC[1;1 H or

ESC[forESC[g0 f HVP

orESC[1,1 ¢f

ESC[P, C CUF Cursor Forward

ESC[P, D CUB Cursor Backward
ESC[P, B CUD Cursor Down

ESC[P, A [8{u]8) Cursor Up

ESC M RI Reverse Index

ESC[n CPR Cursor Position Report
ESC [s PSCP Save Cursor Position
ESC[u PRCP Set Cursor Position
ESC[PP, H CupP Direct Cursor Addressing

or ESC [P;P, f

Page 12-18

I

= g I EATHKITS

ERASING AND EDITING

ESC [2j
ESC [1]
ESC[jorESC[§]
ESC[2k

ESC[1K

ESC[KorESC[¢ K
ESC[P, L
ESC [P, M
ESC[P, P
ESC[4h
ESC [41

CONFIGURATION

ESC [z
ESC[P, T

ESC[{>P;h

ESC[>P, 1

ESC[?2h
MODES OF OPERATION

ESC[7m
ESC [mor ESC [f m
ESC[>7h
ESC[>71

ED
ED

EL
EL
EL
IL
DL
DCH
IRM
IRM

PRAM
PMBR

SM

RM

PEHM

SGR
SGR
SM
RM

Clear Display (Shift Erase)

Erase Beginning Of Display

Erase To End Of Page (Erase Key)

Erase Entire Line

Ease Beginning Of Line

Erase To End Of Line

Insert Line

Delete Line

Delete Character

Insert/Replacement (Insert character) Mode On
Insert/Replacement (Insert Character) Mode Off

Reset To Power-Up Configuration

Modify Baud Rate (P,=; 1=110, 2=150,
3=300, 4=600, 5=1200, 6=1800, 7=2000,
8=2400, 9=3600, 10=4800, 11=7200,
12=9600)

Set Mode(s): P, =
1 = Enable 25th line
= No key click
= Hold screen mode
= Block cursor
= Cursor off
= Keypad shifted
Alternate Keypad mode
= Auto line feed on receipt of CR
= Auto CR on receipt of line feed

1l

© WO NNDU W

Reset Mode(s): P, =

1 = Disable 25th line
2 = Enable key click
3 = Exit hold screen mode
4 = Underscore cursor
5 = Cursor on
6 = Keypad unshifted
7
8
9

I

il

Exit alternate keypad mode
= No auto line feed
= No auto CR

Enter Heath Mode

Enter Reverse Video Mode

Exit Reverse Video Mode

Enter Alternate Keypad Mode (ESC =)*
Exit Alternate Keypad Mode (ESC >)*

*These escape codes may be used, but are not recommended.

Page 12-19
= g IEATEIITS

ADDITIONAL FUNCTIONS

ESC[2h SM Keyboard Disabled

ESC[21 RM Keyboard Enabled

ESC{ ?7h SM Wrap Around At End Of Line
ESC[7?71 RM Discard At End Of Line

ESC [g PX25 Transmit 25th Line

ESC[p PXMT Transmit Page

NOTE: The Terminal will transmit the following functions, but it will not respond to
them if they are received by the Terminal.

ESCOS S83 Function Key #1 (F1)
ESCOT SS3 Function Key #2 (F2)
ESCOU SS3 Function Key #3 (F3)
ESCOV S83 Function Key #4 (F4)
ESCOW SS3 Function Key #5 (F5)
ESCOP - SS83 Function Key (BLUE)
ESCOQ S83 Function Key (RED)

ESCOR S83 Function Key (GRAY)

ANSI Mode Summary

The ANSI controls SET MODE {SM) and RESET MODE (RM) are shown on the previous
page. The following table shows all parameters which may be set or reset using the SM
and RM control sequences.

The control sequence for SET MODE is: ESC [P, h.
[P]

The control sequence for RESET MODE is: ESC [P, 1.
(MODE Py SET (SM) RESET (RM)
% KAM 2 Keyboard Disabled ‘ Keyboard Enabled
ANSI IRM 4 Insert Character Mode On Insert Character
Mode OFF
\ LNM 2§ New Line Mode New Line Mode Off
(Auto Line Feed On CR)
L25 >1 Display 25th Line Disable 25th Line
KCL >2 Disable Key Click Enable Key Click
HSM >3 Enable Hold Screen Mode Disable Hold Screen Mode
CBL >4 Blinking Block Cursor Blinking Underscore Cursor
CDE >5 Cursor Off Cursor On
HEATH § KSH >6 Keypad Shifted Keypad Unshifted
KAM >7 Keypad Alternate Mode Keypad Normal Mode
ALF >8 Auto Line Feed On Return No Auto Line Feed
ACR >9 Auto CR On Line Feed No Auto CR On Line Feed
HMD 72 Enter Heath Mode N/A
\ WAR 7?7 Wrap Around At End Of Line Discard Past End Of Line

Page 12-20
— = g FIE ATEIIIT?

ANSI modes which are always considered to be in either the SET or the RESET state, and those which do not
apply to this product are as follows:

CRM Control Representation Mode RESET
EBM Editing Boundary Mode RESET
ERM Erasure Mode SET
FEAM Format Effector Action Mode RESET
FETM Format Effector Transfer Mode RESET
GATM Guarded Area Transfer Mode RESET
HEM Horizontal Editing Mode RESET
MATM Multiple Area Transfer Mode N/A
PUM Positioning Unit Mode RESET
SATM Selected Area Transfer Mode SET
SRTM Status Reporting Transfer Mode N/A
TSM Tabulation Stop Mode N/A
TT™M Transfer Termination Mode SET
VEM Vertical Editing Mode RESET
SEM Set Editing Extent Mode Edit In Line

ANSI Escape Sequences Defined

NOTES:

1. TInthe ANSI mode, the Terminal recognizes and responds only to escape sequences
whose syntax and semantics are in accordance with ANSI specifications.

2. “Default” is a value that is assumed when no explicit value, or a value of zero, is
specified.

3. P, — Numeric Parameter. Any decimal number that is substituted for P,.
4. P, — Selective Parameter. Any decimal number that is taken from a list and used to

select a subfunction. You can select several subfunctions at once by putting one
number after another but separating them with delimiters (semicolons).

Page 12-21

g IEmATEHKITe

CURSOR FUNCTIONS

CUP Cursor Position ESC [Hor ESC [;0 H or

or ESC[1,1 H

HVP Horizontal & Vertical Position ESC [f or ESC [@:0 f) or
ESC{ 11 f

Moves the cursor to the position specified by the parameters. The first parameter
specifies the line number and the second parameter specifies the column number. A
parameter of zero is considered to be one. If no parameter is given, the cursor is placed in
the home position.

Default Value: 1

CUF Cursor Forward ESC [P, C
Moves the cursor to the right the number of characters determined by the value of P,. If
this number is zero or one, the cursor moves one position. The cursor stops at the right
margin.

Default Value: 1

CUB Cursor Backward ESC [P, D

Moves the cursor to the left the number of characters determined by the value of P,,. If this

number is zero or one, the cursor moves one position. The cursor stops at the left margin.
Default Value: 1

CUD Cursor Down ESC[P, B

Moves the cursor downward without changing columns. The number of lines moved is
determined by the value of P,. If this number is zero or one, the cursor moves down one
line. The cursor will stop at line 24. Direct Cursor Addressing must be used to move to
line 25.

CUU CursorUp ESC[P,A
Moves the cursor upward without changing columns. The number of lines moved is
determined by the value of P,,. If this number is zero or one, the cursor moves up one line.
The cursor will stop at the top line.

Default Value:1

Page 12-22

S—

= @rIEATERITS

RI Reverse Index ESCm
Moves the cursor to the same position on the preceeding line.

CPR Cursor Position Report ESC [n
The Terminal reports the cursor position in the form of ESC [P;P. R.

PSCP Save Cursor Position ESC [s
The present cursor position is remembered so the cursor can be returned here later when
given the PRCP (Return to Previously Saved Position) command.

PRCP Set Cursor to Previously Saved Position ESC [u
Returns the cursor to the position where it was when it received the PSCP (Save Cursor
Position) command.

CUP Direct Cursor Addressing ESC [P;P. H or
ESC [PP, f

Same as CUP and HVP above. If the line number (P,) entered is too high, the cursor will
not move. If the column number (P,) is too high, the cursor will move to the end of the
line.
This is the only way to move the cursor to the 25th line, but the 25th line must first be
enabled.
To move the cursor home, enter 0:0 or I;1 or do not enter any values.

Default Values: 1

ERASING AND EDITING

ED Erase In Display ESC [P,]
Erases some or all of the characters in the display according to the value of P;.

P, Means
1) Erases from the cursor to the end of the screen and includes the

cursor position.

1 Erases from the start of the screen to the cursor and includes the
cursor position.
2 Erases all of the screen and the cursor does not move.

Default Value: 0

EL Erase In Line ESC [P, K
Erases some or all of the characters in the cursor line according to the value of P,.

Means

Erases from the cursor to the end of the line and includes the cursor

position.

1 Erases from the start of the screen to the cursor and includes the
cursor position.

2 Erases all of the line including the cursor positions.

L3
]

Default Value: 0

= g r i ATEIRITS

Page 12-23

IL InsertLine ESC [P,L '

Inserts one or more blank lines (depending on the value of P,) by moving the line that the
cursor is on and all the following lines down P,, lines. Then the cursor is moved to the
beginning of the new blank line.

DL Delete Line ESC[P, M
Deletes the line of characters that the cursor is in, and other following lines if P, is greater
than one. The remaining lines below the deleted area then move up the number of lines
that were deleted. The cursor is placed at the beginning of the next line.

