Page 13-1
E gsEATHRITS

780 CPU

The following pages are reprinted by permission of
Zilog, Inc.

Copyright® 1977 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission
of Zilog. :

Zilog assumes no responsibility for the use of any circuitry other than

circuitry embodied in a Zilog product. No other circuit patent licenses
are implied.

TM: Z80 is a trademark of Zilog, Inc.

Page 13-2

— = g HEATHRITS
TABLE OF CONTENTS

- Chapter Page

1.0 Introductiono.oiiiiii 13-3

2.0 Z80-CPU Architecture i 13-5

3.0 Z80-CPU Pin Descriptionovuiiiiiniiinianin. 13-9

4.0 CPUTIMING ... e e 13-13

5.0 Z80-CPU Instruction Setcooiuiiiiiein e, 13-20

6.0 Flags ... 13-41

7.0 Summary of OP Codes and Execution Timesoouevuni... 13-45

8.0 Interrupt RESPONSEiiinit 13-57

9.0 Hardware Implementation Examplesocuvurenerenrnnon.. .. 13-61

10.0 Software Implementation Exampleso i 13-65

11.0 Electrical Specificationsoeee 13-71

12.0 Z80-CPU Instruction Set Summaryoviriirinnnn .. 13-75

Page 13-3

B grisaTEHEITS

1.0 INTRODUCTION

The term “microcomputer” has been used to describe virtually every type of small computing device
designed within the last few years. This term has been applied to everything from simple “microprogram-
med” controllers constructed out of TTL MSI up to low end minicomputers with a portion of the CPU
constructed out of TTL LSI “bit slices.” However, the major impact of the LSI technology within the last
few years has been with MOS LSI. With this technology, it is possible to fabricate complete and very power-
ful computer systems with only a few MOS LSI components.

The Zilog Z-80 family of components is a significant advancement in the state-of-the art of micro-
computers. These components can be configured with any type of standard semiconductor memory to
generate computer systems with an extremely wide range of capabilities. For example, as few as two LSI
circuits and three standard TTL MSI packages can be combined to form a simple controller. With additional
memory and 1/0O devices a computer can be constructed with capabilities that only a minicomputer could
previously deliver. This wide range of computational power allows standard modules to be constructed by a
user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of
these few LSI components. For example, MOS LSI microcomputers have already replaced TTL logic in
such applications as terminal controllers, peripheral device controllers, traffic signal controllers, point of
sale terminals, intelligent terminals and test systems. In fact the MOS LSI microcomputer is finding its way
into almost every product that now uses electronics and it is even replacing many mechanical systems such
as weight scales and automobile controls.

The MOS LSI microcomputer market is already well established and new products using them are
being developed at an extraordinary rate. The Zilog Z-80 component set has been designed to fit into
this market through the following factors:

1. The Z-80 is fully software compatible with the popular 8080A CPU offered from several sources.
Existing designs can be easily converted to include the Z-80 as a superior alternative.

2. The Z-80 component set is superior in both software and hardware capabilities to any other micro-
computer system on the market. These capabilities provide the user with significantly lower hardware
and software development costs while also allowing him to offer additional features in his system.

3. For increased throughput the Z80A operating at a 4 MHZ clock rate offers the user significant speed
advantages over competitive products.

4. A complete product line including full software support with strong emphasis on high level languages
and a disk-based development system with advanced real-time debug capabilities is offered to enable
the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z-80 components. Any such system
consists of three parts:

I. CPU (Central Processing Unit)
2. Memory
3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform

the desired operations. The memory is used to contain instructions and in most cases data that is to be
processed. For example, a typical instruction sequence may be to read data from a specific peripheral
device, store it in a location in memory, check the parity and write it out to another peripheral device. Note
that the Zilog component set includes the CPU and various general purpose 1/O device controllers, while a
wide range of memory devices may be used from any source. Thus, all required components can be
vonnected together in a very simple manner with virtually no other external logic. The user’s effort then
becomes primarily one of software development. That is, the user can concentrate on describing his prob-
lem and translating it into a series of instructions that can be loaded into the microcomputer memory. Zilog
is dedicated to making this step of software generation as simple as possible. A good example of this is our

Page 13-4

- e)

assembly language in which a simple mnemonic is used to represent every instruction that the CPU can
perform. This language is self documenting in such a way that from the mnemonic the user can understand
exactly what the instruction is doing without constantly checking back to a complex cross listing.

Page 13-5
B Y IR ATIRITS

2.0 Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in figure 2.0-1. The diagram
shows all of the major elements in the CPU and it should be referred to throughout the following
description.

8-BIT
DATA BUS
DATA BUS
CONTROL
K :qNESg' < INTERNAL DATA BUS > ALU
INSTRUCTION
DECODE
&
= cPU
CONTROL cPU
CPU AND
REGISTER
SYSTEM CcPU STERS
CONTROL CONTROL
SIGNALS

ADDRESS
CONTROL

[17

#5V GND ¢

16-B1T
ADDRESS BUS

<

Z-80 CPU BLOCK DIAGRAM
FIGURE 2.0-1

2.1 CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 2.0-2
illustrates how this memory is configured into eighteen 8-bit registers and four 16-hit registers. All Z-80
registers are implemented using static RAM. The registers include two sets of six general purpose registers
that may be used individually as 8-bit registers or in pairs as 16-bit registers. There are also two sets of
accumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current instruction being
fetched from memory. The PC is automatically incremented after its contents have been transferred
to the address lines. When a program jump occurs the new value is automatically placed in the PC,
overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located
anywhere in external system RAM memory. The external stack memory is organized as a last-in first-
out (LIFO) file. Data can be pushed onto the stack from specific CPU registers or popped off of the
stack into specific CPU registers through the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many types of data
manipulation.

