Page 13-55
i EATEIRKITS

Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation ClZ|V|S|N[H|76 543 210 Bytes Cycles | States Comments
CALL nn (SP»I)<—PCH ejej|eojelejeil]l 001 101 3 5 17
(SP-Z)«—PCL “~ n -
PCenn -~ n -
CALL cc, nn If condition eje|ejeje]e|]l]l cc 100 3 3 10 If cc is false
cc is false
R - —
continue, .
otherwise « n - 3 5 17 If cc is true
same as
CALL nn
RET PCL<—(SP) ejo|eteo|o]e |11 001 001 1 3 10
PCH<—(SP+1)
RET cc If condition esjeflojeie]e]l cc 000 1 1 5 If cc is false
cc is false
continue, 1 X
otherwise 3 11 If ccis true
same as cc I Condition
RET 000 | NZ non zero
01| z zero
010 NC non carry
RETI Return from elejofejeje |1l 101 101 2 4 14 011 | C carry
interrupt 01 001 101 100 [PO parity odd
RETN Return from | e |e|e|e|e]e|11 101 101] 2 4 14 15| BE parity even
non maskable sign positive
interrupt 01 000 101 111} M sign negative
RST p (SP-1)<PCyy eje|ejefo]oil]l t 111 1 3 11
(SP-2)+PCy
PCH<—0
PC], P

I'lag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
t = flag is affected according to the result of the operation.

CALL AND RETURN GROUP
TABLE 7.0-10

= gsieATEHKITS

Page 13-57

8.0 INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly
manner and force the CPU to start a peripheral service routine. Usually this service routine is involved with
the exchange of data, or status and control information, between the CPU and the peripheral. Once the
service routine is completed, the CPU returns to the operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z80 CPU has two interrupt inputs, a software maskable interrupt and a non maskable interrupt.
The non maskable interrupt (NMI) can not be disabled by the programmer and it will be accepted when-
ever a peripheral device requests it. This interrupt is generally reserved for very important functions that
must be serviced whenever they occur, such as an impending power failure. The maskable interrupt (INT)
can be selectively enabled or disabled by the programmer. This allows the programmer to disable the inter-
rupt during periods where his program has timing constraints that do not allow it to be interrupted. In the
780 CPU there is an enable flip flop (called IFF) that is set or reset by the programmer using the Enable
Interrupt (EI) and Disable Interrupt (DI) instructions. When the 1FF is reset, an interrupt can not be
accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops, called IFF
and IFF,. \
2

IFF, IFF2
Actually disables interrupts Temporary storage location
from being accepted. for lFFl.

The state of IFF7 is used to actually inhibit interrupts while IFF5 is used as a temporary storage location
for IFFy. The purpose of storing the IFF; will be subsequently explained.

A reset to the CPU will force both IFF{ and IFF5 to the reset state so that interrupts are disabled.
‘They can then be enabled by an EI instruction at any time By the programmer. When an EI instruction is
executed, any pending interrupt request will not be accepted until after the instruction following EI has
been executed. This single instruction delay is necessary for cases when the following instruction is a return
instruction and interrupts must not be allowed until the return has been completed. The El instruction sets
both IFF ¢ and IFF5 to the enable state. When an interrupt is accepted by the CPU, both IFF; and IFF,
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a new EI instruc-
tion, Note that for all of the previous cases, IFF| and IFF, are always equal.

The purpose of IFF is to save the status of IFF; when a non maskable interrupt occurs. When a non
maskable interrupt is accepted, IFF is reset to prevent further interrupts until reenabled by the pro-
grammer. Thus, after a non maskable interrupt has been accepted, maskable interrupts are disabled but the
previous state of IFF | has been saved so that the complete state of the CPU just prior to the non maskable
interrupt can be restored at any time. When a Load Register A with Register I (LD A, I) instruction or a
L.oad Register A with Register R (LD A, R) instruction is executed, the state of IFF, is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFF| is thru the execution of a Return From Non
Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non maskable interrupt
service routine is complete, the contents of IFF4 are now copied back into IFFy, so that the status of JFF
just prior to the acceptance of the non maskable interrupt will be restored automatically.

= P IEATIHKITS

Page 13-59

Mode 2

This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an
indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt
service routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit
pointer must be formed to obtain the desired interrupt service routine starting address from the table.

The upper 8 bits of this pointer is formed from the contents of the I register. The I register must have been
previously loaded with the desired value by the programmer, ie. LD I, A. Note that a CPU reset clears the |
register so that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupt-
ing device. Actually, only 7 bits are required from the interrupting device as the least significant bit must be
a zero. This is required since the pointer is used to get two adjacent bytes to form a complete 16 bit service
routine starting address and the addresses must always start in even locations.

/
desired starting address
Interrupt pointed to by:
Service
Routine low order 1 REG 7 BITS FROM
Starting high order CONTENTS PERIPHERAL |°
Address
Table
\

The first byte in the table is the least significant (low order) portion of the address. The programmer must
obviously fill this table in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write
Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes
the program counter onto the stack, obtains the starting address from the table and does a jump to this
address. This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that auto-
malically supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-P10,
2.80-S10 and Z80-CTC manuals for details.

Page 13-58

= g IEATHKITS

Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.

Action IFFy IFF,

CPU Reset 0 0

DI 0 0

EIl 1 1

LD A, 1 . . IFFH —>Parity flag
LDA,R . . IFF» — Parity flag
Accept NMI 0 °

RETN IFF; o IFFo —>IFF,

[Tl

¢’ indicates no change

FIGURE 8.0-1
INTERRUPT ENABLE/DISABLE FLIP FLOPS

CPU RESPONSE
Non Maskable

A nonmaskable interrupt will be accepted at all times by the CPU. When this occurs, the CPU ignores
the next instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as
if it had received a restart instruction but, it is to a location that is not one of the 8 software restart loca-
tions. A restart is merely a call to a specific address in page 0 of memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three possible
modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device
can place any instruction on the data bus and the CPU will execute it. Thus, the interrupting device pro-
vides the next instruction to be executed instead of the memory. Often this will be a restart instruction
since the interrupting device only need supply a single byte instruction. Alternatively, any other instruction
such as a 3 byte call to any location in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for the
instruction. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to
allow sufficient time to implement an external daisy chain for priority control. Section 5.0 illustrates the
detailed timing for an interrupt response. After the application of RESET the CPU will automatically enter
interrupt Mode 0.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt by
executing a restart to location 0038H. Thus the response is identical to that for a non maskable interrupt
except that the call location is 0038H instead of 0066H. Another difference is that the number of cycles
required to complete the restart instruction is 2 more than normal due to the two added wait states.

= g FIEATEIXITS

Page 13-59

Mode 2

This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an
indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt
service routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit
pointer must be formed to obtain the desired interrupt service routine starting address from the table.

The upper 8 bits of this pointer is formed from the contents of the I register. The I register must have been
previously loaded with the desired value by the programmer,i.e. LD I, A. Note that a CPU reset clears the I
register so that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupt-
ing device. Actually, only 7 bits are required from the interrupting device as the least significant bit must be
a zero. This is required since the pointer is used to get two adjacent bytes to form a complete 16 bit service
routine starting address and the addresses must always start in even locations.

7/
desired starting address

Interrupt pointed to by:
Service
Routine b low order } 1 REG 7 BITS FROM 0
Starting high order CONTENTS PERIPHERAL
Address
Table

The first byte in the table is the least significant (low order) portion of the address. The programmer must
obviously fill this table in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write
Memory) to allow different peripherals to be serviced by different service routines:

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes
the program counter onto the stack, obtains the starting address from the table and does a jump to this
address. This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that auto-
matically supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-PIO,
Z80-S10 and Z80-CTC manuals for details.

Page 13-60

= g HIEATHKITS
——

= g rim ATEIRITS

Page 13-61

9.0 HARDWARE IMPLEMENTATION EXAMPLES
This chapter is intended to serve as a basic introduction to implementing systems with the Z80-CPU.
MINIMUM SYSTEM ‘

Figure 9.0-1 is a diagram of a very simple Z-80 system. Any Z-80 system must include the following
five elements:

1) Five volt power supply
2) Oscillator

3) Memory dev{ces

4) 1/0O circuits

5) CPU
+6 VOLT
osc POWER SUPPLY
Ag-Ag 45V GND
ADDRESS
IN
MAEQ
75 —|CE4 8K BIT
ocE, ROM
DATA
sy 780 DATA BUS our
U @
@
RESET 10RQ l
_CE RD
—dora B/Ale——Ag
" . 280-PIO
o M1 C/Djt——A4
PORT A PORT B
oUTPUT INPUT
DATA DATA
FIGURE 9.0-1

MINIMUM 280 COMPUTER SYSTEM

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be implemented using
only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square wave. For
systems not running at full speed, a simple RC oscillator can be used. When the CPU is operated near the
highest possible frequency, a crystal oscillator is generally required because the system timing will not
tolerate the drift or jitter that an RC network will generate. A crystal oscillator can be made from inverters
and a few discrete components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple example
we have shown a single 8K bit ROM (1K bytes) being utilized as the entire memory system. For this
example we have assumed that the Z-80 internal register corifiguration contains sufficient Read/Write
storage so that external RAM memory is not required.