Default Value: 1

DCH Delete Character ESC [P, P

Deletes the characters at the cursor position, and other positions on the cursor line to the

right of the cursor if P, is greater than one. Any remaining characters to the right of the

deleted characters then move left the number of characters that were deleted.
Default Value: 1

IRM Insert/Replacement Mode ON ESC [4 h

Lets you insert characters or words into text already displayed on the screen. As new
characters are entered, existing text to the right of the cursor shifts to the right. As each
character is inserted, the character at the end of the line is lost.

IRM Insert/Replacement Mode OFF ESC [41
Exits from the IRM ON mode.

CONFIGURATION

PRAM Reset to Power-Up Configuration ESC [z
Nullifies all previously set escape modes and returns to the power-up configuration.

PMBR Modify Baud Rate ESC[P, r

Modifies the baud rate, where P, equals:
1=110, 2=150, 3=300, 4=600, 5=1200,
6=1800, 7=2000, 8=2400, 9=3600, 10=4800,
11=7200, 12=9600

SM Set Mode(s), ESC[>P, h
Sets the following modes, where P, equals:
1=enable 25th line
2=no key click
3=hold screen mode
4=Dblock cursor
5=cursor off
6=keypad shifted
7=alternate keypad mode
8=auto line feed on receipt of CR
9=auto CR on receipt of line feed

Can set one or more modes as determined by the parameter string P,;P,;P,, etc.
Default Value: None

HEATIIKITS

RM Reset Mode(s) ESC [> P,]
Resets special modes, where P, equals:
1=disable 25th line
2=enable key click
3=exit hold screen mode
4=underscore cursor
5=cursor on
6=keypad unshifted
7=exit alternate keypad mode
8=no auto line feed
9=no auto CR

Can reset one or more modes as determined by the parameter string P,;P,;P;, etc.
Default Value: None

PEHM Enter Heath Mode ESC [?21
Enters the Heath mode. :

MODES OF OPERATION

SM Enter Hold Screen Mode ESC [>3h

Controls when new information is printed onto the screen.

— Type the SCROLL key and a new line of information will be printed on the bottom
line. The top line will scroll off.

— Type SHIFT SCROLL and a whole new page of text will scroll onto the screen and
stop as the old page scrolls up and off the screen.

RM Exit Hold Screen Mode ESC [> 31
Exits the hold screen mode.

SGR Enter Reverse Video Mode ESC [7 m .
Enters the reverse video mode so that characters are displayed as black characters on a
white background.

SGR Exit Reverse Video Mode ESC [m or ESC | fl m
Exits the reverse video mode.

SM Enter Keypad Shifted Mode ESC [>6h
Inverts the normal and shifted functions of the keypad. Now if you hold down the SHIFT
key, you will get a normally unshifted character.

RM Exit Keypad Shifted Mode ESC|[> 61
Exits the keypad shifted mode.

B gsrEATHEITS

Page 12-25

SM Enter Alternate Keypad Mode ESC = orESC[>7h

Allows you to enter the alternate keypad mode, which will then transmit the following
escape codes instead of the normal ones.

KEY ESCAPE CODE

ESCOp
ESCOgq
ESCOr
ESCOs
ESCOt
ESCOu
ESCOv
ESCOw
ESC O x
ESCOy
ESCOn
ENTER ESCOM

O ONO U B WN RS

These special escape codes are user defined and must be recognized by your software.

RM Exit Alternate Keypad Mode ESC > orESC [> 71

Exits the alternate keypad mode and returns to the transmission of normal character
codes.

ADDITIONAL FUNCTIONS

SM Keyboard Disabled ESC[2 h
Inhibits the output of the keyboard. To activate the keyboard, send the ‘“‘enable
keyboard” escape sequence from the computer or reset the Terminal.

RM Keyboard Enabled ESC [21
Enables the keyboard after it was inhibited by an SM (Keyboard Disabled) command.

SM Wrap Around At End Of Line ESC[?7 h
81st character on a line is automatically placed in the first character position on the next
line. The page scrolls up if necessary and permitted.

RM Discard At End Of Line ESC [? 71
After the 80th character in a line, the characters overprint. Therefore, only the last
character received will be displayed in position 80.

PX25 Transmit 25th Line ESC [g
Transmits the 25th line.

PXMT Transmit Page ESC [p

Transmits lines 1 through 24. (The computer requires a special routine to use this
feature.)

SS3 Function Key #1 (F1) ESCO S
Transmits a unique escape code to perform a user-defined function. The Terminal will
not respond to this code if it is received.

Page 12-26
= g rIEATEKITS

—

SS3 Function Key #2 (F2) ESCOT
Same as above.

SS3 Function Key #3 (F3) ESCO U
Same as above.

8583 Function Key #4 (F4) ESCOV
Same as above.

S83 Function Key #5 (F5) ESCOW
Same as above.

S$S3 Function Key (Blue) ESC O P
Same as above.

S$S3 Function Key (Red) ESC O Q
Same as above.

S$S3 Function Key (Gray) ESCOR
Same as above.

i

i

E.

&

i

i

i

i

ar
;I

= g rIEATEIRITS

Page 12-27

THE FUNCTIONS OF A COMPUTER

This section of the Manual introduces certain basic
computer concepts. It provides background informa-
tion and definitions which will be useful.

A TYPICAL COMPUTER SYSTEM
A typical digital computer consists of:

a) A central processor unit (CPU)
b) A memory

c) Input/output (1/O) ports

The memory serves as a place to store instructions,
the coded information that directs the activities of the
CPU, and data, the coded information processed by
the CPU. A group of logically related instructions
stored in memory is referred to as a program. The
CPU “reads” each instruction from memory in a logi-
cally determined sequence, and uses it to initiate pro-
cessing actions. If the program sequence is coherent
and logical, processing the program produces intel-
ligible and useful results.

The memory is also used to store the data to be man-
ipulated, as well as the instructions that direct man-
ipulation. The program must be organized such that
the CPU does notread a non-instruction word when it
expects to see an instruction. The CPU can rapidly
access data stored in memory, but often the memory is
not large enough to store the data required for a par-
ticular application. This problem can be resolved by
providing the computer with one or more input ports.
The CPU can address these ports and input the data
contained there. The addition of input ports enables
the computer to receive information from external
equipment (such as a magnetic tape console or floppy
disk) at high rates of speed and in large volumes.

A computer also requires one or more output ports
that permit the CPU to communicate the result of its
processing to the outside world. The output may go to
a display, for use by a human operator, to a peripheral
device that produces “hard copy,” such-as a line
printer, to a peripheral storage device, such as a
floppy disk unit, or the output may constitute process

control signals that direct the operations of another
system, such as an automated assembly line. Like
input ports, output ports are addressable. The input
and output ports together permit the processor to
communicate with the outside world.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU fetches
instructions from memory, decodes their binary con-
tents and executes them. It also references memory
and I/O ports as necessary in the execution of instruc-
tions. In addition, the CPU recognizes and responds
to certain external control signals, such as interrupt
and wait requests. The functional units within a CPU
that enable it to perform these functions are described
below.

THE ARCHITECTURE OF A CPU

A typical central processor unit (CPU) consists of the
following interconnected functional units:

® Registers
® Arithmetic/Logic Unit (ALU)
e Control Circuitry

Registers are temporary storage units within the CPU.
Some registers, such as the program counter and in-
struction register, have dedicated uses. Other regis-
ters, such as the accumulator, are for general-purpose
use.

Accumulator

The accumulator usually stores one of the operands to
be manipulated by the ALU. A typical instruction
might direct the ALU to add the contents of some
other register to the contents of the accumulator and
store the result in the accumulator itself. In general,
the accumulator is both a source (operand) and a
destination (result) register.

Often a CPU includes a number of additional general
purpose registers used to store operands or inter-
mediate data. The availability of general-purpose re-
gisters eliminates the need to ‘“‘shuffle” intermediate
results back and forth between memory and the ac-
cumulator, thus improving processing speed and ef-
ficiency.

Portions of this section of the Manual are reprinted by permission of Intel
Corporation {Copyright 1976).

Page 12-28

B grmAaTEKITS

Program Counter (Jumps, Subroutines and the
Stack)

The instructions that make up a program are stored in
the system’s memory. The central processor refer-
ences the contents of memory in order to determine
what action is appropriate. This means the processor
must know which location contains the next instruc-
tion.

Each of the locations in memory is numbered to dis-
tinguish it from all other locations in memory. The
number that identifies a memory location is called its
address.

The processor maintains a counter that contains the
address of the next program instruction. This register
is called the program counter. The processor updates
the program counter by adding “1” to the counter
each time ‘it fetches an instruction. Therefore, the
program counter is always current (pointing to the
next instruction).

The programmer therefore stores his instructions in
numerically adjacent addresses, so the lower addres-
ses contain the first instructions to be executed and
the higher addresses contain later instructions. The
only time the programmer may violate this sequential
rule is when an instruction in one section of memory
is a jump instruction to another section of memory.

A jump instruction contains the address of the in-
struction which is to follow it. The next instruction
may be stored in any memory location, as long as the
programmed jump specifies the correct address. Dur-
ing the execution of a jump instruction, the processor
replaces the contents of its program counter with the
address embodied in the instruction. Thus, the logi-
cal continuity of the program is maintained.

A special kind of program jump occurs when the
stored program ‘‘calls” a subroutine. In this kind of
jump, the processor is required to “‘remember” the
contents of the program counter at the time the call
occurs. This enables the processor to resume execu-
tion of the main program when it is finished with the
last instruction of the subroutine.