Page 13-6

g FIE ATEIIEITS
MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A . F A’ F’
B Cc B’ c
GENERAL
D E D’ E’ PURPOSE
REGISTERS
H L H’ L
INTERRUPT MEMORY
VECTOR REFRESH
1 R
INDEX REGISTER X
SPECIAL
INDEX REGISTER tY ELEJETSO'?EERS
STACK POINTER SP
PROGRAM COUNTER PC

Z-80 CPU REGISTER CONFIGURATION
FIGURE 2.0-2

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bit base address that
is used in indexed addressing modes. In this mode. an index register is used as a base to point to a
region in memory from which data is to be stored or retrieved. An additional byte is included in
indexed instructions to specify a displacement from this base. This displacement is specified as a two’s
complement signed integer. This mode of addressing greatly simplifies many types of programs,
especially where tables of data are used.

4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where an indirect call
to any memory location can be achieved in response to an interrupt. The [Register is used for this
purpose to store the high order 8-bits of the indirect address while the interrupting device provides the
lower 8-bits of the address. This feature allows interrupt routines to be dynamically located anywhere
in memory with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter to enable dynamic
memories to be used with the same ease as static memories. Seven bits of this 8 bit register are auto-
matically incremented after each instruction fetch. The eighth bit will remain as programmed as the
result of an LD R, A instruction. The data in the refresh counter is sent out on the lower portion of
the address bus along with a refresh control signal while the CPU is decoding and executing the fetched
instruction. This mode of refresh is totally transparent to the programmer and does not slow down the
CPU operation. The programmer can load the R register for testing purposes, but this register is normally
not used by the programmer. During refresh, the contents of the I register are placed on the upper 8 bits of
the address bus. '

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumu-
lator holds the results of 8-bit arithmetic or logical operations while the flag register indicates specific
conditions for 8 or 16-bit operations, such as indicating whether or not the result of an operation is equal
to zero, The programmer selects the accumulator and flag pair that he wishes to work with with a single
exchange instruction so that he may easily work with either pair.

Page 13-7

S

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit registers that
may be used individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called
BC, DE and HL while the complementary set is called BC*, DE’ and HL'. At any one time the programmer
can select either set of registers to work with through a single exchange command for the entire set. In
systems where fust interrupt response is required, one set of general purpose registers and an accumulator/
flag register may be reserved for handiing this very fast routine. Only a simple exchange commands need be
executed to go between the routines. This greatly reduces interrupt service time by eliminating the require-
ment for saving and retrieving register contents in the external stack during interrupt or subroutine process-
ing. These general purpose registers are used for a wide range of applications by the programmer. They also
simplify programming, especially in ROM based systems where little external read/write memory is
available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU -

communicates with the registers and the external data bus on the internal data bus. The type of functions
performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction-is fetched from memory, it is placed in the instruction register and decoded. The
control sections performs this function and then generates and supplies all of the control signals necessary
to read or write data from or to the registers, control the ALU and provide all required external control
signals.

Page 13-8
e Y FIEATEIICITS

= s IEATERITS

Page 13-9

3.0 Z-80 CPU PIN DESCRIPTION

-The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The 1/0 pins are shown
in figure 3.0-1 and the function of each is described below.

SYSTEM
CONTROL

CPU
CONTROL<

CPU
BUS
CONTROL

AgAis
(Address Bus)

DyD
(Data Bus)

M,
(Machine Cycle one)

MREQ
(Memory Request)

&
+5V
GND

27 30
- ——_—® Ag
31
19 IR
20 gy ™ A2
21 34 A3
- ————— Ay
-2] %._. Ag
6
= Ag
28 37 A
- ——’38 7 ADDRESS
8 - Ag BUS
<—l—~— .ﬂ_’ Ag
24 _ﬂ_» AIO
R '—‘—-*; A
A
16 Z-80 CPU 5™ 2
_ 16 — At
17
R —5——*-.' A14
2 F——— Ajg
2
25
R —
23
~————]
- 14
15 %o
6 12 Oy
o) 8 02
LI e D
29 7 3 DATA
R — ‘T’ D, 8US
o D5
ag——— D,

Z-80 PIN CONFIGURATION
FIGURE 3.0-1

Tri-state output, active high. A-A 5 constitute a 16-bit address bus. The
address bus provides the address for memory (up to 64K bytes) data
exchanges and for I/O device data exchanges. 1/O addressing uses the 8 lower
address bits to allow the user to directly select up to 256 input or 256 output
ports. Ag is the least significant address bit. During refresh time, the lower

7 bits contain a valid refresh address.

Tri-state input/output, active high. Do-D7 constitute an 8-bit bidirectional
data bus. The data bus is used for data exchanges with memory and I/O
devices.

Output, active low.ﬂ_l indicates that the current machine cycle is the OP
code fetch cycle of an instruction execution. Note that during execution
of 2-byte op-codes, M1 is generated as each op code byte is fetched, These
two byte op-codes always begin with CBH, DDH, EDH or FDH. M] also
occurs with IORQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the
address bus holds a valid address for a memory read or memory write
operation.

Page 13-10

= g rIEATEIRITS

—

I0RQ
(Input/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt Request)

NMI

(Non Maskable
Interrupt)

Tri-state output, active low. The IORQ signal indicates that the lower half of
the address bus holds a valid 1/O address for a 1/O read or write operation. An
I0ORQ signal is also generated with an M1 signal when an interrupt is being
acknowledged to indicate that an interrupt response vector can be placed on
the data bus. Interrupt Acknowledge operations occur during M 1 time while
1/0O operations never occur during M] time.

Tri-state output, active low. RD indicates that the CPU wants to read data
from memory or an 1/O device. The addressed 1/O device or memory should
use this signal to gate data onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data bus holds valid
data to be stored in the addressed memory or [/O device.

Output, active low. RFSH indicates that the lower 7 bits of the address
bus contain a refresh address for dynamic memories and the current MREQ
signal should be used to do a refresh read to all dynamic memories.