Page 13-62

= g ATEHEKITS

Every computer system requires 1/O circuits to allow it to interface to the “real world.” In this simple
example it is assumed that the output is an 8 bit control vector and the input is an 8 bit status word. The
input data could be gated onto the data bus using any standard tri-state driver while the output data could
be latched with any type of standard TTL latch. For this example we have used a Z80-PIO for the 1/O
circuit. This single circuit attaches to the data bus as shown and provides the required 16 bits of TTL
compatible 1/0. (Refer to the Z80-PIO manual for details on the operation of this circuit.) Notice in this
example that with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a
powerful computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data storage and to
implement a “stack.” Figure 9.0-2 illustrates how 256 bytes of static memory can be added to the previous
example. In this example the memory space is assumed to be organized as follows:

Address

0000H
1K bytes
ROM

03FFH
256 bytes | 0400H
RAM

04FFH

ADDRESS BUS

UAO‘AQ UAO-A7 UAO_A7

-RD — —M
mR—OCE RD Jop CE, MRQ RD [y CE,| RQ
T 1kxs 256 x 4 256 x 4
A ROM wa RAM A WR RAM A
10 cE, WR lp/m ce 10 WRlpnw CE {12
do-dy dg-d3 dg-dy

DATA BUS
FIGURE 9.0-2

ROM & RAM IMPLEMENTATION EXAMPLE

In this diagram the address space is described in hexidecimal notation. For this example, address bit Ao
separates the ROM space from the RAM space so that it can be used for the chip select function. For
larger amounts of external ROM or RAM, a simple TTL decoder will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow mermories to reduce costs. The WAIT line on
the CPU allows the Z-80 to operate with any speed memory. By referring back to section 4 you will notice
that the memory access time requirements are most severe during the M1 cycle instruction fetch. All other
memory accesses have an additional one half of a clock cycle to be completed. For this reason it may be
desirable in some applications to add one wait state to the M1 cycle so that slower memories can be used.
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can be changed to
add a single wait state to any memory access as shown in Figure 9.0-4.

g

Page 13-63

= g EIEATEIKITS
WAIT
8V i‘———wA-'
l | Ta] T2 | Tw | Ta | Ta
i S S I ! \ ! '\ r—\ r—\ '_\ '
D o D Q
® 7474 7474 o
c Q —C Q ——\————/—_———
R R
T T WAIT \ [
+5V +b5V

FIGURE 9.0-3
ADDING ONE WAIT STATE TO AN M1 CYCLE

WAIT
LL+5v l+5v 7400
T Ty | Tw
MREQ S S '3
1D Q D Q

7474 7474

—Q>
=] T
+
[$;
<
E‘
>
-

+5V

FIGURE 9.0-4
ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic memories. Each
individual dynamic RAM has varying specifications that will require minor modifications to the description
given here and no attempt will be made in this document to give details for any particular RAM. Separate
application notes showing how the Z80-CPU can be interfaced to most popular dynamic RAM’s are
available from Zilog.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using 18 pin 4K
dynamic memories. This figure assumes that the RAM’s are the only memory in the system so that Aj - is
used to select between the two pages of memory. During refresh time, all memories in the system must be
read. The CPU provides the proper refresh address on lines Ay through A. To add additional memory to
the system it is necessary to only replace the two gates that operate on A, with a decoder that operates
on all required address bits. For larger systems, buffering for the address and data bus is also generally
required.

Page 13-64

= g EATERITS
RFSH
—
MREQ >_
—O
li——o]
Aq2
* O
L4
Ag-Aqs CcE
e 4K x8 RAM ARRAY
R/W
PAGE 1
do-dy DATA BUS (1000 to 1FFF)
CE
WR :> 4K x8 RAM ARRAY
R/W
PAGE 0
(0000 to OFFF)
FIGURE 9.0-5

INTERFACING DYNAMIC RAMS

= JrIEATHRITS

Page 13-65

10.0 SOFTWARE IMPLEMENTATION EXAMPLES
10.1 METHODS OF SOFTWARE IMPLEMENTATION

Several different approaches are possible in developing software for the Z-80 (Figure 10.1). First of
all, Assembly Language or PL/Z may be used as the source language. These languages may then be trans-
lated into machine language on a commercial time sharing facility using a cross-assembler or cross-compiler
or, in the case of assembly language, the translation can be accomplished on a Z-80 Development System
using a resident assembler. Finally, the resulting machine code can be debugged either on a time-sharing
facility using a Z-80 simulator or on a Z-80 Development System which uses a Z8§0-CPU directly.

SOURCE
LANGUAGE TRANSLATION DEBUGGING
RESIDENT ASSEMBLER
ASSEMBLY DEVELOPMENT
LANGUAGE SYSTEM
. MACHINE
CROSS ASSEMBLER LANGUAGE

PL/Z OR OTHER

HIGH LEVEL SIMULATOR
LANGUAGE j——[inoss COMPILER

FIGURE 10.1

In selecting a source language, the primary factors to be considered are clarity and ease of program-
ming vs. code efficiency. A high level language such as PL/Z with its machine independent constructs is
typically better for formulating and maintaining algorithms, but the resulting machine code is usually
somewhat less efficient than what can be written directly in assembly language. These tradeoffs can often
be balanced by combining PL/Z and assembly language routines. identifying those portions of a task which
must be optimized and writing them as assembly language subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short-term vs.
long-term expense. While the initial expenditure for a development system is higher than that for a time-
sharing terminal. the cost of an individual assembly using a resident assembler is negligible while the same
operation on a time-sharing system is relatively expensive and in a short time this cost can equal the total.
cost of a development system.

Debugging on a development system vs. a simulator is also a matter of availability and expense com-
bined with operational fidelity and flexibility. As with the assembly process, debugging is less expensive on
a development system than on a simulator available through time-sharing. In addition, the fidelity of the
operating environment is preserved through real-time execution on a Z80-CPU and by connecting the I/O
and memory components which will actually be used in the production system. The only advantage to
the use of a simulator is the range of criteria which may be selected for such debugging procedures as trac-
ing and setting breakpoints. This flexibility exists because a software simulation can achieve any degree of
complexity in its interpretation of machine instructions while development system procedures have hard-
ware limitations such as the capacity of the real-time storage module, the number of breakpoint registers
and the pin configuration of the CPU. Despite such hardware limitations. debugging on a development
system is typically more productive than on a simulator because of the direct interaction that is possible
between the programmer and the authentic execution of his program.

Page 13-66

g I EATEHKITS

10.2 SOFTWARE FEATURES OFFERED BY THE Z80-CPU

The Z-80 instruction set provides the user with a large and flexible repetoire of operations with which
to formulate control of the Z80-CPU.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic and logical
operations, or to form memory addresses, or as fast-access storage for frequently used data.

Information can be moved directly from register to register: from memory to memory; from memory
to registers; or from registers to memory. In addition, register contents and register/memory contents can
be exchanged without using temporary storage. In particular, the contents of primary and auxilary registers
can be completely exchanged by executing only two instructions, EX and EXX. This register exchange
procedure can be used to separate the set of working registers between different logical procedures or to
expand the set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on a last-in
first-out basis through PUSH and POP instructions which utilize a special stack pointer register, SP. This
stack register is available both to manipulate data and to automatically store and retrieve addresses for
subroutine linkage. When a subroutine is called. for example, the address following the CALL instruction
is placed on the top of the push-down stack pointed to by SP. When a subroutine returns to the calling
routine, the address on the top of the stack is used to set the program counter for the address of the next
instruction. The stack pointer is adjusted automatically to reflect the current ““top” stack position during
PUSH, POP, CALL and RET instructions. This stack mechanism allows pushdown data stacks and sub-
routine calls to be nested to any practical depth because the stack area can potentially be as large as
menmory space.

The sequence of instruction execution can be controlled by six different flags (carry. zero. sign,
parity/overflow, add-subtract, half-carry) which reflect the results of arithmetic, logical, shift and compare
instructions. After the execution of an instruction which sets a flag, that flag can be used to control a
conditional jump or return instruction. These instructions provide logical control following the manipula-
tion of single bit, eight-bit byte (or) sixteen-bit data quantities.

A full set of logical operations. including AND, OR., XOR (exclusive - OR), CPL (NOR) and NEG
(two's complement) are available for Boolean operations between the accumulator and 1) all other eight-bit
registers, 2) memory locations or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions are available which operate
on the contents of all eight-bit primary registers or directly on any memory location. The carry flag can be
included or simply set by these shift instructions to provide both the testing of shift results and to link
register/register or register/memory shift operations.

10.3 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS

A. Let us assume that a string of data in memory starting at location “*DATA” is to be moved into
another area of memory starting at location “BUFFER™ and that the string length is 737 bytes. This
operation can be accomplished as follows:

LD HL ,DATA :START ADDRESS OF DATA STRING

LD DE , BUFFER :START ADDRESS OF TARGET BUFFER

LD BC , 737 : LENGTH OF DATA STRING

LDIR :MOVE STRING - TRANSFER MEMORY POINTED TO

:BY HL INTO MEMORY LOCATION POINTED TO BY DE
:INCREMENT HL AND DE. DECREMENT BC
:PROCESS UNTIL BC = 0.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.

= griEATERITS

Page 13-67

B. Let’s assume that a string in memory starting at location “DATA” is to be moved into another area
of memory starting at location “BUFFER” until an ASCII $ character (used as string delimiter) is
found. Let’s also assume that the maximum string length is 132 characters. The operation can be
performed as follows:

LD
LD
LD
LD
LOQP:CP
JR
LDI

JP
END:

HL , DATA ; STARTING ADDRESS OF DATA STRING

DE , BUFFER ;STA NG ADDRESS OF TARGET BUFFER

BC, 132 s MAXivUM STRING LENGTH

ALY) ; STRING DELIMITER CODE

(HL) ; COMPARE MEMORY CONTENTS WITH DELIMITER
Z,END 3§ ;GO TO END IF CHARACTERS EQUAL

s MOVE CHARACTER (HL) to (DE)

; INCREMENT HL AND DE, DECREMENT BC
PE , LOOP ; GO TO “LOOP” IF MORE CHARACTERS

; OTHERWISE, FALL THROUGH

; NOTE: P/V FLAG IS USED

; TO INDICATE THAT REGISTER BC WAS

» DECREMENTED TO ZERO.

19 bytes are required for this operation.

C. Let us assume that a 16-digit decimal number represented in packed BCD format (two BCD digits/
byte) has to be shifted as shown in the Figure 10.2 in order to mechanize BCD multiplication or
division. The operation can be accomplished as follows:

LD

LD

XOR
ROTAT:RLD

INC
DINZ

HL ,DATA ; ADDRESS OF FIRST BYTE

B, COUNT ; SHIFT COUNT

A ; CLEAR ACCUMULATOR
; ROTATE LEFT LOW ORDER DIGIT IN ACC
; WITH DIGITS IN (HL)

HL ; ADVANCE MEMORY POINTER

ROTAT - § ; DECREMENT B AND GO TO ROTAT IF

; BISNOT ZERO, OTHERWISE FALL THROUGH

11 bytes are required for this operation.