A subroutine is a program within a program. Usually
it is a general-purpose set of instructions that must be
executed repeatedly in the course of a main program.
Routines which calculate the square, the sine, or the
logarithm of a program variable are good examples of
functions often written as subroutines. Other exam-

ples are programs designed for inputting or output-
ting data to a particular peripheral device.

The processor has a special way of handling sub-

routines, in order to insure an orderly return to the
main program. When the processor receives a call
instruction, it increments the program counter and
stores the counter’s contents in a reserved memory
area known as the stack. The stack thus saves the
address of the instruction to be executed after the
subroutine is completed. Then the processor loads
the address specified in the call into its program
counter. The next instruction fetched is therefore the
first step of the subroutine.

The last instruction in any subroutine is a return.
Such an instruction need specify no address. When
the processor fetches a return instruction, it simply
replaces the current contents of the program counter
with the address on the top of the stack. This causes
the processor to resume execution of the program at
the point immediately following the original call in-
struction. '

Subroutines are often nested; that is, one subroutine
will sometimes call a second subroutine. The second
may call a third, and so on. This is perfectly accepta-
ble, as long as the processor has enough capacity to
store the necessary return addresses, and the logical
provision for doing so. In other words, the maximum
depth of nesting is determined by the depth of the
stack itself. If the stack has space for storing three
return addresses, then three levels of subroutine nest-
ing may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addres-
ses built into the processor itself. Other processors
use a reserved area of external memory as the stack
and simply maintain a pointer register which con-
tains the address of the most recent stack entry. The
external stack allows virtually unlimited subroutine
nesting. In addition, if the processor provides instruc-
tions that cause the contents of the accumulator and
other general-purpose registers to be “pushed” onto
the stack or “popped” off the stack via the address
stored in the stack pointer, multi-level interrupt pro-
cessing (described later in this section) is possible.
The status of the processor (for example, the contents
of all the registers) can be saved in the stack when an
interrupt is accepted and then restored after the inter-
rupt has been serviced. This ability to save the proces-
sor’s status at any given time is possible even if an
interrupt service routine, itself, is interrupted.

= g rImATEIRITS

Page 12-29

Instruction Register and Decoder

Every computer has a word length characteristic of
that machine. A computer's word length is usually
determined by the size of its internal storage elements
and interconnecting paths (referred to as buses); for
example, a computer whose registers and buses can
store and transfer eight bits of information has a
characteristic word length of eight bits and is referred
to as an 8-bit parallel processor. An 8-bit parallel
processor generally finds it most efficient to deal with
8-bit binary fields, and the memory associated with
such a processor is therefore organized to store eight
bits in each addressable memory location. Data and
instructions are stored in memory as 8-bit binary
numbers, or as numbers that are integral multiples of
eight bits: 16 bits, 24 bits, and so on. This characteris-
lic 8-bit field is often referred to as a byte. '

Each operation the processor can perform is iden-
tified by a unique byte of data known as an instruction
code or operation code. An 8-bit word used as an
instruction code can distinguish between 256 alterna-
tive actions, more than adequate for most processors.

The processor fetches an instruction in two distinct
operations. First, the processor transmits the address
in its program counter to the memory. Then the mem-
ory returns the addressed byte to the processor. The
CPU stores this instruction byte in the instruction
register, and uses it to direct activities during the
remainder of the instruction execution.

The mechanism by which the processor translates an
instruction code into specific processing actions re-
quires a more elaborate explanation than is given
here. The concept, however, should be intuitively
clear to any logic designer. The eight bits stored in the
instruction register can be decoded and used to selec-
tively activate one of a number of output lines, in this
case up to 256 lines. Each line represents a set of
activities associated with execution of a particular
instruction code. The enabled line can be combined
with selected timing pulses to develop electrical sig-
nals that can then be used to initiate specific actions.

This translation of code into action is performed by _ .

the instruction decoder and the associated control
circuitry.

An 8-bit instruction code is often sufficient to specify
a particular processing action. There are times, how-
ever, when execution of the instruction requires more
information than eight bits can convey.

One example of this is when the instruction refer-
ences a memory location. The basic instruction code

identifies the operation to be performed, but cannot
specify the object address as well. In a case like this, a
two- or three-byte instruction must be used. Succes-
sive instruction bytes are stored in sequentially adja-
cent memory locations, and the processor performs
two or three fetches in succession to obtain the full
instruction. The first byte retrieved from memory is
placed in the processor’s instruction register, and
subsequent bytes are placed in temporary storage; the
processor then proceeds with the execution phase.
Such an instruction is referred to as variable length.

Address Register(s)

A CPU may use a register or register pair to hold the .
address of a memory location to be accessed for data.
If the address register is programmable, (for example,
if there are instructions that allow the programmer to
alter the contents of the register) the program can
“build” an address in the address register prior to
executing a memory reference instruction (for exam-
ple, an instruction that reads data from memory,
writes data to memory, or operates on data stored in
memory).

Arithmetic/Logic Unit (ALU)

All processors contain an arithmetic/logic unit, often
referred to simply as the ALU. The ALU, as its name
implies, is that portion of the CPU hardware which
performs the arithmetic and logical operations on the
binary data.

The ALU must contain an adder capable of combin-
ing the contents of two registers in accordance with
the logic of binary arithmetic. This provision permits
the processor to perform arithmetic manipulations on
the data it obtains from memory and from its other
inputs.

Using only the basic adder, a capable programmer can
write routines which will subtract, multiply and di-
vide, giving the machine complete arithmetic
capabilities. In practice, however, most ALU’s pro-
vide other built-in functions, including hardware
subtraction, Boolean logic operations, and shift
capabilities.

The ALU contains flag bits which specify certain
conditions that arise in arithmetic and logical ma-
nipulations. Flags typically include carry, zero, sign,
and parity. It is possible to program jumps which are
conditionally dependent on the status of one or more
flags. Thus, for example, the program may be de-
signed to jump to a special routine if the carry bit is set
following an addition instruction.

Page 12-30

—

HEATIHIITS

Control Circuitry

The control circuitry is the primary functional unit
within a CPU. Using clock inputs, the control cir-
cuitry maintains the proper sequence of events re-
quired for any processing task. After an instruction is
fetched and decoded, the control circuitry issues the
appropriate signals (to units both internal and exter-
nal to the CPU) for initiating the proper processing
action. Often the control circuitry is capable of re-
sponding to external signals, such as an interrupt or
wait request. An interrupt request causes the control
circuitry to temporarily interrupt main program
execution, jump to a special routine to service the
interrupting device, then automatically return to the
main program. A wait request is often issued by a
memory or I/O element that operates slower than the
CPU. The control circuitry will idle the CPU until the
memory or I/O port is ready with the data.

COMPUTER OPERATIONS

There are certain operations basic to almost any com-
puter. A sound understanding of these basic opera-
tions is a necessary prerequisite to examining the
specific operations of a particular computer.

Timing

The activities of the central processor are cyclical.
The processor fetches an instruction, performs the
operations required, fetches the next instruction, and
so on. This orderly sequence of events requires pre-
cise timing, and the CPU therefore requires a free-
running oscillator clock that furnishes the reference
for all processor actions. The combined fetch and
execution of a single instruction is referred to as an
instruction cycle. The portion of a cycle identified
with a clearly defined activity is called a state. And
the interval between pulses of the timing oscillator is
referred to as a clock period. As a general rule, one or
more clock periods are necessary for the completion
of a state, and there are several states in a cycle.

Instruction Fetch

The first state(s) of any instruction cycle is dedicated
tofetching the next instruction. The CPU issues a read
signal and the contents of the program counter are
sent to memory, which responds by returning the
next instruction word. The first byte of the instruction
is placed in the instruction register. If the instruction
consists of more than one byte, additional states are
required to fetch each byte of the instruction. When

the entire instruction is present in the CPU, the pro-
gram counter is incremented (in preparation for the
next instruction fetch) and the instruction is decoded.
The operation specified in the instruction will be
executed in the remaining states of the instruction
cycle. The instruction may call for a memory read or
write, an input or output and/or internal CPU opera-
tion, such as a register-to-register transfer or an add-
registers operation.

Memory Read

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU’s
instruction register. The instruction fetched may then
call for data to be read from memory into the CPU. The
CPU again issues a read signal and sends the proper
memory address; memory responds by returning the
requested word. The data received is placed in the
accumulator or one of the other general-purpose reg-
isters (not the instruction register).

Memory Write

A memory write operation is similar to a read except
for the direction of data flow. The CPU issues a write
signal, sends the proper memory address, then sends
the data word to be written into the addressed mem-
ory location.

Wait

As previously stated, the activities of the processor
are timed by a master clock oscillator. The clock
period determines the timing of all processing activ-

ity.

The speed of the processing cycle is limited by the
memory’s access time. Once the processor has sent a
read address to memory, it cannot proceed until the
memory has had time to respond. Most memories are
capable of responding much faster than the proces-
sing cycle requires. A few, however, cannot supply
the addressed byte within the minimum time estab-
lished by the processor’s clock.

Therefore, a processor contains a synchronization
provision, which permits the memory to request a
wait state, When the memory receives a read or write
enable signal, it places a request signal on the proces-
sor’s READY line, causing the CPU to idle temporar-
ily. After the memory has had time to respond, it frees
the processor’s READY line, and the instruction cycle
proceeds.

= JrIEATEICITS

Page 12-31

Input/Qutput

Input and Output operations are similar to memory
read and write operations with the exception that a
peripheral /O device is addressed instead of a mem-
ory location. The CPU issues the appropriate input or
output control signal, sends the proper device ad-
dress, and either receives the data being input or
sends the data to be output.