Output, active low. HALT indicates that the CPU has executed a HALT soft-
ware instruction and is awaiting either a non maskable or a maskable inter-
rupt (with the mask enabled) before operation can resume. While halted, the
CPU executes NOP’s to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the addressed
memory or 1/O devices are not ready for a data transfer. The CPU continues
to enter wait states for as long as this signal is active. This signal allows
memory or 1/O devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by 1/O devices. A
request will be honored at the end of the current instruction if the internal
software controlled interrupt enable flip-flop (IFF) is enabled and if the
BUSRAQ) signal is not active. When the CPU accepts the interrupt, an acknowl-
edge signal (JORQ during M time) is sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three different
modes that are described in detail in section 5.4 (CPU Control Instructions).

Input, negative edge triggered. The non maskable interrupt request line has a
higher priority than INT and is always recognized at the end of the current
instruction, independent of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location 0066yy. The program
counter is automatically saved in the external stack so that the user can return
to the program that was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a BUSRQ will override
a NML

= W IEATEEITS

Page 13-11

RESET

BUSRQ
(Bus Request)

BUSAK
(Bus Acknowledge)

Input, active low. RESET forces the program counter to zero and initializes
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register [= 00y

3) Set Register R = 00y

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high impedance state
and all control output signals go to the inactive state.

Input, active low. The bus request signal is used to request the CPU address
bus, data bus and tri-state output control signals to go to a high impedance
state so that other devices can control these buses. When BUSRQ is activated,
the CPU will set these buses to a high impedance state as soon as the current
CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to the requesting
device that the CPU address bus, data bus and tri-state control bus signals
have been set to their high impedance state and the external device can now
control these signals.

Single phase TTL level clock which requires only 2 330 ohm pull-up resistor
to +5 volts to meet all clock requirements.

Page 13-12
g HIEATIIKITS

Page 13-13

4.0 CPU TIMING

The 7Z-80 CPU executes instructions by stepping through a very precise set of a few basic operations.
These include:

Memory read or write
I/O device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from
three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of
external devices. The basic clock periods are referred to as T cycles and the basic operations are referred to
as M (for machine) cycles. Figure 4.0-0 illustrates how a typical instruction will be merely a series of
specific M and T cycles. Notice that this instruction consists of three machine cycles (M1, M2 and M3). The
first machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long (unless length-
ened by the wait signal which will be fully described in the next section). The fetch cycle (M1) is used to
fetch the OP code of the next instruction to be executed. Subsequent machine cycles move data between
the CPU and memory or 1/O devices and they may have anywhere-from three to five T cycles (again they
may be lengthened by wait states to synchronize the external devices to the CPU). The following para-
graphs describe the timing which occurs within any of the basic machirie cycles. In section 10, the exact
timing for each instruction is specified.

Machine Cycle

M1 M2 | m3
{OP Cade Fetch) {Memory Read) (Memory Write}

Instruction Cycle

BASIC CPU TIMING EXAMPLE
FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in figure 4.0-1
through 4.0-7. These diagrams show the following basic operations with and without wait states (wait states
are added to synchronize the CPU to slow memory or 1/O devices).

40-1. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 1O read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable Interrupt Request/Acknowledge Cycle
40-7. Exit from a HALT instruction

Page 13-14

g FIEATEIRKITS

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is placed on the
address bus at the beginning of the M1 cycle. One half clock time later the MREQ signal goes active. At this
time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory on
the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn off
the RD and MRQ signals. Thus the data has already been sampled by the CPU before the RD signal becomes
inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU uses this
time to decode and execute the fetched instruction so that no other operation could be performed at this
time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the RFSH
signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice
that a RD signal is not generated during refresh time to prevent data from different memory segments from
being gated onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read
of all memory elements. The refresh signal can not be used by itself since the refresh address is only guaran-
teed to be stable during MREQ time.

M1 Cycle
T T2 T3 Tq T
I (N U A U R VY B WY
AD ~ A15 PC 1 REFRESH ADDR. 1
wREa |\ /B I
RD T\ I
T gt [s SV B
il A | L _
DBO ~ DB7 ’L'_l\’.}*
RFSH T

INSTRUCTION OP CODE FETCH
FIGURE 4.0-1

Figure 4.0-1 A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. Dur-
ing T2 and every subsequent Tw, the CPU samples the WAIT line with the falling edge of . If the WAIT
line is active at this time, another wait state will be entered during the following cycle. Using this technique
the read cycle can be lengthened to match the access time of any type of memory device.

g T IEATEIRITS

Page 13-15

Mi Cycle -
e T, Tw T T, T4

A \ \ \ p U
AD ~ A15 1 PC REFRESH ADDR.)&
MREQ | \ / \ [-
RD] \ I
DBO ~ DB7 E:\h
i N

—] - N [[Y SN -
warr L _ ___] N VY R Y A A U S B L
RFSH \ [

INSTRUCTION OP CODE FETCH WITH WAIT STATES
FIGURE 4.0-1A

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (M1
cycle). These cycles are generally three clock periods long unless wait states are requested by the memory
via the WAIT signal. The MREQ signal and the RD signal are used the same as in the fetch cycle. In the case
of a memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be
used directly as a chip enable for dynamic memories. The WR line is active when data on the data bus is
stable so that it can be used directly as a R/W pulse to virtually any type of semiconductor memory.
Furthermore the WR signal goes inactive one half T state before the address and data bus contents are

changed so that the overlap requirements for virtually any type of semiconductor memory type will be met.

ft———— Memory Read Cycle -t Memory Write Cycle ———————~
T T, T, T T, T3
b i A S \ \ \ | —
A0 ~ A1S B MEMORY ADDR.) MEMORY ADDR. 1

wREG T N 71

WR (W [1

DATA BUS [in} { DATA OUT —
(DO~ 07) — v

war T U o T _.. _______

MEMORY READ OR WRITE CYCLES
FIGURE 4.0-2

Page 13-16
— = s IEATHKITS

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or write opera-
tion. This operation is identical to that previously described for a fetch cycle. Notice in this figure that a
separate read and a separate write cycle are shown in the same figure although read and write cycles can
never occur simultaneously.