Faiiaa

Page 13-68
e g I EATEIRITS

D. Let us assume that one number is to be subtracted from another and a) that they are both in packed
BCD format, b) that they are of equal but varying length, and c) that the result is to be stored in the
location of the minuend. The operation can be accomplished as follows:

LD HL , ARGl ; ADDRESS OF MINUEND
LD DE , ARG2 ; ADDRESS OF SUBTRAHEND
LD B, LENGTH ; LENGTH OF TWO ARGUMENTS
AND A ; CLEAR CARRY FLAG
SUBDEC: LD A, (DE) ; SUBTRAHEND TO ACC
SBC A, (HL) ; SUBTRACT (HL) FROM ACC
DAA ; ADJUST RESULT TO DECIMAL CODED VALUE
LD (HL) , A ; STORE RESULT '
INC HL ; ADVANCE MEMORY POINTERS
INC DE '
DINZ SUBDEC — §$; DECREMENT B AND GO TO “SUBDEC” IF B

; NOT ZERO, OTHERWISE FALL THROUGH

17 bytes are required for this operation.

10.4 EXAMPLES OF PROGRAMMING TASKS

A. The following program sorts an array of numbers each in the range (0,255 into ascending order using
a standard exchange sorting algorithm.

= grimATERITE

01/22/76

LOC

0000
0003
0005
0006
0007
000B
000E
000F
0012
0013
001S
0018
001B
001D
001F

0021
0023
0025

0026
0026

OBJ CODE

222600
CB84

41

05
DD2A2600
DD7EQ0
57
DDSEO1
93

3008
DD7300
DD7201
CBC4
DD23
10EA

CB44
20DE
Co

Page 13-69

11:14:37

00 ~1 OV U AW N s

AR DR R DWW W WL W LW W W RN R RN D R B DD e ke e e e e e
NHEWR —~OVWEIITNREIR O ORXAARAANRE RN —~—S0 0 AN DB DD — O

BUBBLE LISTING PAGE 1
STMT SOURCE STATEMENT

; ¥** STANDARD EXCHANGE (BUBBLE) SORT ROUTINE #:#%

; AT ENTRY: HL CONTAINS ADDRESS OF DATA

C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
(1<C<256)

; AT EXIT: DATA SORTED IN ASCENDING ORDER

; USE OF REGISTERS

; REGISTER CONTENTS

QQK“.’I‘U‘JUOW}

SORT:
LOOP:

NEXT:

NOEX:

FLAG:
DATA:

LD
RES
LD
DEC
LD
LD
LD
LD
SUB
JR
LD
LD
SET
INC
DINZ

BIT
JR
RET

EQU
DEFS
END

TEMPORARY STORAGE FOR CALCULATIONS
COUNTER FOR DATA ARRAY

LENGTH OF DATA ARRAY

FIRST ELEMENT IN COMPARISON

SECOND ELEMENT IN COMPARISON

FLAG TO INDICATE EXCHANGE

UNUSED

POINTER INTO DATA ARRAY

UNUSED

(DATA), HL ;SAVE DATA ADDRESS

FLAG, H . INITIALIZE EXCHANGE FLAG

B, C . INITIALIZE LENGTH COUNTER

B : ADJUST FOR TESTING

IX, (DATA) . INITIALIZE ARRAY POINTER

A, (IX)" : FIRST ELEMENT IN COMPARISON

D, A : TEMPORARY STORAGE FOR ELEMENT

E, (IX+1) : SECOND ELEMENT IN COMPARISON

E : COMPARISON FIRST TO SECOND

NC, NOEX-$;IF FIRST > SECOND, NO JUMP

(IX), E ; EXCHANGE ARRAY ELEMENTS

(IX+1),D

FLAG,H : RECORD EXCHANGE OCCURRED

IX . POINT TO NEXT DATA ELEMENT

NEXT-$: COUNT NUMBER OF COMPARISONS
:REPEAT IF MORE DATA PAIRS

FLAG,H : DETERMINE IF EXCHANGE OCCURRED

NZ, LOOP-§ ; CONTINUE IF DATA UNSORTED
; OTHERWISE, EXIT

o

; DESIGNATION OF FLAG BIT
; STORAGE FOR DATA ADDRESS

b

Page 13-70
I B ATERITS

B. The following program multiplies two unsigned 16 bit integers and leaves the result in the HL register
pair.

01/22/76 11:32:36 MULTIPLY LISTING PAGE 1
LOC OBJCODE STMT SOURCE STATEMENT

0000 1 MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
2 ON ENTRANCE: MULTIPLIER IN DE,
3 MULTIPLICAND IN HL.
4
5 ; ON EXIT: RESULT IN HL.
6
7 REGISTER USES:
8 .
9
10 H HIGH ORDER PARTIAL RESULT
1 L LOW ORDER PARTIAL RESULT
12 D HIGH ORDER MULTIPLICAND
13 E LOW ORDER MULTIPLICAND
14 B COUNTER FOR NUMBER OF SHIFTS
15 ; C HIGH ORDER BITS OF MULTIPLIER
16 A LOW ORDER BITS OF MULTIPLIER
17
0000 0610 18 LD B, 16; NUMBER OF BITS- INITIALIZE
0002 4A 19 LD C,D; MOVE MULTIPLIER
0003 7B 20 LD A E;
0004 EB 21 EX DE, HL MOVE MULTIPLICAND
0005 210000 22 LD HL, 0; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP: SRL C(; SHIFT MULTIPLIER RIGHT
000A IF 24 RRA LEAST SIGNIFICANT BIT IS
25 IN CARRY.
000B 3001 26 JR NC,NOADD-$; IF NO CARRY, SKIP THE ADD.
000D 19 27 ADD HL, DE; ELSE ADD MULTIPLICAND TO
28 PARTIAL RESULT.
000E EB 29 NOADD: EX DE, HL; SHIFT MULTIPLICAND LEFT
000F 29 30 ADD HL,HL; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DE, HL;
0011 10F5 32 DINZ MLOOP-§; REPEAT UNTIL NO MORE BITS.
0013 (9 33 RET;
34 END;

= g ATITRITS

Page 13-71

Absolute Maximum Ratings

Temperature Under Bias

Storage Temperature -65°C 10 +150°C

Voltage On Any Pin -0.3V 10 +7V
with Respect to Ground
Power Dissipation 1.5W

Spevified operating range.

*Comment

Stresses above those listed under “Absolute
Maximum Rating”’ may cause permanent
damage to the device. This is a stress rating
only and functional operation of the device
at these or any other condition above those
indicated in the operational sections of this
specification is not implied. Exposure to
absolute maximum rating conditions for
extended periods may affect device reliability .

Z280-CPU D.C. Characteristics

T, =0°Co70°C, Ve =5V £ 5% unless otherwise specified

Note: For Z80-CPU all AC and DC characteristics remain the
same for the military grade parts except I,

’cc = 200 mA

Capacitance

Tp =25°C,f= 1 MHz,
unmeasured pins returned to ground

l:ymbol Parameter Max. Unii’
'Cq) Clock Capacitance 35 pF
CIN Input Capucitance N pF
COUT Output CapuulF 10 pF

Symbol Parameter Min, Typ. Max. Unit Test Condition
VIL(‘ Clock Input Low Voltage -0.3 0.45 A%

VIHC Clock Input High Voltage Voo -6 vcc+'3 v

VIL Input Low Voltage -0.3 0.8 Vv

VIH Input High Voltage 2.0 Vcc A%

VoL Output Low Voltage 04 \% lgp =1.8mA
VOH Output High Voltage 24 \% lon = -250uA
lee Power Supply Current 150 mA

I Input Leakage Current 10 HA Vin=0 to Vcc
ILOH Tri-State Output Leakage Current in Float 10 MA VOUT=2.4 to VCC
oL Tri-State Output Leakage Current in Float -10 HA VOUT=O.4V
Iip Data Bus Leakage Current in Input Mode *10 LA oV < vcc

Z80A-CPU D.C. Characteristics

Th =0°Cro70°C Ve S5V S unless otherw ise specitied

Symbol Parameter Min. Typ. Max. Unit Test Condition
V”_(- Clock Input Low Volugge -0.3 0.45 \4

Vi Clock Input thgh Voltage V. .+.3 v

HHC Vcc -6 cc

Vit Input Low Voltage 0.3 08 v

V”(Input High Voltage 20 \"L.(\ 1
\'()[Output Low Voltage 04 ' l0L=].8mA *’
You Output High Voltge 24 Vv o = =250pA

1(4(. Power Supply Current 90 200 mA

N Input Leakuge Current] 10 uA VIN:U ta V(c
I {

Il O ToState Output Leakage Current i Float 10 uA VOUT=3'4 to Vcc
—_—]

ol TreState Oupur 1 cakage Cutrent i Float -10 uA VOUT:O 4V

o Duty Bus Leakuge Curren i Input Mode 10 HA 0<ViN SV

780-CPU
Ordering Information

C — Ceramic

P — Plastic

S — Standard 5V 5% 0° to 70°C

E — Extended 5V £5% -40° 1o 85°C
M — Military 5V £10% -55° to 125°C

Capacitance

Tp =25°C,f =1 MHz.
unmcasured pins returned to ground

Symbol Parameter G\ [Uﬂ
Cop Clowk Capactiance] .
CiN Input Capacitance

(-()l"| Output Capacitance

Z80A-CPU
Ordering Information

P — Plastic
S - Standard 5V 5% 0° 10 70°C

Page 13-72

= g HIEATEIICITS

A.C. Characteristics

Z780-CPU

TA =0°C 10 70°C, Vce = +5V £ 5%, Unless Otherwise Noted.