Data can be input/output in either parallel or serial
form. All data within a digital computer is rep-
resented in binary coded form. A binary data word
consists of a group of bits; each bit is either a one or a
zero. Serial I/O consists of transferring one bit at a
time on a single line. Naturally, serial I/O is much
slower, but it requires considerably less hardware
than does parallel 1/O.

Interrupts

Interrupt provisions are included on many central
processors as a means of improving the processor’s
efficiency. Consider the case of a computer proces-

sing a large volume of data, portions of which are to be
output to a printer. The CPU can output a byte of data
within a single machine cycle but it may take the
printer the equivalent of many machine cycles to ac-
tually print the character specified by the data byte.
The CPU could then remain idle, waiting until the
printer can accept the next data byte. If an interrupt
capability is implemented on the computer, the CPU
can output a data byte, then return to data processing.
When the printer is ready to accept the next data byte,
it can request an interrupt. When the CPU acknow-
ledges the interrupt, it suspends main program
execution and automatically branches to a routine
that will output the next data byte. After the byte is
output, the CPU continues with main program execu-
tion. Note that this is, in principle, quite similar to a
subroutine call, except the jump is initiated exter-
nally rather than by the program.
{

More complex interrupt structures are possible in
which several interrupting devices share the same
processor but have different priority levels. Interrup-
tive processing is an important feature that enables
maximum utilization of a processor’s capacity for
high system throughput.

INSTRUCTION SET

A computer, no matter how sophisticated, can only
do what it is ““told” to do. A computer is told what to
do via a series of coded instructions referred to as a
program. The realm of the programmer is referred to
as software, in contrast to the hardware that com-
prises the actual computer equipment. A computer’s
software refers to all of the programs that have been
written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to
perform a ‘particular set of operations. The CPU is
designed such that a specific operation is performed
when the CPU control logic decodes a particular in-
struction. Consequently, the operations that can be
performed by a CPU define the computer’s instruc-
tion set. ’

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All
computers implement certain arithmetic operations
in their instruction set, such as an instruction to add
the contents of two registers. Often logical operations
(for example, OR the contents of two registers) and
register operate instructions (for example, increment
a register) are included in the instruction set. A com-
puter’s instruction set also has instructions that move
data between registers, between a register and mem-
ory, and between a register and an I/O device. Most
instruction sets also provide conditional instruc-
tions. A conditional instruction specifies an opera-
tion to be performed only if certain conditions have
been met; for example, jump to a particular instruc-
tion if the result of the last operation was zero. Condi-
tional instructions provide a program with a
decision-making capability.

Page 12-32

I

= 1E ATHIKIT®

By logically organizing a sequence of instructions
into a coherent program, the programmer can “‘tell”
the computer to perform a very specific and useful
function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (for
example, a series of 1’s and 0's), that is called machine
code. Because it would be extremely cumbersome to
program in machine code, programming languages
have been developed. There are programs available
which convert the programming language instruc-
tions into machine code that can be interpreted by the
Processor.

One type of programming language is assembly lan-
guage. A unique assembly language mnemonic is
assigned to each of the computer’s instructions. The
programmer can write a program (called the source
program) using these mnemonics and certain
operands; the source program is then converted into
machine instructions (called the object code). Each
assembly language instruction is converted into one
machine code instruction {1 or more bytes) by an
assembler program. Assembly languages are usually
machine dependent (for example, they are usually
able to run on only one type of computer).

1
2
3
4
S
000,355 & LDIR1 EQU
000,260 7 LDIRZ2 EQU
8
?
10
000,000 ‘11 ORG
12
000,000 041 000 100 13 LXI
000.003 021 000 104 14 LXI
000,006 001 000 004 15 LXI
16
17 X LDIR
000,011 355 260 i8 DR
19
20
21
22 XX RAM
23
100,000 24 ORG
25
100.000 26 RUFF1 ns
104,000 27 RUFF2 ns
28
110,000 29 END

ASSEMEBLY COMFPLETE

29 STATEMENTS

0 ERRORS DETECTED
15842 BYTES FREE

THE 8080 INSTRUCTION SET

This computer uses a Z80 microprocessor, which
provides a great deal of flexibility in programming for
you the user. However, HEATH has chosen to support
the more popular (and more familiar to most) instruc-
tion set of the 8080A. Therefore, when you use the
HEATH assemblers, the documentation shows execu-
tion times and CPU responses for the 8080A rather
than the Z80.

Since some routines are time dependent, knowing the
execution time for each instruction is essential. Also,
when doing some sort of arithmetic operation, the
conditions which affect the setting of the CPU flags
must be known. To help you find the necessary in- |
formation about each instruction, a cross reference
from 8080A to Z80 mnemonics is shown below. From
this, you can refer to the following Z80 section of the
Manual.

Even though HASL-8 and ASM will not accept the

780 mnemonics, you may use the DB and DW

pseudos to take advantage of any Z80 instructions -
you may wish to use. An example using the DB

pseudo is shown below.

*X EXAMFLE OF USE OF A DEFINE RYTE (DB) STATEMENT FOR USING
X Z80 INSTRUCTIONS WHICH ARE NOT SUFFORTED' EY THE HEATH
X 80B0A ASSEMELER

11101101FE Z80 LIIR INSTRUCTION RYTE 1
10110000k 280 LIIR INSTRUCTION BYTE 2
o]

Hs RUFF 1 COFY FROM BUFFER #1

D RUFF2 TO EUFFER #2

By 1024 RUFFER LENGTH IS 1K

EXECUTE LDIR COFY
LOIRY,LIIRZ

1000004

1024
1024

Page 12-33

E= JrIEATEIIKITS
The 8080 instruction set includes five different types ® Stack, I/0, and Machine Control Group —
of instructions: includes I/O instructions, as well as instruc-
tions for maintaining the stack and internal
® Data Transfer Group — move data between control flags.

registers or between memory and registers.

® Arithmetic Group — add, subtract_, incre- -
ment, or decrement data in registers or in
memory.

Instruction and Data Formats

Memory for the 8080 is organized into 8-bit quantities

e Logical Group — AND, OR, EXCLUSIVE- called bytes. Each byte has a unique 16-bit binary
OR, compare, rotate, or complement data in address corresponding to its sequential position in
registers or in memory. memory.

The 8080 can directly address up to 65,536 bytes of

® Branch Group — conditional and uncondi- memory, which may consist of both read-only mem-
tional jump instructions, subroutine call in- ory (ROM) elements and random-access memory
structions, and return instructions. (RAM) elements (read/write memory).
8080 7-80 8080 780 8080 7-80
AC ADC AN IN IN AN POP H POP HL
ADC M ADC A,(HL) INR M INC (HL) POP PSW POP AF
ADC ¢ ADC AR INR r INC R PUSH B PUSH BC
ADD M ADD A,(HL) INX B INC BC PUSH D PUSH DE
ADD r ADD AR INX D INC DE PUSH H PUSH HL
ADI ADD AN INX H INC HL PUSH PSW PUSH AF
ANA M AND (HL) INX 5P INC SP RAL . RLA
ANA r AND R JC JP C,NN RAR RRA
AN AND N JM JP M,NN RC RET C
CALL CALL NN IMP JP NN RET RET
cC CALL C,NN JNC JP NC,NN RLC RLCA
cm CALL MNN | INZ JP NZ,NN RM RET M
CMA CPL JP Jp P,NN RNC RET NC
cMC CCF JPE JP PENN RNZ RET NZ
CMP M CP (HL) JPO JP PO,NN RP RET P
CMP ¢ CP R 1z P ZNN RPE RET PE
CNC CALL NC,NN LDA LD A,(NN) RPO RET PO
CNZ CALL NZ,NN LDAX B LD ABC) RRC RRCA
cpP CALL P,NN LDAX D LD A,(DE} RST RST P
CPE CALL PE,NN LHLD LD HL,(NN) RZ RET Z
cpl CP N LX! B 1D BC,NN SBB M SBC A,(HL)
cPo CALL PONN | LxI D LD DE,NN $BB r SBC AR
CczZ CALL Z,NN LX1 H LD HL,NN SBI SBC AN
DAA DAA LX! SpP LD SP,NN SHLD LD (NN),HL
DAD B ADD HL,BC MVI M LD (HL),N SPHL LD SP,HL
DAD D ADD HL.DE MVI ¢ (D RN STA LD (NN)A
DAD H ADD HLHL MOV M,r LD (HDLR STAX B LD (BC)LA
DAD SP ADD HL,SP MOV r,M LD R,(HL) STAX D LD (DELA
DCR M DEC (HL) MOV r1r2 LD RR sTC SCF
DCR r DEC R NOP NOP SUB M SUB (HL)
OCX B DEC BC ORA M OR (HL) SUB r sus R
DCX D DEC DE ORA r OR R SuU1 SUB N
DCX H DEC HL ORI OR N XCHG EX DEHL
DCX SP DEC SP out OUT (N),A XRA M XCR {HL)
DI D! PCHL JP (HL) XRA r XOR R
El El POP B POP BC XRI XOR N
HLT HALT POP D POP DE XTHL EX (SP),HL

Page 12-34

—

Data in the 8080 is stored in the form of 8-bit binary
integers:

DATA WORD

D7IDelelDalD3lDle1lDo

MSB LSB

When a register or data word contains a binary
number, it is necessary to establish the order in which
the bits of the number are written. In the 8080, BIT 0 is
referred to as the Least Significant Bit (LSB), and BIT
7 (of an 8-bit number) is referred to as the Most Sig-
nificant Bit (MSB).