T, T T T3 T

B 1 B [[

&b

A0 ~ A5

T
[\
I
e e]
L /

MEMORY ADDR.){

RD READ
CYCLE

DATA BUS 'ETYRY

(DO~ 07) —J

WR - / WRITE
CYCLE

DATABUS | f DATA OUT —

(DO~ 07)

JES L S I N AN VY A A O O O F

MEMORY READ OR WRITE CYCLES WITH WAIT STATES
FIGURE 4.0-2A

INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an 1/O read or I/O write operation. Notice that during 1/0 operations a single
wait state is automatically inserted. The reason for this is that during I/O operations, the time from when
the IORQ signal goes active until the CPU must sample the WAIT line is very short and without this extra
state sufficient time does not exist for an /O port to decode its address and activate the WAIT line if a wait
is required. Also, without this wait state it is difficult to design MOS 1/O devices that can operate at full
CPU speed. During this wait state time the WAIT request signal is sampled. During a read 1/O operation,
the RD line is used to enable the addressed port onto the data bus just as in the case of a memory read. For
I/O write operations, the WR line is used as a clock to the I/O port, again with sufficient overlap timing
automatically provided so that the rising edge may be used as a data clock. :

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line. The operation
is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.04 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is
sampled by the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQ
signal is active, the CPU will set its address, data and tri-state control signals to the high impedance state
with the rising edge of the next clock pulse. At that time any external device can control the buses to
transfer data between memory and 1/O devices. (This is generally known as Direct Memory Access [DMA]
using cycle stealing). The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles as is desired.
Note, however, that if very long DMA cycles are used, and dynamic memories are being used, the external
controller must also perform the refresh function. This situation only occurs if very large blocks of data are
transferred under DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted
by either a NMI or an INT signal,

= QI IEATEHIKIT?
Ty T2 Tw* T3 T

S \ LU g W e

AQ ~ A7 PORT ADDRESS 1

iORQ /

7 \ [

DATA BUS j__,‘lN‘

L LA VO S N A U A

WA 1 '

DATA BUS ~—g—ro—uf ouT

INPUT OR OUTPUT CYCLES
FIGURE 4.0-3
T Ty * Tw T3

L — \ \ \ 1
A0 ~ A7 1 PORT ADDRESS 1
iORQ \]
DATA BUS { IN \,
RD \ J
warr T T TN [T\ T
DATABUS —f—rl ouT
WA 1

Page 13-17

INPUT OR OUTPUT CYCLES WITH WAIT STATES
FIGURE 4.0-3A

* Automatically inserted WAIT state

READ
CYCLE

WRITE
CYCLE

Page 13-18

g iEATHKITS
Any M Cycle Bus Available States
Last T State Tx Tx Tx Tq

¢ L \ L A 1T
BUSRQ B i

Sample —% Sample/
BUSAK \ [
A0~ A15 b — _(
e — e ———] 3 —
MREQ, RD, }.___._.._____-___.___.._(
WR, IORQ, Floating
RFSH

BUS REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.04

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is
sampled by the CPU with the rising edge of the last clock at the end of any instruction. The signal will not be
accepted if the internal CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal
is active. When the signal is accepted a special M1 cycle is generated. During this special M1 cycle the JORQ
signal becomes active (instead of the normal MREQ) to indicate that the interrupting device can place an
8-bit vector on the data bus. Notice that two wait states are automatically added to this cycle. These states
are added so that a ripple priority interrupt scheme can be easily implemented. The two wait states allow
sufficient time for the ripple signals to stabilize and identify which I/O device must insert the response
vector. Refer to section 8.0 for details on how the interrupt response vector is utilized by the CPU.

Last M Cycle

T of Instruction w

Last T State T4 To To* LI T3
0 Y \ \ \ L \ \
L S S s 5 I
A0 ~ A15 Y PC | REFRESH
mi \ /
MREQ] L
[T \ |
DATA BUS {w)—
LY D U A O 0 A W I
RD

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.05

= s iEATEHEITE

Page 13-19

Figures 4.0-5A and 4.0-5B illustrate how a programmable counter can be used to extend interrupt

acknowledge time. (Configured as shown to add one wait state)

iORQ’

7432 Jo2RY
{10
PERIPHERAL)

> WAIT
7432 JO—m—1—+—
(TO cPU)
174504 l l

I0RQ —1»—DO—O LOAD DN/UP G N
74504
7415191 QD ——————-0
CK 7432
[O

A B C D .
M1 ~——O‘

!

+5V —AM— -

EXTENDING INTERRUPT ACKNOWLEDGE TIME WiTH WAIT STATE
FIGURE 4.0-5A

LAST T STATE OF AUTOMATIC WAIT USER WAIT
LAST M CYCLE OF \ \
L
/ \ /

INSTRUCTION T, I TW‘ { Tw* | T | T
o Vo \ /T \ /. \ / AN / \
INT ~\ l Rehniaiel V4
Ap-As X_ X
M1 \ /S
oRG \ /
IORQ" \ /
DATA BUS 7
WA'T::::::::::::::::\J’::/ _— - _— —
NORMAL ACKNOWLEDGE
TIME
ACKNOWLEDGE TIME WITH ONE
ADDITIONAL WAIT STATE

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE
FIGURE 4.0-5B

Page 13-20

I

HEATHKITS

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt and it can
not be disabled under software control. Its usual function is to provide immediate response to important
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a
normal memory read operation, The only difference being that the content of the data bus is ignored while
the processor automatically stores the PC in the external stack and jumps to location 0066,;. The service
routine for the non maskable interrupt must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an interrupt is
received (either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two
interrupt lines are sampled with the rising clock edge during each T4 state as shown in figure 4.0-7. If a non
maskable interrupt has been received or a maskable interrupt has been received and the interrupt enable
flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will then
be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. If both are
received at this time, then the non maskable one will be acknowledged since it has highest priority. The
purpose of executing NOP instructions while in the halt state is to keep the memory refresh signals active.
Each cycle in the halt state is a normal M1 (fetch) cycle except that the data received from the memory is
ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is active during
this time to indicate that the processor is in the halt state.