Signal Symbol Parameter Min Max Unit Test Condition
te Clack Periad 4 112] psec 12 = Gy * twiply Pt I
® 1y (PH) Clock Pulse Width. Clock High 180 |E] nsec
ty, (L) Clock Palse Width, Clock Low 180 2000 nsec
4oy Clock Rise and Full Time 30 nsec
tD(AD) Address Qutput Delay 145 nsec
LE (AD) Delay to Float 110 nsec
A tyem Address Stable Prior to MREQ (Memary Cycle) [nsec €, = SOpF _ .
0-15 Ly Address Stable Prior to TORQ. RD or WR (1/0 Cy cle) =1 nsec L B taom = Wby * 1= 73
ey Address Stable from KD, WR, IORQ or MREQ 3] nsec ,
Learl Address Stable From RD or WR Dunng Float 141 nsec 31 1y =1 80
D (D) Duta Output Delay 230 nsec. 13, = twbL) t1 =30
'F (D) Delay to Float During Wnite Cycle 90 nsec
1$¢ (D) Data Setup Time to Rising Edge of Clock During M1 Cycle S0 nsec 14] Leat = tweal) T 4 - 00
D0—7 1SB (D) Data Setup Time to Falling tdge of Clock During M2 to MS 60 nsec CL = 50pF ~ _
tdem Data Stable Prior to WR (Memory Cycle) 151 nsec 131 tgem =te - 210
tdei Data Stable Prior to WR (1/0 Cycle) 16] nsec
tedr Data Stable From WR 171 (o] tge = tyqpry ¥ty - 210
ty Any Hold Time for Setup Time 0 nsec 71 tege= tw(CI>L) T -80
{DLS (MR) MREQ Defay From Falling Edge of Clock, MREQ Low 100 nsec
{DH® (MR) MREQ Delay From Rising Edge of Clock. MREQ High 100 nsec
MREQ 'DH® (MR) MREQ Delay From Falling Edge of Clock. MRE') High 100 nsec Cl = 50pF
tw (MRL) Pulse Width, MREQ Low 18) nsec . Bl (MRL) = e -0
Lw (MRH) Pulse Width, MREQ High 191 nsec
—) . 19 twMRHY ™ Sty * A0
DL (IR) I0RQ Delay From Rising Edge of .(‘lock. {ORQ Low 90 nsev
ORG DL (IR) IORQ Delay From Falling Edge of Clock, IORQ Low 110 nsec €, = SOpF
'DH® (IR) 1ORQ Delay From Rising Edge of Clock. JORQ High 100 nsec L
'DH (IR) JORQ Delay From Falling Edge of Clock, IORQ High 110 nsec
'DL& (RD) @ Delay From Rising Edge of Clock, @Low 100 nsec
) {DLS (RD) RD Delay From Fgl!ing Edge of Clock. RD Low 130 nsec C, = SOpF
tDH® (RD) RD Delay From Rising Edge of Clock. RD High 100 | nsec L
'DHF (RD) RD Delay From Falling Edge of Clock, RD High 110 nsec
‘DL (WR) | WR Delay From Rising Edge of Clock, WR Low 80 | nsec
WR DLF (WR) WR Delay From Falling Edge of Clock, WR Low 90 nsec C, = SOpF
IDH® (WR) ;Vulll D‘e":ac)l/ }Frowr% ialling Edge of Clock, WR High - 100 nsec L
tw (WRL se Width, ow nsec
) {10} tw(W_RL)=tc'40
M DL (M1) E Delay From Rising fdge of Clock, M1 Low 130 nsec C, =50pF
'DH (M1) M1 Delay From Rising Edge of Clock, M1 High 130 nsec L
DL (RF) RFSH Delay From Rising Edge of Clock, RFSH Low 180 nsec = 50pF
RFSH {DH (RF) RFSH Delay From Rising Edge of Clock, RFSH High 150 nsec CL Op
WAIT {5 (WT) WAIT Setup Time to Falling Edge of Clock 70 nsec
HALT 1D (HT) HALT Delay Time From Falling Edge of Clock 300 nsec CL = 50pF
INT ts (IT) INT Setup Time to Rising Edge of Clock 80 nsec
NMI Ly (NML) Pulse Widih, NM1 Low 80 nsec
BUSRQ 5 (BQ) BUSRQ Setup Time to Rising Edge of Clock 80 nsec
BUSAK 'DL (BA) BUSAK Delay From stir\g l{f:lge ul"_(‘lnck. BUSAK Ln.w 120 nsec C. = 50pF
IDH (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High 110 nsec L
RESET 15 (RS) RESET Setup Time to Rising Edge of Clock 90 nsec
tF(C) Delay to Fioat (MREQ, TORQ, RD and WR) 100 | msec
Uy M1 Stable Prior to IORQ (Interrupt Ack.) (]l nsec P e ™ 26 * Gty * 1= 80
NOTES:
TEST POINT Ayx 21K

A. Duta shouid be enabled onto the CPU data bus when RD is uctive. During interrupt acknowledge data
should be enabled when M1 and IORQ are both active,
B. Al control signals are internally synchronized. so they may be totaily asynchronous with respect

to the clock

~

The RESET signal must be active for a nunimum of 3 clock cycles.

D. Qutput Delay vs. Loaded Cupacitance

TA = 70°C

Vee = +8V 54

FROM QUTPUT
UNDER TEST

Add 10nsec delay for each 50pf increase in load up to a maximum of 200pf for the data bus & 100pf for

address & control lines

E. Although static by design. testing guarantees ty pi) ol 200 gsec maximum

<
R

il
L

00w A

I
i
A

Load circuit for Qutput

HEATI—IKIT®

Page 13-73

A.C. Timing Diagram

Timing measurements are made at the following

&

Ag-a1s

Ap-15

voltages, unless otherwise specified: 1 “0”
CLOCK VCc -6V 45V
OUTPUT 20V 8V
' INPUT 20V 8V
FLOAT AV N EAY
W (DH)
S z S — ﬂ [; Z X "
L—/ 'k (AD)
W) e
—-"”
9 (AD)
L¢ -
e Lf=t=mp, 8 9
ﬁr - (A ﬁll‘) N\
" 1S3 (0} [
— -l—\ <-
iN
5 (D) i it B By
— H—'F (0)
I
[4
et ,_.K), ..
ouT jﬂ. . >
o — '~ -" e b o .
oL (M) LOH (M1)—=] ™ caf
1
x T ca
- z(r 'OH (RF) 4= ’-h——'cd'
DL (RF)—ef
/ tF (c)
{DHT (MR} -]
I‘DLvT- MR TDH I (MR DHT (MR)—= -
MR} o, /———
\,
! + tw (MRL - o
7 I Ml \\.—‘,5 (
e)] . ‘W (MRH) (N (RO} L
‘oLl (RD) DHd {RD)—= DHE (RD) il
N,
\L N L
{¢ A\,
i oLd wh) | 7 -
—] |~i-'OHD (WR)
o b= /—_
"‘[—"dcm -IW (WARL) ’l Medew
YL (1R o L4IR) . T
YOH {IR)—=} DHD (1R)=1 il
.
Lot / ‘_.-/
Tmr j —ac)— .
r_ ’ tore (RD) T
DH¢ (RD)—== r—
— /—————
~,
L¢ z ﬂ
DL« (WR) oo R |
f=—1 DHiT (WR) iy
. /
dei L—%' et
'D (HT) D (HT)
n
JE—— \\
—
- == '0H (BA)
DL (BA)
's (RS)| | 'H

N,

| T

8 Page 13-74
. — = JrIEATEKIT
o L
A.C. Characteristics Z80A-CPU
o o y .
: TA=0Cto70°C, Vce =45V £ 5%, Unless Otherwise Noted.
Signal Symbol Parameter Min Max Unit Test Condition
[Clock Period .25 112] usec [12] = tyqaHy * twoL) * Lt i
ty, (PH) Clock Pulse Width, Clock High 110 |E nsec
P]
ty (®L) Clock Pulse Width, Clock Low 110 2000 nsec
‘r f Clock Rise and Fall Time : 0 nsec
D (AD) Address Output Delay 110 nsec
'F (AD) Delay to Float 90 nsec
taem Address Stable Prior to MREQ (Memory Cycle) {17 nsec C, = S0pE
Ro-15 Lagi Address Stable Prior to TORQ. RD or WR (1/0 Cycle) 3] nsec L=ovp (11 tem = twaH) * -5
ea Address Stable from R_D W_l_{_ IORQ or MREQ 3] nsec
Leaf Address Stable From RD or WR During Float 14] nsec (2] 1=t -70
'D(D) Data Output Delay 150 nsec B3] t,= tyaL) * 1 - 50
'F (D) Delay to Fioat During Write Cycle 90 nsec
1S3 (D) Data Setup Time to Rising Edge of Clock Dusing M1 Cycle 35 nse (4} tear= Lw(dL) +1,.-45
: DO—7 ST (D) Data Setup Time to Falling Edge of Clock During M2 1o M$ S0 nse¢ CL = 50pt
tdem Data Stable Prior to ER {Memory Cycle) 151 nsec 5] tdem = te - 170
tdci Data Stable Prior to WR (/0 Cycle) (6] nsec
; tedf Data Stable From WR 7 16} t4.i= tyaL) Tt - 170
1y Any Hold Time for Setup Time 0 nsec 7 tear = tw(d>L) - 70
tDLD (MR) ‘ MREQ Delay From Falling Edge of Clock, MREQ Low 85 nsec
(DH (MR) MREQ Delay From Rising Edge of Clock, MREQ ng)x 85 nsec
MREQ lDH$(MR) MREQ Delay From Falling Edge of Clock, MREQ High 85 nsec (‘L = 50pF
tw (MRL) Pulse Width, MREQ Low 18] nsec 81 ty (MRL) ™t~ 30
'w (MRH) Pulse Width, MREQ High [EJ] nsec
- (9] GMRH) = tw(ot) * tr-20
DL (IR) IORQ Delay From Rising Edge of Clock, IORQ Low 75 nsec
i DL (IR) IORQ Delay From Falling Edge of Clock, IORQ Low 85 nsec _
iORQ €, = SOpF
{DH® (IR) lORQ Delay From Rising Edge of Clock, IORQ High 85 nsec
IDH® (IR) TORQ Delay From Falling Edge of Clock, TORQ High 8S nsec
DL® (RD) RD Delay From Rising Edge of Clock, RD Low 85 | nsec
RD 'DL® (RD) RD Delay From Falling Edge of Clock, RD Low 95 nsec C. =S0pF
IDH® (RD) RD Delay From Rising Edge of Clock, RD RD High 85 nsec L P
'DHE (RD) RD Delay From Falling Edge of Clock, RD High 85 nsec
{DL® (WR) WR Delay From Rising Edge of Clock, WR Low 65 nsec
WR IDLE (WR) WR Delay From Falling Edge of Clock, WR Low 80 nsec €= SOpF
i {DHF (WR) WR Delay From Falling Edge of Clock, WR High 80 nsec
i tw (WRL) Pulse Width, WR Low {101 nsec
— = (1) ty(WRL) = tc 30
i i DL (M1) yl_l Delay From Rising Edge of Clock,m Low 100 nsec Cy = 50pF
'DH (M1) M1 Delay From Rising Edge of Clock, M1 High 100 nsec L
! = IDL (RF) RFSH Delay From Rising Edge of Clock, RFSH Low 130 nsec Cy = 50pF
RESH (DH (RF) RFSH Delay From Rising Edge of Clock, RFSH High 120 | weec | L7°YP
WAIT s (WT) WAIT Setup Time to Falling Edge of Clock 70 nsec
HALT (D (HT) HALT Delay Time From Falling Edge of Clock 300 nsec €, =50pF
INT s (IT) INT Setup Time to Rising Edge of Clock 80 ’ nsec
NMI Ly (NML) Pulse Width, NM1 Low 80 nsec
BUSRQ i (BQ) BUSRQ Setup Time to Rising Edge of Clock 50 nsec
BUSAK DL (BA) BUSAK Delay From Risipg Edge of Clock, BUSAK qu]lgg nsec (_L = SGpF
'DH (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High nsec
RESET 15 (RS) RESET Setup Time to Rising Edge of Clock 60 nsec
F(C) Delay to Float (MREQ, IORQ, RD and WR) 80 | nsec
[M1 Stable Prior to IORQ (Interrupt Ack.} {11 nsec 11} tne = z[c + ‘w(¢H) +ip- 65
Voo
NOTES: TEST POINT R =2.1KQ
A. Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data .
AOM QUTPUT
should be enabled when M1 and TORQ are both active. UNDER TEST
B. All control signals are internally synchronized, so they may be totally asynchronous with respect
to the clock
C. The RESET signal must be active for a minimum of 3 clock cycles.
D. Output Delay vs. Loaded Capacitance
TA = 70°C Veé =+5V 5%
Add 10nsec delay for each 50pf increase in load up to maximum of 200pf for data bus and 100pf for
address & control lines. Load circuit for Output
E. ‘Although static by design. testing guarantees LW(@H) of 200 ysec maximum