The 8080 program instructions may be one, two, or
three bytes in length. Multiple byte instructions must
be stored in successive memory locations; the address
of the first byte is always used as the address of the
instructions. The exact instruction format will de-
pend on the particular operation to be executed.

Single-Byte Instructions

[| I
Dy ! ! Fo Do | Op Code
Two-Byte Instructions
|
Byte One | D, ! ! ! ! ! ! Do | Op Code
Byte Two D7l ' ! ! ! l ' Dg | Data or
Address
Three-Byte Instructions
T .
Byte One | Dy ! ! ! ! Dg | Op Code
ByteTwo [D;' | T T T T 157 pata
}or
Byte Three D-/l P I ! ! IDO Address

Addressing Modes

Often the data to be operated on is stored in memory.
When multi-byte numeric data is used, the data, like
instructions, is stored in successive memory loca-
tions, with the least significant byte first, followed by
increasingly significant bytes. The 8080 has four dif-
ferent modes for addressing data stored in memory or
in registers:

® Direct — Bytes 2 and 3 of the instruction
contain the exact memory address of the
data item (the low-order bits of the address
are in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the

register or register pair in which the data is
located.

= g EATHRKITS

® Register Indirect — The instruction
specifies a register pair which contains the
memory address where the data is located
(the high-order bits of the address are in the
first register of the pair, the low-order bits in
the second).

® Immediate — The instruction contains the
data itself. This is either an 8-bit quantity or
a 16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through con-
secutively increasing memory locations. A branch
instruction can specify the address of the next in-
struction to be executed in one of two ways:

® Direct — The branch instruction contains
the address of the next instruction to be exe-
cuted. (Except for the “RST” instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

® Register Indirect — The branch instruction
indicates a register pair which contains the
address of the next instruction to be exe-
cuted. (The high-order bits of the address
are in the first register of the pair, the low-
order bits in the second.)

The RST instruction is a special 1-byte call instruc-

_tion (usually used during interrupt sequences). RST

includes a 3-bit field; program control is transferred
to the instruction whose address is eight times the
contents of this 3-bit field.

Condition Flags

There are five condition flags associated with the
execution of instructions on the 8080. They are Zero,
Sign, Parity, Carry, and Auxiliary Carry, and are each
represented by a 1-bit register in the CPU. A flag is
“set” by forcing the bit to 1; “‘reset” by forcing the bit
to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner.

Zero: If the result of an instruction -has the
value 0, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of

the operation has the value 1, this flag is
set; otherwise it is reset.

Page 12-35

registers A, B, C,D,E, H, L
(DDD = destination, SSS = source):

= JHIEATHEITS ——
Parity: If the modulo 2 sum of the bits of the DDD or SSS REGISTER NAME
result of the operation is O {for example, if BINARY OCTAL
the result has even parity), this flag is set; 111 7 A
otherwise it is reset (for example, if the 000 0 B
result has odd parity). 001 1 C
010 2 D
Carry: If the instruction resulted in a carry 011 3 E
(from addition), or a borrow (from sub- 100 4 H
traction or a comparison) out of the 101 5 L
high-order bit, this flag is set;
otherwise it is reset. rp One of the register pairs:
Auxiliary If the instruction caused a carry out B represents the B, C pair with B as
Carry: of bit 3 and into bit 4 of the resulting the high-order register and C as the
value, the auxiliary carry is set; low-order register;
otherwise it is reset. This flag is
affected by single precision D represents the D, E pair with D as
additions, subtractions, increments, the high-order register and E as the
decrements, comparisons, and logical low-order register;
operations, but is principally used
with additions and increments H represents the H, L pair with H as
preceding a DAA (Decimal Adjust the high-order register and L as the
Accumulator) instruction. low-order register;
SP represents the 16-bit stack pointer
register.
Symbols and Abbreviations
RP The bit pattern designating one of
The following symbols and abbreviations are used in the register pairs B, D, H, SP:
the subsequent description of the 8080 instructions:
RP REGISTER PAIR
SYMBOLS MEANING
00 B-C
accumulator Register A 01 D-E
10 H-L
addr 16-bit address quantity 11 SP
data 8-bit data quantity rh The first (high-order) register of a
designated register pair.
- data 16 16-bit data quantity
_ r] The second (low-order) register of a
byte 2 The second byte of the instruction designated register pair.
byte 3 The third byte of the instruction PC 16-bit program counter register (PCH
and PCL are used to refer to the
port 8-bit address of an 1/O device high-order and low-order 8-bits,
respectively).
r, 11, r2 One of the registers A,B,C,D,E,H, L
SP 16-bit stack pointer register (SPH
DDD, SSS Thebit pattern designating one of the and SPL are used to refer to the

high-order and low-order 8-bits,
respectively).

Page 12-36

I

e g I EATHKITS

rm Bit m of the register r (bits are numbered
7 through 0 from left to right).

Z, S, P, The condition flags:
CY, AC

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry,
respectively.

() The contents of the memory location or
registers enclosed in the parentheses.

«— “Is transferred to”

A Logical AND

na Exclusive OR

% Inclusive OR
+ Addition
- Two’s complement subtraction
Multiplication
> “Is exchanged with”’
— /The one’s complement (e. g., (A))
n The restart number 0 through 7

NNN The binary representation 000
through 111 for restart number 0

through 7 respectively.
Description Format

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is
described in the following manner:

1. The numbers above the mnemonic are the octal
opcodes for the instruction.

2. Theassembler format, consisting of the instruc-
tion mnemonic and operand fields, is printed in
BOLDFACE on the left side of the first line.

3. The name of the instruction is enclosed in
parentheses on the right side of the first line.

4. The next line(s)contain a symbolic description
of the operation of the instruction.

5. Thisisfollowed by a narrative description of the
operation of the instruction.

6. The following line(s) contain the binary fields
and patterns that comprise the machine instruc-
tion. a '

7. The last four lines contain incidental informa-
tion about the execution of the instruction. The
number of machine cycles and states required to
execute the instruction are listed first. If the
instruction has two possible execution times, as
in a conditional jump, both times will be listed,
separated by a slash. Next, any significant data
addressing modes are listed. The last line lists
any of the five Flags that are affected by the
execution of the instruction.

Data Transfer Grbup

This group of instructions transfers data to and from
registers and memory. Condition flags are not af-
fected by any instruction in this group.

1(0-5,7) (0-5,7)
MOV ri, r2
(r1) « (r2)
The content of register r2 is moved to registerri.

L D'D'D‘s"s's

(Move Register)

Cycles: 1
States: 6
Addressing: -~ register

Flags: none

1(0-7)6

MOV r, M (Move from memory)
(r) « ((H) (L)
The content of the memory location, whose ad-
dress is in registers H and L, is moved to register
I.

0 I 1 D ! D ! D 1 ! 1 ! 0
Cycles: 2
States: 7
Addressing: reg. indirect

Flags: none

E= I TEATEIKITS

Page 12-37

16 (0-7)
MOV M, r
((H) (L)) « ()

(Move to memory)

The content of register r is moved to the memory
location whose address is in registers H and L.

0 0 S S S
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
0 (0-7)6 v
MVI r, data (Move Immediate) 0(0-7)6

(r) « (byte 2)

The content of byte 2 of the instruction is moved

to register r.

0 ! 0 D D I D 1 ! 1 ! 0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: none
066
MVI M, data {Move to memory immediate)

(H) (L)) « (byte 2)

The content of byte 2 of the instruction is moved
to the memory location whose address is in regis-

ters H and L.
OIOI1I1IOI1'1|O
data byte
Cycles: 3
States: 10
Addressing: immed./reg. indirect
Fiags: none

001 (B,

B, C) 041 (H, L)
021 (D, E S

) 061 (S, P)

LXI rp, data 16
(rh) « (byte 3),
(r]) « (byte 2) ’
Byte 3 of the instruction is moved into the high-
orderregister (rh) of the register pair rp. Byte 2 of
the instruction is moved into the low-order regis-
ter (rl) of the register pair rp.

I

(Load register pair immediate)

o ol R p] o' o

low-order data

high-order data

Cycles: 3
States: 10
Addressing: immediate
Flags: none

072

LDA addr (Load Accumulator direct)
(A) « ((byte 3) (byte 2))
The content of the memory location, whose ad-
dress is specified in byte 2 and byte 3 of the
instruction, is moved to the accumulator.

0 0

fow-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

062

STA addr (Store Accumulator direct)
((byte 3) (byte 2)) « (A)
The content of the accumulator is moved to the
memory location whose address is specified in
byte 2 and byte 3 of the instruction.