Last M Cycle Mt
Last T Time Ty T, T T4 T
v\ 1 AU | AU 1
O U e Ao O
AD ~ A15 1 PC 1 REFRESH [T~
i /
MREQ \ / \ |/
) \ /
RFSH L /
NON MASKABLE INTERRUPT REQUEST OPERATION
FIGURE 4.0-6
M1 -l M1 M1
T4 T, T, T3 Ta T T2
. I L 1 m! 1 A L
HALT T /
WNeor TN [T LTI T T T
NMI

HALT INSTRUCTION
1S RECEIVED
DURING THIS
MEMORY CYCLE

HALT EXIT
FIGURE 4.0-7

= Qs I=ATEIKITS

Page 13-21

5.0 Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU.
The instructions can be broken down into the following major groups:

Load and Exchange

Block Transfer and Search
Arithmetic and Logical

Rotate and Shift

Bit Manipulation (set, reset, test)
Jump, Call and Return
Input/Output .

Basic CPU Control

INTRODUCTION TO INSTRUCTION TYPES

o
-

The load instructions move data internally between CPU registers or between CPU registers and exter-

nal memory. All of these instructions must specify a source location from which the data is to be moved
and a destination location. The source location is not altered by a load instruction. Examplesof

load group instructions include moves between any of the general purpose registers such as move the data
to Register B from Register C. This group also includes load immediate to any CPU register or to any
external memory location. Other types of load instructions allow transfer between CPU registers and
memory locations. The exchange instructions can trade the contents of two registers,

A unique set of block transfer instructions is provided in the Z-80. With a single instruction a
block of memory of any size can be moved to any other location in memory. This set of block moves
is extremely valuable when large strings of data must be processed. The Z-80 block search instructions
are also valuable for this type of processing. With a single instruction, a block of external memory
of any desired length can be searched for any 8-bit character. Once the character is found or the end of the
block is reached, the instruction automatically terminates. Both the block transfer and the block search

instructions can be interrupted during their execution so as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other
general purpose CPU registers or external memory locations. The results of the operations are placed
in the accumulator and the appropriate flags are set according to the result of the operation. An
example of an arithmetic operation is adding the accumulator to the contents of an external memory
location. The results of the addition are placed in the accumulator. This group also includes 16-bit
addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory location to be rotated right or left
with or without carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right
or left with two digits in any memory location.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register
or any external memory location to be set, reset or tested with a single instruction. For example,
the most significant bit of register H can be reset. This group is especially useful in control applications
and for controlling software flags in general purpose programming.

The jump, call and return instructions are used to transfer between various locations in the user’s
.program. This group uses several different techniques for obtaining the new program counter address
from specific external memory locations. A unique type of call is the restart instruction. This instruction
actually contains the new address as a part of the 8-bit OP code. This is possible since only 8 separate
addresses located in page zero of the external memory may be specified. Program jumps may also
be achieved by loading register HL, IX or IY directly into the PC, thus allowing the jump address to
be a complex furction of the routine being executed. -

Page 13-22

R

g HEATEIKITS

The input/output group of instructions in the Z-80 allow for a wide range of transfers between
external memory locations or the general purpose CPU registers, and the external I/O devices. In
each case, the port number is provided on the lower 8 bits of the address bus during any 1/0O
transaction. One instruction allows this port number to be specified by the second byte ot the instruction
while other Z-80 instructions allow it to be specified as the contentof the C register. One major ad-
vantage ot using the C register as a pointer to thre /O device is that it allows different 1/O ports to
share common software driver routines. This is not possible when the address is part of the OP code
if the routines aye stored in ROM. Another feature of these input instructions is that they set the
flag register automatically so that additional operations are not required to determine the state of
the input data (for example its parity). The Z-80 CPU includes single instructions that can move
blocks of data (up to 256 bytes) automatically to or from any 1/O port directly to any memory location.
In conjunction with the dual set of general purpose registers, these instructions provide for fast
1/0 block transfer rates. The value of this /O instruction set is demonstrated by the fact that the
Z-80 CPU can provide all required tloppy disk formatting (i.c.. the CPU provides the preamble, address,
data and enables the CRC codes) on double density floppy disk drives on an interrupt driven basis.

Finally. the basic CPU control instructions allow various options and modes. This group includes
instructions such as setting or resetting the interrupt enable flip tflop or setting the mode of interrupt
response.

5.2 ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal CPU registers, external memory
or in the 1/O ports. Addressing refers to how the address of this data is generated in each instruction.
This section gives a brief summary of the types of addressing used in the Z-80 while subsequent sections
detail the type of addressing available for eacli instruction group.

Immediate, In this mode of addressing the byte following the OP code in memory contains the
actual operand.

OP Code } one or 2 bytes

Operand
ds dg

Exwmples of this type of instruction would be to load the accumulator with a constant, where the constant
is the byte immediately following the OP code. '

Immediate Extended. This mode is merely an extension of immediate addressing in that the two
bytes following the OP codes are the operand.

OP code one or 2 bytes

Operand | low order

Operand | high order

Examples of this type of instruction would be to load the HL register pair (16-bit register) with
16 bits (2 bytes) of data.

= g eI EATIHIKITS

Page 13-23

Modified Page Zero Addressing. The Z-80 has a special single byte CALL instruction to any of 8 locations
in page zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective
address in page zero. The value of this instruction is that it allows a single byte to specify a complete
16-bit address where commonly called subroutines are located, thus saving memory space.

OP Code | one byte

O Effective address is (b5 by by 000),

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a
displacement from the existing program to which a program jump can occur. This displacement is
a signed two’s complement number that is added to the address of the OP code of the following instruction.