HE.A
' 12.0

7

Page 13-75

780-CPU

Zilog INSTRUCTION SET

ADC HL, ss
ADC A, s
ADD A, n
ADD A, r
ADD A, (HL)
ADD A, (1X+d)
ADD A, (1Y+d)
ADD HL, ss
ADD IX, pp
ADD 1Y, rr
AND s

BIT b, (HL)
BIT b, (1X+d)
BIT b, (1Y+d)
BITh, r

CALL cc, nn
CALL nn

CCF
CPs

CPD

CPDR

CPi

CPIR

CPL
DAA
DEC m

DEC IX

Add with Carry Reg. pair ss to HL

Add with carry operand s to Acc.
Add value n to Acec.

Add Reg. r to Acc.

Add location {HL) to Acc.

Add location {I1X+d} to Acc.
Add location (1Y+d) to Acc.
Add Reg. pair ss to HL

Add Reg. pair pp to I1X

Add Reg. pair rr to 1Y

Logical ‘AND’ of operand s and Acc.
Test BIT b of location {(HL)

Test BIT b of location {1X+d)
Test BIT b of location (1Y+d)
Test BIT b of Reg. r

Call subroutine at location nn if
condition cc if true

Unconditional call subroutine at
location nn

Complement carry flag
Compare operand s with Acc.

Compare location (HL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HL and BC, repeat
until BC=0

Compare location (HL) and Acc.
increment HL and decrement BC

Compare location {HL} and Acc.
increment HL, decrement BC
repeat until BC=0

Complement Acc. (1's comp)
Decimal adjust Acc.
Decrement operand m

Decrement I X

DEC 1Y
DEC ss
DI

DJINZ e

El

EX (SP), HL
EX (SP}, I1X
EX (SP}, 1Y

EX AF, AF’

EXDE, HL

EXX

HALT
IM 0
1M1
M 2

IN A, (n)

INT, (C)

INC (HL)
INC IX
INC (1X+d}

INC 1Y

INC (1Y+d)
INCr
INC ss

IND

INDR

INI

Decrement 1Y
Decrement Reg. pair ss
Disable interrupts

Decrement B and Jump
relative if B#0

Enable interrupts

Exchange the location (SP) and HL
Exchange the location (SP) and IX
Exchange the location (SP) and 1Y

Exchange the contents of AF
and AF’

Exchange the contents of DE
and HL

Exchange the contents of BC, DE,
HL with contents of BC’, DE’, HL’
respectively

HALT (wait for interrupt or reset)
Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

Load the Acc. with input from
device n

Load the Reg. r with input from
device (C)

Increment location (HL)
Increment IX
Increment location (1X+d)

Increment 1Y

Increment location (1Y+d)
Increment Reg. r
Increment Reg. pair ss

Load location (HL) with input
from port (C}, decrement HL
and B

Load location (HL) with input
from port (C), decrement HL and
decrement B, repeat until B=0

Load location {HL) with input
from port (C); and increment HL
and decrement B

Page 13-76

By H I EATHEIT:

Load location (nn) with Acc.

Load location (nn) with Reg. pair dd
Load location (nn) with HL

Load location (nn) with 1X

Load tocation (nnh) with 1Y

Load R with Acc.

Load Reg. r with location (HL)
Load Reg. r with location (I1X+d)
Load Reg. r with location {I1Y+d} -
Load Reg. r with value n

Load Reg. r with Reg. r’

Load SP with HL

Load SP with IX

Load SP with 1Y

Load location (DE) with location
{HL), decrement DE, HL. and BC

Load location (DE) with location
(HL), decrement DE, HL and BC;
repeat until BC=0

Load location (DE) with location
(HL), increment DE, HL,

Load location (DE) with location
(HL}, increment DE, HL,
decrement BC and repeat until

Negate Acc. {2's complement)

Logical ‘OR’ or operand s and Acc.
Load output port (C)} with location
(HL) decrement HL and B, repeat

Load output port (C) with location
(HL), increment HL, decrement B,
repeat until B=0

Load output port (C) with Reg. r

Load output port {n} ;/Vith Acc.
Load output port (C) with location
{HL), decrement HL and B

INIR Load location (HL) with input LD (nn), A
from port {C), increment HL
and decrement B, repeat until LD (nn), dd
B=0 LD (nn), HL
JP (HL) Unconditional Jump to (HL) LD (nn), IX
JP {I1X) Unconditional Jump to (I1X) LD (nn), 1Y
JP (1Y) Unconditonal Jump to {1Y) LD R, A
JP cc, nn Jum;? t.o Ioca_tion nn if LD r, (HL)
condition cc is true
o _ LD r, (IX+d)
JP nn Unconditional jump to location
nn LD r, (1Y+d)
JPC,e Jump relative to PC+e if carry=1 LDr,n
JR e Unconditional Jump refative LDr,r
to PC+e
LD SP, HL
JP NC, e Jump relative to PC+e if carry=0
LD SP, IX
JRNZ, e Jump relative to PC+e if non
zero (Z2=0) LD SP, 1Y
JRZ e Jump relative to PC+e if zero (Z2=1) LDD
LD A, (BC) Load Acc. with location (BC)
LDDR
LD A, (DE) Load Acc. with location (DE)
LD A, I Load Acc. with |
LD A, {nn) Load Acc. with location nn LDI
LD A, R Load Acc. with Reg. R decrement BC
LD (BC), A Load location (BC) with Acc. LDIR
LD (DE), A Load location (DE) with Acc.
LD (HL), n Load location (HL) with value n BC=0
LD dd, nn Load Reg. pair dd with value nn NEG
NOP No operation
LD HL, (nn) Load HL with location {nn)
' OR s
LD (HL), r Load location (HL) with Reg. r OTDR
LDI A Load | with Acc.
until B=0
LF IX, nn Load IX with value nn OTIR
LD IX, {nn) Load IX with location (nn)
LD (IX+d), n Load location {1X+d) with value n
ouT (C), r
LD (IX+d), r Load location {1X+d) with Reg. r
) ouUT (n), A
LD 1Y, nn Load 1Y with value nn ouUTD
LD 1Y, (nn) Load 1Y with location {(nn)
OuUT!

LD (IY+d), n

LD (1Y+d), r

Load location (1Y+d) with value n

Load location (1Y+d) with Reg. r

Load output port (C) with location
(HL), increment HL and decrement
B

EE g F I B ATHIKITS

POP IX
POP 1Y
POP qq
PUSH I1X
PUSH 1Y
PUSH qq
RES b, m

RET
RET cc

RETI
RETN

RL m

RLA

RLC (HL)
RLC (I1X+d)
RLC (1Y+d)
RLCr
RLCA

RLD

Load IX with top of stack

Load I'Y with top of stack

Load Reg. pair qq with top of stack
Load 1X onto stack

Load Y onto stack

Load Reg. pair qq onto stack

Reset Bit b of operand m

Return from subroutine

Return from subroutine if condition
cc is true

Return from interrupt

Return from non maskable interrupt
Rotate left through carry operand m
Rotate left Acc. through carry
Rotate location (HL) left circular
Rotate location (IX+d} left circular
Rotate location (1Y+d) left circular
Rotate Reg. r left circular

Rotate left circular Acc.

Rotate digit left and right between
Acc. and location (HL)

RR m
RRA
RRC m
RRCA

RRD

RSTp

SBCA,s

SBC HL, ss

SCF

SET b, (HL)
SET b, (1X+d)
SET b, (1Y+d)
SET b, r
SLAm

SRA m
SRL'm

SUB s

XOR s

Rotate right through carry operansd m
Rotate right Acc. through curry
Rotate operand m right circular
Rotate right circular Acc.

Rotate digit right and left between
Acc. and location {(HL)

Restart to location p

Subtract operand s from Acc. with
carry

Subtract Reg. pair ss from HL with
carry

Set carry flag (C=1)

Set Bit b of location (HL)

Set Bit b of location (I1X+d)

Set Bit b of location (I'Y+d)

Set Bit b of Reg. r

Shift operand m left arithmetic
Shift operand m right arithmetic
Shift operand m right logical
Subtract operand s from Acc.

Exclusive ‘OR’ operand s and Acc.

Page 13-78

= g TEATERITS

HEA

Page 14-1

INS8250 ASYNCHRONOUS COMMUNICATIONS ELEMENT*

INS8250 Functional
Pin Description

The function of all INS8250 input/output pins are
described in the following paragraphs. (See the
INS8250 Block Diagram, Illustration Booklet, Page
16). Some of these descriptions reference internal cir-
cuits. A low in these descriptions represents a logic 0
(0 volt nominal) and a high represents a logic 1 (+2.4
volts nominal).