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct

Flags: none

Page 12-38

- g HIEATHKITS
052 002 (B, C) 022 (D, E)
LHLD addr (Load H and L direct) STAX rp (Store accumulator indirect)
(L) < ((byte 3) (byte 2)) ((tp) < (A)
(H) « ((byte 3) (byte 2) + 1) The content of register A is moved to the memory
The content of the memory location, whose ad- location whose address is in the register pair rp.
dress is specified in byte 2 and byte 3 of the NOTE: Only register pairs rp = B (registers B and
instruction, is moved to register L. The content of C) orrp = D (registers D and E) may be specified.
the memory location at the succeeding address is
moved to register H. 0 ! 0 R] P 0] 0\I 1 ! 0
0'0[1]0]1I0!1I0 Cycles: 2
States: 7
low-order addr Addressing: reg. indirect
high-order addr Flags: none
353
Cycles: 5 XCHG (Exchange H and L with D and E)
States: 16 (H) «>(D)
Addressing: direct (L) «>(E)
Flags: none The contents of registers H and L are exchanged
042 with the contents of registers D and E.
SHLD addr {Store H and L direct) 1 ! 1 | 1 | 0 1 1 I 0 | 1 l 1
((byte 3) (byte 2)) « (L)
((byte 3) (byte 2) + 1) « (H) Cycles: 1
The content of register L is moved to the memory States: 4
location whose address is specified in byte 2 and Addressing: register
byte 3. The content of register H is moved to the Flags: none
succeeding memory location.
Arithmetic Group
010|110]0T0T1T0
This group of instructions performs arithmetic opera-
low-order addr tions on data in registers and memory.
high-order addr Unless indicated otherwise, all instructions in this
Cvcles: & group affect the Zero, Sign, Parity, Carry, and Aux-
ycles: o)
States: 16 iliary Carry flags according to the standard rules.
Addressing: direct . . . ,
Flags: none All subtraction operations are performed via two’s
complement arithmetic and set the carry flag to one to
012 (B, G 032 (D, E) indicate a borrow and clear it to indicate no borrow.
LDAX rp {Load accumulator indirect)

(A) < ((rp))

The content of the memory location, whose ad-
dressis in theregister pairrp, is moved toregister
A. NOTE: Only register pairs rp = B (registers B
and C) or rp = D (registers D and E) may be

20 (0-5,7)

ADD r (Add Register)
(A) « (A) + (1)
The content of register ris added to the content of
the accumulator. The result is placed in the ac-

specified.
0 1 0 R ! P 1 rO ! 1 r0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

cumulator.
1] 0 ! 0 ' 0] 0 S 1 S ! S
Cycles: 1
States: 4
Addressing: register
Flags: 2Z,SP,CY,AC

Page 12-39

= g FIEATHEKITS
206 216
ADD M (Add memory) ADCM (Add memory with carry)

(A) « (A) + ((H) (L)

The content of the memory location whose ad-
dress is contained in the H and L registers is
added to the content of the accumulator. The
result is placed in the accumulator.

1'0'0'0[0I1l110
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P.CY.,AC
306
ADI DATA (Add immediate)
(A) « (A) + (byte 2)
The content of the second byte of the instruction
is added to the content of the accumulator. The
result is placed in the accumulator.
1'1]0I0l0l111]0
data byte
Cycles: 2
- States: 7
Addressing: immediate
Flags: 2,8,P,CY,AC
21 (0-5,7)
ADCr (Add Register with carry)

(A) « (A) + () + (CY)

The content of register r and the content of the
carry bit are added to the content of the ac-
cumulator. The result is placed in the ac-

cumulator.
1 [0 ! 0 [0 ! 1 S !) ! S
Cycles: 1
States: 4
Addressing: register

Flags: Z,SP,CY,AC

(A) < (A) + ((H) (L)) + (CY)

The content of the memory location whose ad-
dress is contained in the H and L registers and the
content of the CY flag are added to the content of
the accumulator. The result is placed in the ac-

cumulator.
1IOIOIOI1I1I1IO
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC
316
ACI data (Add immediate with carry)

(A) < (A) + (byte 2) + (CY)

The content of the second byte of the instruction
and the content of the CY flag are added to the
content of the accumulator. The result is placed
in the accumulator.

1'1‘0'0'1'1'1'0
data byte
Cycles: 2
States: 7
Addressing: immediate

Flags: 2,S,P.CY,AC

22 (0-5,7)
SUBr (Subtract Register)
(A) — (A) - (1)
The content of register r is subtracted from the
content of the accumulator. The result is placed
in the acéumulator.

1 0 0
Cycles: 1
States: 4
Addressing: register

Flags: Z,S,P,CY,AC

Page 12-40

= g I EATHKITS
226 236
SUB M (Subtract memory) SBB M (Subtract memory with borrow)

(A) < (A) — ((H) (L)

The content of the memory location whose ad-
dress is contained in the H and L registers is
subtracted from the content of the accumulator.
The result is placed in the accumulator.

!

10'0'1'0'1'1'_0

(A) < (A) — ((H) (L)) - (CY) :
The content of the memory location whose ad-
dressis contained in the Hand L. registers and the
content of the CY flag are both subtracted from
the content of the accumulator. The result is
placed in the accumulator.

~Cycles: -2
States: 7
Addressing: reg. indirect
Flags: ZS,P,CY,AC

1 0 0 1 1 1 1 0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC

326

SUI data (Subtract immediate) .
(A) « (A) - (byte 2) o
The content of the second byte of the instruction
is subtracted from the content of the ac-
cumulator. The result is placed in. the ac-

cumulator.
1 ! 1 ! 0 I 1 ! 0 ! 1 I 1 ! 0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,5,P,CY,AC
23 (0-5,7) .
SBB r (Subtract Register with borrow)

(A) < (A) = (1) — (CY)

The content of register r and the content of the CY
flag are both subtracted from the content of the
accumulator. The result is placed in the ac-

336

SBI data (Subtract immediate with borrow)
(A) « (A) — (byte 2) — (CY)
The contents of the second byte of the instruction
and the contents of the CY flag are both sub-
tracted from the content of the accumulator. The
result is placed in the accumulator.

1]1]OI1I1I1I1I0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,5P,CY,AC
0 (0-5,7)4

INRT {Increment Register)
)= +1
The content of register r is incremented by one.
NOTE: All condition flags except CY are affected.

cumulator.
1'0'0’1'1 ,S.[SIS
Cycles: 1
States: 4
Addressing: register
Flags: Z,SP,CY,AC

0 l 0 D ! D l D 1 I 0 ! 0
Cycles: 1
States: b
Addressing: register
Flags: Z2,S,P,AC

Page 12-41

= QM EATEIKITS
064
INR M (Increment memory) 003 (B,C) 043 (H,L)
((H) (L)) « ((H) (L)) + 1 023 (D,E) 063 -(s,P)

The content of the memory location whose ad-
dress is contained in the H and L registers is
incremented by one. NOTE: All condition flags
except CY are affected.

INX rp (Increment register pair)
(th) (r]) « (rh) (z]) + 1 '
The content of the register pair rp is incremented
by one. NOTE: No condition flags are affected.

0'0'1'1'0'1'0'0
Cycles: '3
States: 10
Addressing: reg. indirect
Flags: Z,S,P,AC
0 (0-5,7)5
DCRr (Decrement Register)

(r) «(r) — 1
The content of register r is decremented by one.
NOTE: All condition flags except CY are affected.

0 ! 0 D ! D ! D I 1 ! 0 ! 1
Cycles: 1
States: 5
Addressing: register
Flags: Z,5,P,AC
065
DCR M (Decrement memory)

(H) (L)) « ((H) (L)) — 1

The content of the memory location whose ad-
dress is contained in the H and L registers is
decremented by one. NOTE: All condition flags
except CY are affected.

ol ol a T4 To T4 To T

o lo|[RrR'P|lololq Ty
Cycles: 1
States: b
Addressing: register
Flags: none
013 (8,C) - 053 (H,L)
033 (D,E) 073. (s,P)
DCX rp (Decrement register pair)

(rh) (r]) « (th) (r}) — 1
The content of the register pair rp is decremented
by one. NOTE: No condition flags are affected.

0 I 0 R I P 1 l 0 l 1 ! 1
Cycles: 1
States: b
Addressing: register
Flags: none
011 (B,C) 051 (H,L)
031 (D,E) 071 (s,P)
DAD rp {Add register pair to H and L)

(H) (L) « (H) (L) + (rh) (z])

The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L. NOTE: Only
the CY flag is affected. It is set if there is a carry
out of the double precision add; otherwise it is

Cycles: 3
States: 10
Addressing: reg. indirect
Filags: 2Z,5,P,AC

reset.
0 I 0 R I P 1 ! 0 ! 0 I 1
Cycles: 3
States: 10
Addressing: register
Filags: CY

Page 12-42

— = g H I EATHIICITS
047 246
DAA (Decimal Adjust Accumulator) ANA M (AND memory)

The eight-bit number in the accumulator is ad-
justed to form two 4-bit Binary-Coded-Decimal
digits by the following process:

1. If the value of the least significant 4 bits of
the accumulator is greater than 9, or if the
ACflag is set, 6 isadded to the accumulator.

2. If the value of the most significant 4 bits of

(A) — (A) A ((H) (L)

The contents of the memory location whose ad-
dress is contained in the H and L registers is
logically anded with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY flag is cleared.

the accumulator is now greater than 9, or
if the CY flag is set, 6 is added to the most
significant 4 bits of the accumulator.

NOTE: AM fiags are affected.

ol ol 1 To T o T T 7T,

Cycles: 1
States: 4
Flags: Z,SP.CYAC

1'0'1'0'0'1'1'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,.S,P.CY,AC
346
ANI data (AND immediate)

(A) < (A) A (byte 2)

The content of the second byte of the instruction
is logically anded with the content of the ac-
cumulator. The result is placed in the ac-

Logical Group:

This group of instructions performs logical (Boolean)
operations on data in registers and memory and on
condition flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry,
and Carry flags according to the standard rules.

24 (0-5,7)

ANAT (AND Register)
(A) «— (A) A (1)
The content of register r is logically anded with
the content of the accumulator. The result is
placed in the accumulator. The CY flag is

cumulator. The CY and AC flags are cleared.

data

byte

Cycles:
States:
Addressing:
Flags:

25 (0-5,7)
XRA r
(A) « (A) ¥ (1)

2

7

immediate
ZS,P,CY AC

(Exclusive OR Register)

The content of register r is exclusive-OR’d with
the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags

cleared.

Cycles: 1
States: 4
Addressing: register
Flags: Z,5,P,CY,AC

are cleared.