OP Code Jump relative (one byte QP code)
Operand 8-bit two’s complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two

bytes of memory space. For most programs, relative jumps are by far the most prevalent type of

jump due to the proximity of related program segments. Thus, these instructions can significantly
reduce memory space requirements. The signed displacement can range between +127 and -128

from A + 2. This allows for a total displacement of +129 to -126 from the jump relative OP code address.
Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included
in the instruction. This data can be an address to which a program can jump or it can be an address
where an operand is located.

OP Code }one or two bytes

Low Order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from any location in memory to any other location,
or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand,
the notation (nn) will be used to indicate the content of memory at nn, where nn is the 16-bit address
specified in the instruction. This means that the two bytes of address nn are used as a pointer to a memory
location. The use of the parentheses always means that the value enclosed within them is used asa
pointer to a memory location. For example, (1200) refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains

a displacement which is added to one of the two index registers (the OP code specifies which index
register is used) to form a pointer to memory. The contents of the index register are not altered by this
operation.

OP Code
OP Code

Displacement Operand added to index register to form a pointer to memory

two byte OP code

—

Page 13-24

e A T E ATETKCITS

An example of an indexed instruction would be to load the conterits of the memory location
(Index Register + Displacement) into the accumulator. The displacement is a signed two’s complement
number, Indexed addressing greatly simplifies programs using tables of data since the index register
can point to the start of any table. Two index registers are provided since very often operations require
two or more tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as 1X and IY. To indicate indexed addressing the
notation:

(IX+d) or (1Y+d)

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this
value is used as a pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits of information that specify which
CPU register is to be used for an operation. An example of register addressing would be to load the
data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automatically
implies one or more CPU registers as containing the operands. An example is the set of arithmetic
operations where the accumulator is always implied to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a I6-bit CPU register pair (such as HL)
to be used as a pointer to any location in memory. This type of instruction is very powerful and
it is used in a wide range of applications.

OP Code }one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory
location pointed to by the HL register contents. Indexed addressing is actually a form of register indirect
addressing except that a displacement is added with indexed addressing Register indirect addressing
allows for very powerful but simple to implement memory accesses. The block move and search commands
in the Z-80 are extensions of this type of addressing where automatic register incrementing, decrementing
and comparing has been added. The notation for indicating register indirect addressing is to put
parentheses around the name of the register that is to be used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often
register indirect addressing is used to specify 16-bit operands. In this case, the register contents

point to the lower order portion of the operand while the register contents are automatically incremented
to obtain the upper portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set, reset and test instructions. These
instructions allow any memory location or CPU register to be specified for a bit operation through

one of three previous addressing modes (register, register indirect and indexed) while three bits in the OP
code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In
these cases, two types of addressing may be employed. For example, load can use immediate addressing
to specify the source and register indirect or indexed addressing to specify the destination.

= g s IS ATEHIITS

Page 13-25

5.3 INSTRUCTION OP CODES

This section describes each of the Z-80 instructions and provides tables listing the OP codes for every
instruction. In each of these tables the OP codes in bold type are identical to those offered in the 8080A
CPU. Also shown is the assembly language mnemonic that is used for each instruction. All instruction OP
codes are listed in hexadecimal notation. Single byte OP codes require two hex characters while double
byte OP codes require four hex characters. The conversion from hex to binary is repeated here for
convenience.

Hex Binary Decimal Hex Binary Decimal
0 = 0000 = 0 8 = 1000 = 8
1 = 0001 = 1 9 = 1001 = 9
2 = 0oto0 = 2 A = 1010 = 10
3 = 0011 = 3 B = 101t = 11
4 = 0100 = 4 C = 1100 = 12
5 = 0101 = 5 D = 1101 = 13
6 = 0110 = 6 E = 1110 = 14
7 = o111 = 7 F = 1y = 15

Z-80 instruction mnemonics consist of an OP code and zero, one or two operands. Instructions in
which the operand is implied have no operand. Instructions which have only one logical operand or those in
which one operand is invariant (such as the Logical OR instruction) are represented by a one operand
mnemonic. Instructions which may have two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the Z-80 CPU.
Also shown in this table is the type of addressing used for each instruction. The source of the data is found
on the top horizontal row while the destination is specified by the left hand column. For example, load
register C from register B uses the OP code 48H. In all of the tables the OP code is specified in hexadecimal
notation and the 48H (=0100 1000 binary) code is fetched by the CPU from the external memory during
M1 time, decoded and then the register transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination followed
by the source (LD DEST., SOURCE). Note that several combinations of addressing modes are possible. For
example, the source may use register addressing and the destination may be register indirect; such as load
the memory location pointed to by register HL with the contents of register D. The OP code for this
operation would be 72. The mnemonic for this load instruction would be as follows:

LD (HL), D

The parentheses around the HL means that the contents of HL are used as a pointer to a memory location.
In all Z-80 load instruction mnemonics the destination is always listed first, with the source following. The
Z-80 assembly language has been defined for ease of programming. Every instruction is self documenting
and programs written in Z-80 language are easy to maintain.

Note in table 5.3-1 that some load OP codes that are available in the Z-80 use two bytes. This is an
efficient method of memory utilization since 8, 16, 24 or 32 bit instructions are implemented in the Z-80.
Thus often utilized instructions such as arithmetic or logical operations are only 8-bits which results in
better memory utilization than is achieved with fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location
actually use three bytes of memory with the third byte being the displacement d. For example a load
register E with the operand pointed to by 1X with an offset of +8 would be written:

LD E, (IX +8)

Page 13-26

= gsEaTHKITS

The instruction sequence for this in memory would be:

Address A |DD

OP Code
A+l 5E

A+2| 08 Displacement operand

The two extended addressing instructions are also three byte instructions. For example the instruction to
load the accumulator with the operand in memory location 6F32H would be written:

LD A, (6F 32H)
and its instruction sequence would be:

Address A 3A) OP Code

A+1{ 32 | low order address

A+2 | 6F | high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instructions. The
instruction load register H with the value 36H would be written:

\ LD H, 36H
and its sequence would be:

Address A 26 | OP Code

A+l 136 | Operand

Loading a memory location using indexed addressing for the destination and immediate addressing for the
source requires four bytes. For example:

LD (IX - 15),21H
would appear as:

Address A DD

OP Code
A+1] 36

A+21 FI Qisplaceme,nt (-151in
signed two’s complement)
A+3] 21 operand to load

Notice that with any indexed addressing the displacement always follows directly after the OP code.