INPUT SIGNALS

Chip Select (CS{, CS1, (TZ), Pins 12-14: When CS@
and CS1 are high and CS2 is low, the chip is selected.
Chip selection is complete when the decoded chip
select signal is latched with an active (low) Address
Strobe (ADS) input. This enables communication be-
tween the INS8250 and the CPU.

Data Input Strobe (DISTR, DISTR), Pins 22 and
21: When DISTR is high or DISTR is low while the
chip is selected, this allows the CPU to read status
information or data from a selected register of the
INS8250.

NOTE: Only an active DISTR or DISTR input is re-
quired to transfer data from the INS8250 during a read
operation. Therefore, tie either the DISTR input per-
manently low or the DISTR input permanently high,
if not used.

Data Output Strobe (DOSTR, DOSTR), Pins 19 and
18: When DOSTR is high or DOSTR is low while the
chip is selected, this allows the CPU to write data or
control words into a selected register of the INS8250.

NOTE: Only an active DOSTR or DOSTR input is
required to transfer data to the INS8250 during a write
operation. Therefore, tie either the DOSTR input
permanently low or the DOSTR input permanently
high, if not used.

Address Strobe (ADS), Pin 25: When low, it pro-
vides latching for the Register Select (A0, A1, A2) and
Chip Select (CS@f, CS1, CS2) signals.

* Portions of this section are reprinted with the permission of National
Semiconductor.

NOTE: An active ADS input is required when the
Register Select (A0, A1, A2) signals are not stable for
the duration of a read or write operation. If not re-
quired, tie the ADS input permanently low.

Register Select (A0, A1, A2), Pins 26 - 28: These
three inputs are used during a read or write operation
toselect an INS8250 register to read from or write into
as indicated in the table below. Note that the state of
the Divisor Latch Access Bit (DLAB), which is the
most significant bit of the line control register, affects
the selection of certain INS8250 registers. The DLAB
is reset low when the Master Reset (MR) input is
active (low); the DLAB must be set high by the system
software to access the baud generator divisor latches.

DLAB | A; | A, | A Register
0 0 {0 |0 Receiver Buffer (read), Transmitter
Holding Register (write)
0 010 {1 Interrupt Enable
X 0 {1 0 Interrupt Identification (read only)
X 0 |1 1 Line Control
X 1]0 |0 MODEM Control
X 1 10 (1 Line Status
X t {1 {0 MODEM Status
X 1 1 1 None
1 0|0 |0 Divisor Latch (least significant byte)
1 0 }0 |1 Divisor Latch (most significant byte)

Master Reset (MR), Pin 35: When high, it clears all
the registers (except the receiver buffer, transmitter
holding, and divisor latches), and the control logic of
the INS8250. Also, the state of various output signals
(SOUT, INTRPT, OUT 1, OUT 2, RTS, DTR) are af-
fected by an active MR input. (Refer to Table 1 on Page
14-3.)

\

Receiver Clock (RCLKj), Pin 9: This input is the 16x
baud rate clock for the receiver section of the chip.

Serial Input (SIN},Pin 10: Serial data input from the
communications link (peripheral device, MODEM, or
data set}.

Page 14-2

I

= grimATHIEITS

Clear to Send (CTS), Pin 36: The CTS signal is a
MODEM control function input whose condition can
be tested by the CPU by reading bit 4 (CTS) of the
MODEM status register. Bit 0 (DCTS) of the MODEM
status register indicates whether the CTS input has
changed state since the previous reading of the
MODEM status register.

NOTE: Whenever the CTS bit of the MODEM status
register changes state, an interrupt is generated if

enabled.

Data Set Ready (DSR), Pin 37: When low, it indi-
cates that the MODEM or data set is ready to establish
the communications link and transfer data with the
INS8250. The DSR signal is a MODEM-control func-
tion input whose condition can be tested by the CPU
by reading bit 5 (DSR) of the MODEM status register.
Bit 1 (DDSR) of the MODEM status register indicates
whether the DSR input has changed state since the
previous reading of the MODEM status register.

NOTE: Whenever the DSR bit of the MODEM status
register changes state, an interrupt is generated if
enabled.

Received Line Signal Detect (RLSD), Pin 38: When
low, it indicates that the data carrier has been de-
tected by the MODEM or data set. The RLSD signal isa
MODEM-control function input whose condition can
be tested by the CPU by reading bit 7 (RLSD) of the
MODEM status register. Bit 3 (DRLSD) of the MODEM
status register indicates whether the RLSD input has
changed state since the previous reading of the
MODEM status register.

NOTE: Whenever the RLSD bit of the MODEM status
register changes state, an interrupt is generated if
enabled.

Ring Indicator (R——I), Pin 39: When low, it indicates
that a telephone ringing signal has been received by
the MODEM or data set. The RI signal is a MODEM
control function input whose condition can be tested
by the CPU by reading bit 6 (RI) of the MODEM status
register. Bit 2 (TERI) of the MODEM status register
indicates whether the RI input has changed from a
low to a high state since the previous reading of the
MODEM status register.

NOTE: Whenever the RI bit of the MODEM status
register changes from a high to a low state, an inter-
rupt is generated if enabled.

Vee, Pin 40: +5-volt supply.

Vs, Pin 20: Ground (0-volt) reference.

OUTPUT SIGNALS

Data Terminal Ready (Eﬁz), Pin 33: When low, it
informs the MODEM or data set that the INS8250 is
ready to communicate. The DTR output signal can be
setto an active low by programming bit 0 (DTR) of the
MODEM control register to a high level. The DTR
signal is set high upon a Master Reset operation.

Requestto Send (RTS),Pin32: When low, it informs
the MODEM or data set that the INS8250 is ready to
transmit data. The RTS output signal can be set to an
active low by programming bit 1 (RTS) of the MODEM
control register. The RTS signal is set high upon a
Master Reset operation.

Output 1 (OUT 1),Pin 34: A user-designated output
that can be set to an active low by programming bit 2
(OUT 1) of the MODEM control register to a high
level. The OUT 1 signal is set high upon a Master

Reset operation.

Output 2 (OUT 2),Pin 31: A user-designated output
that can be set to an active low by programming bit 3
(OUT 2) of the MODEM control register to a high
level. The OUT 2 signal is set high upon a Master
Reset operation.

Chip Select Out (CSOUT), Pin 24: When high, it
indicates that the chip has been selected by active
CSg, CS1, and CS2 inputs. No data transfer can be
initiated until the CSOUT signal is a logic 1.

Driver Disable (DDIS), Pin 23: Goes low whenever
the CPU is reading data from the INS8250. A high-
level DDIS output can be used to disable an external
transceiver (if used between the CPU and INS8250 on
the D, - D, Data Bus) at all times, except when the CPU
is reading data.

Baud Out (BAUDOUT), Pin 15: 16x clock signal for
the transmitter section of the INS8250 . The clock rate
is equal to the main reference oscillator frequency
divided by the specified divisor in the baud generator
divisor latches. The BAUDOUT may also be used for
the receiver section by typing this output to the RCLK
input of the chip.

I—IE.A

Page 14-3

Interrupt (INTRPT), Pin 30: Goes high whenever
any one of the following interrupt sources has an
active high condition: Receiver Error Flag; Received
Data Available; Transmitter Holding Register Empty;
and MODEM Status. The INTRPT signal is reset low
upon a Master Reset operation.

Serial Output (SOUT), Pin 11: Composite serial
data output to the communications link (peripheral,
MODEM or data set). The SOUT signal is set to the
Marking (logic 1) state upon a Master Reset operation.

INPUT/OUTPUT SIGNALS

Data (D, - D,) Bus, Pins 1 - 8: This bus comprises
eight TRI-STATE input/output lines. The bus pro-
vides bidirectional communications between the

INS8250 and the CPU. Data, control words, and status
information are transferred via the D, - D, data bus.

External Clock Input/Output (XTAL 1, XTAL 2), Pins
16 and 17: These two pins connect the main timing
reference (crystal or signal clock) to the INS8250.

Register/Signal Reset Control Reset State
Receiver Buffer Register First Word Received Data
. . . Writing into the
Transmitter Holding Register Transmitter Holding Register Data
| Enable Regi All bits Low
nterrupt Enable Register Master Reset (0 - 3 forced and 4 - 7 permanent)
| | ficati . Bit 0 is High and
nterrupt identification Register Master Reset Bits 1 - 7 Are Permanently Low
Line Control Register Master Reset All Bits Low
MODEM Control Register Master Reset All Bits Low
Line S Redqi ’ ' All Bits Low,
ine Status Register Master Reset Except Bits 5 & 6 Are High
. . Master Reset Bits 0 - 3 Low
MODEM Status Register MODEM Signal Inputs Bits 4 - 7 — Input Signal
~ Divisor Latch (low order bits) Writing into the Latch Data
Divisor Latch (high order bits) Writing into the Latch Data
SouT Master Reset High
BAUDOUT Writing into Either Divisor Latch Low
ADS Strobe Signal and State of High/L
csout Chip Select Lines igh/Low
- DDIS = CSOUT * RCLK * DISTR
DDIS (AT Master Reset, the CPU High
sets RCLK and DISTR low.)
INTRPT Master Reset Low
OouT 2 Master Reset High
N RTS Master Reset High
DTR Master Reset High
OuUT 1 Master Reset High
in TRI-STATE Mode, TRI-STATE
D, - D, Data Bus Lines Unless CSOUT « DISTR = High DATA (ACE to CPU)
or CSOUT » DOSTR = High DATA (CPU to ACE)

Table 1

Reset Control of Registers and Pinout Signals.

Page 14-4

A

= g IEATERIT:

Programming

When you use Heath software, you will not be con-
cerned with programming the 8250 ACE (asynchron-
ous communications element) in the H88-3. How-
ever, this section will be indispensable if you intend
to assemble your own program code.

In order to easily program the 8250, you should:

1. Disable all UART interrupts by clearing the
interrupt enable register.

Set the ACE in its loop-back mode.
Program the ACE as you want it.
Read a character.

Wait two character times.

Read a second character.

Take the ACE out of the loop-back mode.

S I NS

INS8250 ACCESSIBLE REGISTERS

You (the system programimer) may access or control
any of the INS8250 registers summarized in Table 1
via the CPU. These registers are used to control
INS8250 operations and to transmit and receive data.