1 0
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P.CY,AC

Page 12-43

B Y EATHEITO
256
XRA M (Exclusive OR Memory) ORA M (OR memory)

(A) « (A) »((H) (L))

The content of the memory location whose ad-
dress is contained in the H and L registers is
exclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

Cycles: 2

States: 7
Addressing: reg. indirect
Flags: Z2,5,P,CY ,AC

356

XRI data {Exclusive OR immediate)
(A) « (A) + (byte 2)
The content of the second byte of the instruction
is exclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

data byte
Cycles: 2
States: 7

Addressing: immediate
Flags: Z,8,P,CY,AC

26 (0-5,7)

ORAT (OR Register)
(A) < (A) v (1) :
The content of register r is inclusive-OR’d with
the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags
are cleared.

Cycles: 1
States: 4
Addressing: register
Fiags: Z2,5,P.CY,AC

(A) « (A) V((H) (L)

The content of the memory location whose ad-
dress is contained in the H and L registers is
inclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ORI data (OR Immediate)

(A) « (A) V (byte 2)

The content of the second byte of the instruction
is inclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

1 I 1 0
data byte
Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,PCY,AC

(0-5,7)

CMP r (Compare Register)

(A) — (1)

The content of register r is subtracted from the
accumulator. The accumulator remains un-
changed. The condition flags are set as a result of
the subtraction. The Z flag is set to 1 if (A) = (r).
The CY flag is set to 1 if (A) < (r).

1 ! 0 ! 1 ! 1 ! 1 S I S ! S
Cycles: 1
States: 4

Addressing: register
Flags: Z,5,PCYAC

Page 12-44

= @I EATIIKITS
276 017
CMP M (Compare memory) RRC (Rotate right)
(A) = ((H) (L) (A) — (A (Ar) < (Ay)
The content of the memory location whose ad- (CY) « (Ay)
dress is contained in the H and L registers is The content of the accumulator is rotated right
subtracted from the content of the accumulator. one position. The high-order bit and the CY flag
The accumulator remains unchanged. The con- are both set to the value shifted out of the low-
dition flags are set as a result of the subtraction. order bit position. Only the CY flag is affected.
The Z flag is set to 1 if (A) = ((H) (L)). The CY flag
is set to 1 if (A) < ((H) (L)). o' oo To Ty T T T,
1lol1l1l1l1|1lo Cycles: 1
States: 4
Cycles: 2 Flags: CY
States: 7
Addressing: reg. indirect
Flags: 2Z,SP,CY,AC 027
RAL (Rotate left through carry)
376 (Ansd) < (An); (CY) « (A7)
CPI data (Compare immediate) (A < (CY)
(A) — (byte 2) The content of the accumulator is rotated left one
The content of the second byte of the instruction position through the CY flag. The low-order bit is
is subtracted from the content of the ac- setequal tothe CY flag and the CY flagis settothe
cumulator. The condition flags are set by the value shifted out of the high-order bit. Only the
result of the subtraction. The Z flag is set to 1 if CY flag is affected.
(A) = (byte 2). The CY flag is set to 1 if (A) < (byte
2). I l 1 | l I l
0 0 0 1 0 1 1 1
1'1'1111111'1’0 Cycles: 1
States: 4
data byte Flags: CY
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY AC
037
RAR (Rotate right through carry)
o7 (An) < (A (CY) (Ay)
RLC (Rotate left) (A;) < (CY)
(Ane1) « (Az); (Ag) « (A7)

(CY) « (A

The content of the accumulator is rotated left one
position. The low-order bit and the CY flag are
both set to the value shifted out of the high-order
bit position. Only the CY flag is affected.

0 l 0 l 0 l 0 ! 0 ! 1 ' 1 ! 1
Cycles: 1
States: 4

Flags: CY

The content of the accumulator is rotated right
one position through the CY flag. The high-order
bit is set to the CY flag and the CY flag is set to the
value shifted out of the low-order bit. Only the
CY flag is affected.

0 0 0 1 1 1 1
Cycles: 1
States: 4
Flags: CY

Page 12-45

e g FIEATEHEKITS
057
CMA {Complement accumulator)

(A) < (A)

The content of the accumulator is complemented
(zero bits become 1, one bits become 0). No flags
are affected.

OIOI1IOI1|1I1I1
Cycles: 1
States: 4
Flags: none
077
CMC (Complement carry)
(CY) « (CY)
The CY flag is complemented. No other flags are
affected.
OIOI1I1I1|1I1I1
Cycles: 1
States: 4
Flags: CY
067
STC (Set carry)
(CY) « 1

The CY flag is set to 1. No other flags are affected.

Cycles: 1
States: 4
Flags: CY

Branch Group

This group of instructions alters normal sequential
program flow.

Condition flags are not affected by any instruction in
this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers sim-
ply perform the specified operation on register PC
(the program counter}. Conditional transfers examine

the status of one of the four processor flags to deter-
mine if the specified branch is to be executed. The
conditions that may be specified are as follows:

CONDITION CCC OCTAL
NZ — not zero (Z = 0) 000 0
Z — zero (Z = 1) 001 1
NC — no carry (CY = 0) 010 2
C—ocarry (CY =1) 011 3
PO — parity odd (P = 0) 100 4
PE — parity even (P =.1) 101 5
P — plus (S = 0) 110 6
M — minus (S = 1) 111 7
303
JMP addr (Jump)
(PC) « (byte 3) (byte 2)
Control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the
current instruction.
1|1I0|OIOIOI1I1
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none
3 (0-7)2 A
Jcondition addr (Condition jump)
If (CCCQ),

. (PC) « (byte 3) (byte 2)
1f the specified condition is true, control is trans-
ferred to the instruction whose address is
specified in byte 3 and byte 2 of the current in-
struction; otherwise, control continues sequen-
tially.

1I1 C]CIC 0|1I0

low-order addr

high-order addr

Cycles: 3
States: 10
Addressing: immediate

Flags: none

Page 12-46

<:$§%I{IEJ¥TI{I§IT@

315

CALL addr

(Call)

((SP) — 1) « (PCH) -

((SP) — 2) — (PCL)

(SP) « (SP) — 2

(PC) « (byte 3) (byte 2)

The high-order eight bits of the next instruction
address are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction
address are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.
Control is transferred to the-instruction whose
address is specified in byte 3 and byte 2 of the
current instruction.

3

1 T T T T Ty Ty
low-order addr
high-order addr
Cycles: 5
States: 17)
Addressing: immediate/reg. indirect
Flags: none
(0-7) 4
Ccondition addr (Condition call)
If (CCQ),
{(SP) — 1) « (PCH)
((SP) — 2) « (PCL)
(SP) « (SP) — 2
(

S
PC) « (byte 3) (byte 2)

If the specified condition is true, the actions
specified in the CALL instruction (see above) are
performed; otherwise, control continues sequen-
tially.

311
RET (Return)
(PCL) « ((SP));
(PCH} « ((SP) + 1);
(SP) « (SP) + 2;
The content of the memory location whose ad-
dress is specified in register SP is moved to the
low-order eight bits of register PC. The content of
the memory location whose address is one more
than the content of register SP is moved to the
high-order eight bits of register PC. The content
of register SP is incremented by 2.
1'1’0'0'1'0'0[1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none
3 (0-7) 0O
Rcondition {Conditional return)
If (CCC),
(PCL) « {(SP))
(PCH) « ((SP) + 1)
(SP} « (SP) + 2
If the specified condition is true, the actions
specified in the RET instruction (see above) are
performed; otherwise, control continues sequen-
tially.
1 ! 1 C ! C l C 0 ' 0 ! 0
Cycles: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none
3 (0-7)7
(Restart)

RST n
"~ ((SP) = 1) « (PCH)
((SP) — 2) « (PCL)
(SP) «- (SP) — 2
(PC) « 8 * (NNN)

1 1 C ! C I C 1
low-order addr
high-order addr
Cycles: 3/5
States: 11/17
Addressing: immediate/reg. indirect

Flags:

none

The high-order eight bits of the next instruction
address are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction

B s iEATEIKITS

Page 12-47

address are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose
address is eight times the content of NNN.

1 I 1 N l N N 1 ! 1 ! 1
Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

15141312 1110 9 8 7 6 5 4 3 2 1 0

Lo ofoJolofofojofofo]n|n]n[o]o]o]

Program Counter After Restart v

351
PCHL
to PC)
(PCH) « (H)
(PCL) « (L)

(Jump H and L indirect — move H and L

305 (B, C) 345 (H L)
325 (D, E)
PUSH rp (Push)
((SP) — 1) « (rh)
((SP) — 2) « (1))
(SP) — (SP) —

The content of the high-order register of register
pair rp is moved to the memory location whose
address is one less than the content of register SP.
The content of the low-order register of register
pair rp is moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.
NOTE: Register pair rp =. SP may not be

The content of register H is moved to the high-
order eight bits of register PC. The content of
register L is moved to the low-order eight bits of

register PC.

1]1]1IO1I0I011
Cycles: 1
States: 5
Addressing: register
Flags: none

Stack, 1/0, and Machine Control Group

This group of instructions performs I/O, manipulates
the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

specified.
1 l 1 R I P 0 ! 1 ! 0 ! 1
Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none
365
PUSH PSW (Push processor status word)
((SP) — 1) < (A)
((SP) = 2)o « (CY), ((SP) — 2), <1
((SP) = 2); « (P), ((SP) — 2)3 < O
((SP) — 2); « (AC), ((SP) — 2)5 < O
((SP) — 2)¢ « (Z), ((SP) — 2)7 < (5)
(SP) « (SP) — 2

The content of the accumulator is moved to the
memory location whose address is one less than
register SP. The contents of the condition flags
are assembled into a processor status word and
the word is moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.