Table 5.3-2 specifies the 16-bit load operations. This table is very similar to the previous one. Notice
that the extended addressing capability covers all register pairs. Also notice that register indirect operations
specifying the stack pointer are the PUSH and POP instructions. The mnemonic for these instructions is
“PUSH™ and “POP.” These differ from other 16-bit loads in that the stack pointer is automatically decre-

mented and incremented as each byte is pushed onto or popped from the stack respectively. For example
the instruction:

Page 13-27
B JrIEATHKITS

PUSH AF

is a single byte instruction with the OP code of FSH. When this instruction is executed the following
sequence is generated:

Decrement SP

LD (SP), A

Decrement SP

LD (SP), F
Thus the external stack now appears as follows:

(SP) F [— Top of stack
(SP+1) A

SOURCE
EXT.
IMPLIED REGISTER REG INDIRECT INDEXED ADDR.] IMME.
) R A 5 c o 3 W L e | 80) | 0E) [ux s auy +aj] tanl |
oo | Fo [3a | 2
A Eo | o) 7 L o7s g 79 | 7a | e | 7c | | e | oaf s | | oge |2 n
57 | sf g g n
) bh | FO
B a7 | a0 [a1 | a2 | a3 | aa | a5 | 4 6 | 46 06
g d n
oD | FD
c aF | a8 | a9 | aa | a8 | ac | a0 | e € | a€ "3
d d n
oD | FD
REGISTER | D 57 | s0 | 51 | s2 | 53 | sa | 85 | s 56 | 56 *
. d d L]
o0 | fo
3 s | 58 | s | sa | s8 | sc | 5o | se SE | sE I3
d d n
oo | fo
H 67 | 6 | 6 | 62| 63 | 6 | & | 66 66 | 66 %
d d n
. o0 | b
L 6F | 68 | 69 | 6a | 88 | & | 6> | o€ 6€ | 6E 2
d d n
DESTINATION (HL) 7 | n |]l oal s 3%
"
REG
INDIRECT (8c) 02
o€} 2
o0 | oo | oo | oo | oo | oo | oo o
(1X+d) 77 70 kAl 72 73 74 75 d
g d g] d d d -
INDEXED
FD D FD FD FOD FD FD 36
1Y +d) 77 70 71 72 73 74 75 d
d d 3 d d d d :
2
EXT. ADDR | (nn} L3
n
i €0
47
IMPLIED
R €0
aF

8 BIT LOAD GROUP
ILDI
TABLE 5.3—-1

T ——

Page 13-28

HEATHKITS

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instructions utilize a
16-bit operand and the high order byte is always pushed first and popped last. That is a:

PUSH BC is PUSH B then C

PUSH DE isPUSH D then E

PUSH HL is PUSH H then L

POP HL isPOP LthenH
The instruction using extended immediate addressing for the source obviously requires 2 bytes of data
following the OP code. For example:

LD DE, 0659H
will be:

Address A 11} OP Code

A+l | 59 [Low order operand to register E

A+2 | 06 | High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears first after the
OP code.

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z-80. OP code 08H allows the
programmer to switch between the two pairs of accumulator flag registers while D9H allows the pro-
grammer to switch between the duplicate set of six general purpose registers. These OP codes are only one
byte in length to absolutely minimize the time necessary to perform the exchange so that the duplicate
banks can be used to effect very fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions operate
with three registers.

HL points to the source location.
DE points to the destination location.

BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may be used. The
LDI (Load and Increment) instruction moves one byte from the location pointed to by HL to the location
pointed to by DE. Register pairs HL and DE are then automatically incremented and are ready to point to
the following locations. The byte counter (register pair BC) is also decremented at this time. This instruc-
tion is valuable when blocks of data must be moved but other types of processing are required between each
move. The LDIR (Load, increment and repeat) instruction is an extension of the LDI instruction. The same
load and increment operation is repeated until the byte counter reaches the count of zero. Thus, this single
instruction can move any block of data from one location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes (1K = 1024)
long and it can be moved from any location in memory to any other location. Furthermore the blocks can
be overlapping since there are absolutely no constraints on the data that is used in the three register pairs.

The LDD and LDDR instructions are very similar to the LDI and LDIR. The only difference is that
register pairs HL and DE are decremented after every move so that a block transfer starts from the highest
address of the designated block rather than the lowest.

Page 13-29

gz ATEHIKITS
SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR. INDIR.
AF BC DE HL sP 1X (N% nn (nn) | (sP)
AF F1
01 ED
BC n 8 1 e
n n
1 ED
R DE n 58 D1
G n_ | o
's HL 21 2A E1
DESTINATION 7 n n
E n n
R | sp Fo oo | Fp | 3 | 5D
o F9 F9 n n
n n
DD DD
IX 21 2A DD
n n E1
n n
FD FD
Y 21 2A FD
n n E1
n n
ED ED ED DD FD
EXT. (nn) 43 | 53 2 73 22 22
ADDR. n n n n n n
n n n n n n
PUSH REG. (SP} F5 ¢ | ps ES DD FD
INSTRUCTIONS ™™ [\) E5 ES5
NOTE: The Push & Pop Instructions adjust POP
the SP after every execution INSTRUCTIONS
- 16 BIT LOAD GROUP
‘LD’
‘PUSH’ AND ‘POP*
TABLE 5.3-2
IMPLIED ADDRESSING
AF |BC . DE & HL | HL X 1y
AF 08
BC,
DE
D9
IMPLIED| &
HL
DE EB
REG. (sP) E3 DD FD
INDIR, E3 E3
EXCHANGES