INS8250 Line Control Register

Specify the format of the asynchronous data com-
munications exchange via the Line Control Register.
Inaddition to controlling the format, youay retrieve
the contents of the Line Control Register for inspec-
tion. This feature simplifies system programming and
eliminates the need for separate storage in system
memory of the line characteristics. The contents of
the Line Control Register are indicated in Table 2 and
are described below.

Bits 0 and 1: These two bits specify the number of
bits in each transmitted or received serial character.
The encoding of bits 0 and 1 is as follows:

Bit 1 Bit 0 Word Length
0 0 5 Bits
0 1 6 Bits
1 0 7 Bits

"1 1 8 Bits

Bit 2: This bit specifies the number of Stop bits in
each transmitted or received serial character. If bit 2 is
a logic 0, 1 Stop bit is generated or checked in the
transmit or receive data, respectively. If bit 2 is a logic
1 when a 5-bit word length is selected via bits 0 and 1,
1-1/2 Stop bits are generated or checked. If bit 2 is a
logic 1 when either a 6-, 7-, or 8-bit word length is
selected, 2 Stop bits are generated or checked.

Bit 3: This is the Parity Enable bit. When Bit 3 is a
logic 1, a Parity bit is generated (transmit data) or
checked (receive data) between the last data word bit
and Stop bit of the serial data. {(The Parity bitis used to
produce an even or odd number of 1s when the data -
word bits and the Parity bit are summed.)

Bit4: Thisisthe Even Parity Select bit. When bit 3 is
alogic 1 and bit 4 is a logic 0, an odd number of logic
1s is transmitted or checked in the data word bits and
Parity bit. When bit 3 is a logic 1 and bit 4 is alogic 1,
an even number of bits is transmitted or checked.

Bit5: Thisisthe Stick Parity bit. When bit 3 isa logic
1 and bit 5 isalogic 1, the Parity bit is transmitted and
then detected by the receiver in the opposite state
indicated by bit 4.

Bit6: This isthe Set Break Control bit. When bit 6 is
a logic 1, the serial output (SOUT) is forced to the
spacing (logic 0) state and remains there (until reset
by a low-level bit 6) regardless of other transmitter
activity. This feature enables the CPU to alert a termi-
nal in a computer communications system.

Bit 7: Thisisthe Divisor Latch Access bit (DLAB). It
must be set high (logic 1) to access the Divisor Latches
of the baud rate generator during a Read or Write
operation. It must be set low (logic 0) to access the
receiver buffer, the transmitter holding register, or the
interrupt enable register.

Page 14-5

Register Address
ODLAB =0JODLAB =0 1 DLAB =0 2 3 4 5 6 ODLAB =1 §1DLAB = 1
Receiver Transmitter . R - -
Butfer Holdin Interrupt Interrupt Line MODEM Line MODEM Divisor Divisor
Register Registegr Enable Identification Control Control Status Status Latch Latch
i i ist Regist: Regist Regist: LS MS
Bit NoJ (Read Only) | (write Onty) Register Register Register egister eg-|s er egister (LS) (MS)
Enable
Received Dat
e[;:z::e ‘ot Word Length Ter:ﬁial Data Read Defta Clear
0 Data Bit 0* Data Bit 0 . Interrupt Select Bit 0 y to Send Bit 0 Bit 8
Available Pendin (WLSO0) Ready (DR) (OCTS)
interrupt 9 (DTR)
(ERBFI)
Enable
Transmitter
Hotding Interrupt Word Length | Request to Overrun Delta Data
i Data Bit 1 Data Bit 1 Register ID Select Bit 1 Send Error Set Ready Bit 1 Bit 9
Empty Bit (0) (WLS1) (RTS) (OR) (DDSR)
Interrupt
(ETBEI)
Enable Trailing
Receiver
Line Interrupt Number of Parity Edge
¥ DataBit 2 | Data Bit 2 Status ID Stop Bits Out 1 Error Ring Bit 2 Bit 10
" Bit (1) (s7B) (PE) Indicator
Herrupt (TERI)
(ELSH
Deita
Frabin Receive
MODEM Parity Framing Line
4 Gad B3 | Gmanaa fitarun 0 Enable Out 2 Error Signal Bit 3 Bit 11
Hatarrugn (PEN) (FE) Detect
tronny (DRLSD)
Even
Parit Break Clear to
4 Dntn 8it 4 Duta Bt 4 0 0 Selecyt Loop Interrupt Send Bit 4 Bit 12
(EPS) (BI) (CTS)
Transmitter
. Data
Stick Holding Set
) Data Bit 5 Data Bit 5 o] 0 Pari 0 Register Read Bit 5 Bit 13
M T
¥ Empty (c?;n);
(THRE)
Transmitter
Set Shift Ring
6 Data Bit 6 Data Bit 6 0 0 Break 0 Register Indicator Bit 6 Bit 14
Empty (RI)
(TSRE)
Divisor Received
Latch Line
7 Data Bit 7 Data Bit 7 0 0 Access [¢] 0 Signat Bit 7 Bit 15
Bit Detect
(DLAB) (RLSD)

* Bit 0 is the least significant bit. It is the first bit serially transmitted or received.

Table 2
Summary of INS8250 Accessible Registers.

Page 14-6

g H I EATHKITS

8250 PROGRAMMABLE BAUD RATE
GENERATOR

The 8250 contains a programmable baud rate
generator that takes the 1.8432 MHz clock and divides
itby any divisor from 1 to 2 - 1. The output frequency
of the baud generator is 16 X the baud rate. Two 8-bit
latches store the divisor in a 16-bit binary format.
These Divisor Latches must be loaded during initiali-
zation in order to insure desired operation of the baud
rate generator. Upon loading either of the divisor
latches, a 16-bit baud counter is immediately loaded.
This prevents long counts on initial load.

Table 3 illustrates the standard baud rates and the
contents of the LS (least significant) and MS (most
significant) latches expressed in byte octal.

BAUD RATE DIVISOR LATCH
(LS) (MS)
75 000 006
110 027 004
134.5 131 003
150 000 003
300 200 001
600 300 000
1200 140 000
2400 060 000
4800 030 000
9600 014 000
19200 006 000
Table 3
Baud Rates.

LINE STATUS REGISTER

This 8-bit register provides status information to the
CPU concerning the data transfer. The contents of the
line status register are indicated in Table 2 and are
described below.

Bit 0: This bit is the receiver Data Ready (DR) indi-
cator. Bit 0 is set to a logic 1 whenever a complete
incoming character has been received and transferred
into the receiver buffer register. Bit 0 may beresettoa
logic 0 either by the CPU reading the data in the
receiver buffer register or by writing a logic 0 into it
from the CPU.

Bit 1: This bit is the Overrun Error (OE) indicator.
Bit 1 indicates that data in the Receiver Buffer Regis-
ter was not read by the CPU before the next character
was transferred into the receiver buffer register,
thereby destroying the previous character. The OE
indicator is reset whenever the CPU reads the con-
tents of the line status register.

Bit2: Thisbitis the Parity Error (PE) indicator, Bit 2
indicates that the received data character does not
have the correct even or odd parity, as selected by the
even-parity-select bit. The PE bit is set to a logic 1
upon detection of a parity error and isreset toalogic 0
whenever the CPU reads the contents of the line status
register. :

Bit3: Thisbitisthe Framing Error (FE) indicator. Bit
3 indicates that the received character did not have a
valid Stop bit. Bit 3 is set to a logic 1 whenever the
Stop bit following the last data bit or parity bit is
detected as a zero bit (Spacing level).

Bit 4: This bit is the Break Interrupt (BI) indicator.
Bit 4 is set to a logic 1 whenever the received data
input is held in the Spacing (logic 0} state for longer
than a full word transmission time (that is, the total
time of Start bit + data bits + Parity + Stop bits).

NOTE: Bits 1 through 4 are the error conditions that
produce a Receiver Line Status interrupt whenever
any of the corresponding conditions are detected.

Bit 5: This bit is the Transmitter Holding Register
Empty (THRE) indicator. Bit 5 indicates that the
INS8250 is ready to accept a new character for trans-
mission. In addition, this bit causes the INS8250 to
issue an interrupt to the CPU when the Transmit
Holding Register Empty Interrupt enable is set high.
The THRE bit is set to a logic 1 when a character is
transferred from the transmitter holding register into
the transmitter shift register. The bit is reset to logic 0
concurrently with the loading of the transmitter hold-
ing register by the CPU.

Bit 6: This bit is the Transmitter Shift Register
Empty (TSRE) indicator. Bit 6 is set to a logic 1
whenever the transmitter shift register is idle. It is
reset tologic 0 upon a data transfer from the transmit-
ter holding register to the transmitter shift register.
Bit 6 is a read-only bit.

Bit 7: This bit is permanently set to logic 0.

B grr=ATERITS

Page 14-7

INTERRUPT IDENTIFICATION REGISTER

The INS8250 has an on-chip interrupt capability that
allows for complete flexibility in interfacing to all the
popular microprocessors presently available. In order
to provide minimum software overhead during data
character transfers, the INS8250 prioritizes interrupts
into four levels. The four levels of interrupt condi-
tions are as follows: Receiver Line Status (priority 1);
Received Data Ready (priority 2); Transmitter Hold-
ing Register Empty (priority 3); and MODEM Status
(priority 4).

Information indicating that a prioritized interrupt is
pending and the source of that interrupt are stored in
the interrupt identification register (refer to Table 4).
The interrupt identification register (IIR, when ad-
dressed during chip-select time, freezes the highest
priority interrupt pending and no other interrupts are
acknowledged until the particular interrupt is ser-
viced by the CPU. The contents of the IIR are indi-
cated in Table 2 and are described below.

Bit 0: This bit can be used in either a hardwired
prioritized or polled environment to indicate whether
an interrupt is pending. When bit 0 is a logic 0, an
interrupt is pending and the IIR contents may be used
as a pointer to the appropriate interrupt service
routine. When bit 0 is a logic 1, no interrupt is pend-
ing and polling (if used) continues.

Bits 1 and 2: These two bits of the IIR are used to
identify the highest priority interrupt pending as in-
dicated in table 3.

Bits 3 through 7:
logic 0.