1'1'1‘1'0'1'0

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none
FLAG WORD

D7 Ds D5 D4 D3 D2 D1 DO

AC 0 P 1 CcY

Page 12-48

= s ATHEITS
301 (B,C) 341 (H,L) 343
321 (D,E) ? XTHL (Exchange stack top with H and L)
POP rp (Pop) (L) « ((SP))

(r]) « ((SP))
(rth) « ((SP) + 1)
(SP) « (SP) + 2

The content of the memory location, whose ad-
dress is specified by the content of register SP is
moved to the low-order register of register pair
rp. The content of the memory location whose
address is one more than the content of register
SP is moved to the high-order register of register
pair rp. The content of register SP is incremented
by 2. NOTE: Register pair rp = SP may not be
specified.

1 g R ! op o "o To T,
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none
361
POP PSW (Pop processor status word)

(CY) « ((SP)),

(P) « ((SP)),

(AC) « ((SP)),

(Z) < ((SP))s

(S) « ((SP)),

(A) « ((SP) + 1)

(SP) « (SP) + 2

The content of the memory location whose ad-
dress is specified by the content of register SP is
used torestore the condition flags. The content of
the memory location whose address is one more
than the content of register SP is moved to regis-
ter A. The content of register SP is incremented
by 2.

(H) < ((SP) + 1)

The content of the L register is exchanged with
the content of the memory location whose ad-
dress is specified by the content of register SP.
The content of the H register is exchanged with
the content of the memory location whose ad-
dress is one more than the content of register SP.

1'1'1'0'0'0’1]1
Cycles: b
States: 18
Addressing: reg. indirect
Flags: none

371

SPHL {Move HL to SP)
(SP} « (H) (L)
The contents of registers H and L (16 bits) are
moved to register SP.

1'1’1]‘1]1l01011
Cycles: 1
States: 5
Addressing: register
Flags: none
333
IN port (Input)

(A)e—(data)
The data placed on the eight-bit bi-directional
data bus by the specified port is moved to the

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: ZSP,CY,AC

accumulator.
1'1'0'1'1]0|1I1
input port
Cycles: 3
States: 10
Addressing: direct
Flags: none

g I IEATEIKITS

Page 12-49

323 166 :
OUT port (Output) HLT (Halt)

(data) — (A)
The content of the accumulator is placed on the

eight-bit bi-directional data bus for transmission
to the specified port.

The processor is stopped. The registers and flags
are unaffected.

output port
Cycles: 3
States: 10
Addressing: direct
Flags: none
373
EI {(Enable interrupt)

The interrupt system is enabled following the

execution of the next instruction.

Cycles:
States:

1

7

1 ! 1 l 1] 1 ! 1 l 0] 1
Cycles: 1
States: 4
Flags: none

363

DI

{Disable interrupt)

The interrupt system is disabled immediately
following the execution of the DI instruction.

Flags: none

000
NOP (No op)

No operation is performed. The registers and
flags are unaffected.

ol ol oT oToTolo o
Cycles: 1
States: 4

Flags: none

1 l 1 ! 1 I 1 I 0 ! 0 I 1
Cycles: 1
States: 4
Flags: none

Page 12-50

e A FI E ATEIEITS

DEMONSTRATION PROGRAMS

These BASIC programs demonstrate some of the Computer features. These include:

® Lrase Page

® Direct Cursor Addressing
® Graphics

® Reverse Video

e 25th Line

If you are using the HDOS, you must first map for lower case output before the programs
will work. To do this, first boot up your system. Then type:

>SET TT: NOMLO

Since there are differences between BASIC languages, you may have to change the
syntax of these programs slightly to get them to run on a non-Heath computer system.

DEMONSTRATION PROGRAM #1

This program draws a simple maze on the screen.

NOTE: Notice the semicolon at the end of line 350. This prevents a Carriage Return and a
Line Feed, and the cursor remains at its present location on the line. Normally this is
acceptable. However, some BASIC languages count the number of characters sent to the
Terminal and automatically insert their own Carriage Return and Line Feed. If this
automatic CR & LF comes during a sucessive execution of line 350, the direct cursor
addressing sequence is upset and the character is placed randomly on the screen. To
prevent this, a PRINT statement has been placed at line 440. This forces a CR & LF every
_ ninth execution of line 350, thus preventing an automatic CR & LF.

The semicolon at the end of line 350 and the PRINT statement at line 440 can both be
eliminated. However, the cursor will return to the left side of the screen after each

execution of line 350. This is also acceptable, but the cursor will jump back and forth
between the left side and the center of the screen.

Demorvstyat i o Prroseam #$i

SRR R = SR s

Faacd Datas

T o i hy aae's Sy
I R T

A ot T O L S
e Erase Fasie

Page 12-51

g HIEATHIKIT®

....
2y
=
3

sl

o

[

aflad REM Road Dots

P R CHREL 2T 5

g P

33 S UHREE

N i T

FRIWNT CHEECZVS JOHREFCLLSS S

FEM Ermter Grachdios
FRIMT CHRE$OZV

T —

J=11
FEM lse Diirect Cur

FREINT CHRE$O2T 20HE

HAdohe
T g UHREED L

FEM Faordomls chamdge the wsluaes of o8& 3

aaEd1a IF J4019 THEW 436

ARdzE JI=T-19

EEAZE IF I35 THEW 356
G PRINT

EE4Ea IF J9x11 THEH 356
gedeld RFEM Exit Grarhics Mode

= grrEATITIKITS

BEATE PRINT CHR$EZV SOHREECFL s 2
O Eh BEM Erter
GESSE PREIMNT CHR:S
FEM Frdimt
AEDIE FRIMT CHESO2V D ICHRSOS9 jOHEE S
FEM E=xil Rewer Vides Mode

SV B FOHREE LIS

Mode

"This Frogram demorst Faoge” . TOrarhics .

1 5. a1

TUEraze To End OF Lime . “Reu Uideo . arnd the Direct Curoor

ina” festures of Lhe HEMATHEIT Yides Terminsl.’

L
LATA "Hams on while I read the dats lizto

LB 1L, LS, BYL L1, SV T

DHTAH Pe, 320 117,37, LIS 1680, 118, 92, 29

R W B 5 5

THEA DHTAH 181037037,

Page 12-53

B s iEATHIEITS

DEMONSTRATION PROGRAM #2

This program demonstrates the “25th line”” and the “‘remember the cursor position”
features.

FEM "25tk Lire Demo Frogeam®
M Erzse Fade
FRINT CHEFOZV Y CHEFOA9)
FRINT "This program demonstrates the “tusmtoa—fitth lime” Testire, "
FEIHT "Im this demaormstraticon. the 25th llﬁH 1s being used az 3 label”
FRIMHT "foar the tor row of srecisl function kews. Reuverse widen”
& FRINT "iz used 1o mabke the lakbels ztand out better. amd .
BAAZE PRINT "hels svodd cordusion with ame normal text on the soreen abowed
MG PREINT "this lime. You mas mow run snothers erogeam. Lime 25 will staw”
gaiess FRINT "= it is umtil it is changed o until this unit is FESET o
11 PRINT "tarned of 0"
G128 REM Femember The Cursor Position
BEIZE PRIWNT CHE$C2V): CHREC1GES
GE1453 REM Ernable 25th Line
QELSE PRINT CHREEOZT: CHESC 1260 2 CHREEC 490
Ay e

sl FPEM Fosition Corzor Bt Stoet OF 25tk Lins

T FRINT CHE$SC2T: CHRECS9: CHREFCOSE Y CHREIIZ)
FREIMT -

FEM Erter Reuorze Uideo Mode

FRIWT CHE$C2T) CHRE$01120;

FEM Frird, Z56th Lime

FRIMT ”LIHE 1 2 LA G 5 ERAZE" 3
- fe] FED GRY REZET BREAK":
nerze Wideo

; CHREEC 113

To Previcuaslgs Saoed Fosition
CHFED L&y

H FFIHT

"Theze limeszs demcratrate the “remember cursor FPozition” festure.
"Firet, the showve Fraradraeh owas FPeinted’ nest. the 25t 1ime”
waE erinted: and then these limes were printed bw remembering”
"Lhe proser cwrrsor Fositiiar,

TRRINT

Page 12-54
— g riEmATEIICITS

DEMONSTRATION PROGRAM #3

This program draws a reasonable facsimile of the American flag.

1688 EEM Fmerican F1 FH Frodram

18 PRIMT CHREECZF SOHRSES 126 S0HR IR I
s S1F = Ve ok ok ok ok ok g M

S SRRE = Mo o o R ok ok e

EF=CHRE 1SS

F1¥ = Ef + "p"

FZ2F = Ef + Vg

al% = Ex + "F"

LEF o= EE o+ nGn

BE = GlE + " + G2

FlF " HRLERT UeR2E
F2F = PLE + G1F + "w" o+ G52F

FOR I = 1 To 45

L1F = LI + 7"

¥ = L2 + 0on

HEST I

FRIMT UHEE

FREINT O CRRLERT U rEE R
FOR D = 1 TGOV
FRIMT Fofd

IF I IHT O 2
FRIMT ﬁrP1}+nIU-i
FRIMT S1$+G1E+MIDE
HEHT i

R
AR I I N

E
LR SR

H

r.
I
it
T
ST

ol
i
e
SR

r.
i

T e

o

3

,.
L1

vt R L ESY U RRIEER

Ay
32

A
]

n
o
Y
=L