INTERRUPT ENABLE REGISTER

These five bits of the IIR are always

This 8-bit register enables the four interrupt sources
of the INS8250 to separately activate the chip Inter-
rupt (INTRPT) output signal. It is possible to totally
disable the interrupt system by resetting bits 0
through 3 of the interrupt enable register. Similarly,
by setting the appropriate bits of this register toa logic
1, selected interrupts can be enabled. Disabling the
interrupt system inhibits the interrupt identification
register and the active (high) INTRPT output from the
chip. All other system functions operate in their nor-
mal manner, including the setting of the line status
and MODEM status registers. The contents of the in-
terrupt enableregister are indicated in Table 1 and are
described below.

Bit 0: This bit enables the Received Data Available
Interrupt when set to logic 1. Bit 0 is reset to logic 0
upon completion of the associated interrupt service
routine.

Bit 1: This bit enables the Transmitter Holding Reg-
ister Empty Interrupt when set to logic 1. Bit 1 is reset
to logic 0 immediately upon reading the Interrupt
Identification Register.

Bit2: Thisbit enablesthe Receiver Line Status Inter-
rupt when set to logic 1. Bit 2 is reset to logic 0 upon
completion of the associated interrupt service
routine.

Bit 3: This bit enables the MODEM Status Interrupt
when set to logic 1. Bit 3 is reset to logic 0 upon
completion of the associated interrupt service
routine.

Bits 4 through 7: These four bits are always logic 0.

MODEM CONTROL REGISTER

This 8-bit register controls the interface with the
MODEM or data set (or a peripheral device emulating
a MODEM). The contents of a MODEM control reg-
ister are indicated in Table 2 and are described below.

Bit 0: This bit controls the Data Terminal Ready
(DTR) output. When bit 0 is set to a logic 1, the DTR
output is forced to a logic 0. When bit 0 is reset to a
logic 0, the DTR output is forced to a logic 1.

NOTE: The DTR output of the INS8250 may be
applied to an EIA inverting line driver (such as the
DS1488) to obtain the proper polarity input at the
succeeding MODEM or data set.

Bit 1: This bit controls the Request to Send {RTS)
output. Bit 1 affects the RTS output in a manner iden-
tical to that described above for bit 0.

Bit 2: This bit controls the Output 1 (OUT 1) signal,
which is an auxiliary user-designated output. Bit 2
affects the OUT 1 output in a manner identical to that
described above for bit 0.

Bit 3: This bit controls the Output 2 (OUT 2) signal,
which is an auxiliary user-designated output. Bit 3
affects the OUT 2 output in a manner identical to that
described above for bit 0.

Page 14-8

= s T EATHRKITS

Bit 4: This bit provides a loopback feature for diag-
nostic testing of the INS8250. When bit 4 is set to logic
1, the following occur: the transmitter Serial Output
(SOUT) is set to the Marking (logic 1) state; the re-
ceiver Serial Input (SIN) is disconnected; the output
of the transmitter shift register is ‘“‘looped back” into
the receiver shift register input; the four MODEM
control inputs {CTS, DSR, RLSD, and RI) are discon-
nected; and the four MODEM control outputs (DTR,
RTS, OUT 1, and OUT 2} are internally connected to
the four MODEM Control inputs. In the diagnostic
mode, data that is transmitted is immediately re-
ceived. This feature allows the processor to verify the
transmit- and receive-data paths of the INS8250.

In the diagnostic mode, the receiver and transmitter
interrupts are fully operational. The MODEM control
Interrupts are also operational but the interrupts
sources are now the lower four bits of the MODEM
control register instead of the four MODEM control
inputs. The interrupts are still controlled by the inter-
rupt enable register.

The INS8250 interrupt system can be tested by writ-
ing into the lower six bits of the line status register
and the lower four bits of the MODEM status register.
Setting any of these bits to a logic 1 generates the
appropriate interrupt (if enabled). The resetting of
these interrupts is the same as in norma} INS8250
operation. To return to this operation, the registers
must be reprogrammed for normal operation and then
bit 4 must be reset to logic 0.

Bits 5 through 7: These bits are permanently set to
logic 0. '

MODEM STATUS REGISTER

This 8-bit register provides the current state of the
control lines from the MODEM (or peripheral device)
to the CPU. In addition to this current-state informa-
tion, four bits of the MODEM status register provide

change information. These bits are set to a logic 1
whenever a control input from the MODEM changes
state. They are reset to logic 0 whenever the CPU
reads the MODEM status register.

The contents of the MODEM status registef are indi-
cated in Table 2 and are described below.

Bit 0: This bit is the Delta Clear to Send (DCTS)
indicator. Bit 0 indicates that the CTS input to the

chip has changed state since the last time it was read
by the CPU.

Bit 1: This bit is the Delta Data Set Ready (DDSR)
indicator. Bit 1 indicates that the DSR input to the

chip has changed state since the last time it was read
by the CPU.

Bit2: This bit is the Trailing Edge of Ring Indicator
(TERI) detector, Bit 2 indicates that the Rl input to the
chip has changed from an On (logic 1) to an Off (logic
0) condition.

Bit 3: This bit is the Delta Received Line Signal
Detector (DRLSD) indicator. Bit 3 indicates that the
RLSD input to the chip has changed state.

NOTE: Whenever bit 0, 1, 2, or 3 is set to logic 1, a
MODEM Status interrupt is generated.

Bit4: Thisbitisthe complement of the Clear to Send

(CTS) input.

Bit 5: This bit is the complement of the Data Set
Ready (DSR) input.

Bit 6: This bit is the complement of the Ring Indi-

cator (RI) input.

Bit 7: This bit is the complement of the Received
Line Signal Detect (RLSD) input.

EATI—IKI’I‘® I

Page 14-9

Interrupt Control Functions.

Interrupt Identificati
P , Hication Interrupt Set and Reset Functions
Register
Bit 2 Bit 1 8it 0 Priority Interrupt Interrupt Interrupt
Level Flag Source Reset Control
0 o} 1 — None bNone -
Overrun Error
or
. Receiver Parity Error Reading the
1 1
0 Highest Line Status or Line Status Register
Framing Error
or
Break Interrupt
Received Receiver Reading the
1
0 0 Second Data Available Data Available Receiver Buffer Register
Reading the
R Register
Transmitter Transmitter (if source of interrupt)
0 1 0 Third Holding Register Holding Register or
Empty Empty Writing into the
Transmitter Holding
Register
Clear to Send
or
t t Read
MODEM Data Set Ready Reading the
0 o 0 Fourth Stat A |°n:1' MODEM Status
atus ing Indicator Register
or
Recsived Line
Signal Detect
Table 4

oo s

e

CUSTOMER SERVICE

AREPLACEMENT PARTS

Prease provide complete’ information when you request re-
placements from either the factory or Heath Electronic Cen-
tars, Ba certain to include the HEATH part number exactly as it
appears in the parts list.

ORDERING FROM THE FACTORY

Print all of the information requested on the parts order form
turnished with this product and mail it to Heath. For telephone
orders (parts only) dial 616 982-3571. If you are unable to
locate an order form, write us a letter or card including:

® Heath part number.

® Model number.

¢ Date of purchase.

e {ocation purchased or invoice number.

« Nature of the defect.

® Your payment or authorization for COD shipment of parts
not covered by warranty.

Mail fetters to: Heath Company

Benton Harbor

MI 49022

Attn: Parts Replacement

Aetain original parts until you receive replacements.
Parts that should be returned to the factory wiil be listed
on your packing slip.

OBTAINING REPLACEMENTS FROM
HEATH ELECTRONIC CENTERS

For your convenience, “over the counter” replacement parts
are avaitable from the Heath Electronic Centers listed in your
catalog, Be sure to bring in the original part and purchase
iwolpe when you request a warranty replacement from a
Haath Elactronic Center.

TECHNICAL CONSULTATION

Nead halp with your kit? — Self-Service? — Construction? —
Operation? ~ Call or write for assistance. you'll find our Tech-
nical Consuftants eager to help with just about any technical
problem axcep! "customizing” for unique applications.

The efectiveness of our consultation service depends on the
information you furnish. Be sure to tell us:

* The Model number and Series number from the blue and
white label.

® The date of purchase.

* An exact description of the difficulty.

* Everything you have done in attempting to correct the prob-
lem,

Also include switch positions, connections to other units,
operating procedures, voltage readings, and any other infor-
mation you think might be helpful.

Please do not send parts for testing, unless this is specifi-
cally requested by our Consultants.

Hints: Telephone traffic is lightest at midweek — please be
sure your Manual and notes are on hand when you call.

Heathkit Electronic Center facilities are also available for tele-
phone or “walk-in" personal assistance.

REPAIR SERVICE

Service facilities are available, if they are needed, to repair
your completed kit. (Kits that have been modified, soldered
with paste flux or acid core solder, cannot be accepted for
repair.)

If it is convenient, personally deliver your kit to a Heathkit
Electronic Center. For warranty parts replacement, sup-
ply a copy of the invoice or sales slip.

if you prefer to ship your kit to the factory, attach a letter
containing the following information directly to the unit:

® Your name and address.

e Date of purchase and invoice number.

e Copies of all correspondence relevant to the service of the
kit.

o A brief description of the difficulty.

® Authorization to return your kit COD for the service and
shipping charges. (This will reduce the possibility of delay.)

Check the equipment to see that all screws and parts are
secured. (Do not include any wooden cabinets or color televi-
sion picture tubes, as these are easily damaged in shipment.
Do not include the kit Manual.) Place the equipment in a strong
carton with at least THREE INCHES of resilient packing mate-
rial (shredded paper, excelsior, etc.) on all sides. Use addi-
tional packing material where there are protrusions (control
sticks, large knobs, etc.). If the unit weighs over 15 Ibs., place
this carton in another one with 3/4” of packing material bet-
ween the two.

Seal the carton with reinforced gummed tape, tie it with a
strong cord, and mark it “Fragile” on at least two sides. Re-
member, the carrier will not accept liability for shipping dam-
age if the unitis insufficiently packed. Ship by prepaid express,
United Parce! Service, or insured Parcel Post to:

Heath Company
Service Department
Benton Harbor, Michigan 49022

B

Ny

i

S

7

e
s -

Rl
Nk

i

Sp
i

-

e
e
S

St

L

ja

S

e
>

e

=
i

e

MICHIGA

HARBOR
'S FINEST ELECTRONIC EQUIPMENT IN KIT FORM

BENTON

COMPANY
THE WORLD

HEATH

LITHO IN US.A