‘EX’ AND ‘EXX’
TABLE 5.3—3

Page 13-30

= QI EATHKITS
SOURCE
REG.
INDIR.
(HL)
ED ‘LDI" ~ Load {DE }=#—(HL)
A0 Inc HL & DE, Dec BC
ED ‘LDIR," —~ Load (DE)-e—(HL)
REG BO Inc HL & DE, Dec BC, Repeat until BC = 0
DESTINATION INDI.RA (DE)
ED ‘LDD’ — Load (DE)-s—(HL)
A8 Dec HL & DE, Dec BC
ED ‘LDDR’ - Load (DE)-—(HL)
B8 Dec HL & DE, Dec BC, Repeat until BC = 0

Reg HL points to source
Reg DE points to destination
Reg BC s byte counter

BLOCK TRANSFER GROUP
TABLE 5.3—4

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI (compare and
increment) compares the data in the accumulator, with the contents of the memory location pointed to by
register HL. The result of the compare is stored in one of the flag bits (see section 6.0 for a detailed expla-
nation of the flag operations) and the HL register pair is then incremented and the byte counter (register
pair BC) is decremented.

The instruction CPIR is merely an extension of the CPI instruction in which the compare is repeated
until either a match is found or the byte counter (register pair BC) becomes zero. Thus, this single instruc-
tion can search the entire memory tor any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are similar
instructions, their only difference being that they decrement HL after every compare so that they search
the memory in the opposite direction. (The search is started at the highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are extremely
powerful in string manipulation applications. *

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the accumulator,
also listed are the increment (INC) and decrement (DEC) instructions. In all of these instructions. except

- INC and DEC, the specified 8-bit operation is performed between the data in the accumulator and the

source data specified in the table. The result of the operation is placed in the accumulator with the excep-
tion of compare (CP) that leaves the accumulator unaffected. All of these operations affect the flag
register as a result of the specified operation. (Section 6.0 provides all of the details on how the flags are
affected by any instruction type). INC and DEC instructions specify a register or a memory location as
both source and destination of the result. When the source operand is addressed using the index registers
the displacement must follow directly. With immediate addressing the actual operand will follow directly.
For example the instruction:

AND 07H

would appear as:

Address A E6 | OP Code
A+11 07 | Operand

Page 13-31

]
= T I EATEHIKITS

SEARCH

LOCATION
REG.
INDIR.
(HL)
ED ‘CPI
Al - Inc HL, Dec BC
ED ‘CPIR’, inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED ‘CPD’ Dec HL & BC
A9
ED ‘CPDR’ Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

BLOCK SEARCH GROUP
TABLE 5.3-5

Assuming that the accumulator contained the value F3H the result of 03H would be placed in the
accumulator:

Acc before operation 1111 0011 = F3H

Operand 00000111 =07H

Result to Acc 00000011 = 03H

The Add instruction (ADD) performs a binary add between the data in the source location and the
data in the accumnulator. The subtract {SUB) does a binary subtraction. When the add with carry is specified
(ADC) or the subtract with carry (SBC), then the carry flag is also added or subtracted respectively. The
flags and decimal adjust instruction (DAA) in the Z-80 (fully described in section 6.0) allow arithmetic
operations for:

multiprecision packed BCD numbers

‘multiprecision signed or unsigned binary numbers

muitiprecision two’s complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XUK) and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or carry flag,
These five are listed in table 5 3-7. The decimal adjust instruction can adjust for subtraction as well as add-
ition, thus making BCD arithmetic operations simple. Note that to allow for this operation the flag N is used.
This flag is set if the last arithmetic operation was a subtract. The negate accumulator (NEG) instruction
forms the two’s complement of the number in the accumulator. Finally notice that a reset carry instruction
is not included in the Z-80 since this operation can be easily achieved through other instructions such as a
logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five groups
of instructions including add with carry and subtract with carry. ADC and SBC affect all of the flags. These
two groups simplify address calculation operations or other 16-bit arithmetic operations.

Page 13-32

_ = g FIEATEIRIT?
L
SOURCE
REG.
‘REGISTER ADDRESSING INDIR.| INDEXED [IMMED.
A B | ¢ D E | H | L [(HL [(x+d) | aY+d)| n
DD [FD
‘ADD’ 87 | 8 | 8 |8 | 83 | 8 | 8 |8 |8 |86 cs
d d n
fop [FD
ADDWCARRY| 8F | 88 | 80 | 8a | 88 | 8 | 8D | 8 |8 |[8E CE
‘ADC’ ' d d n
‘ DD | FD
SUBTRACT 97 [9 | 91 | 92 | @3 | 94 | 95 [9% |9 9 D6
‘SUB' {d d n
’ DD | FD
SUBWCARRY | OF | 98 | 99 | 9A | o8 | oc | ep |9 |oE |of DE
“SBC’ : d d n
oD [FD
"AND’ A7 | A0 | a1 | A2 | A3 | Aa | A5 [A6 |As |As E6
d d n
oD | FD
XOR' AF | A | a9 | Aaa | AB | Ac | aD | AE [AE | AE EE
d d n
oD | FD
‘OR* B7 | Bo | B | B2 | B2 | B4 | BS [B6 |BS |86 F6
‘ - td d n
, DD | FD
COMPARE BF | B8 | 8o | BA | BB | BC | BD |BE |[BE |BE FE
‘P’ ~ |4 d n
DD | FD
INCREMENT | 3¢ | o4 | oc | 14 | 1c | 24 | 2c [38 f3¢ |24
INC’ d d
: DD FD
DECREMENT | 30 | o5 | oo | 15 | o | 25 | 20 |3 |35 |35
"DEC’ d d

8 BIT ARITHMETIC AND LOGIC

TABLE 5.3-6
Decimal Adjust Acc, ‘DAA’ 27
‘\\ Compiement Acc, ‘CPL’ 2F
! Negate Acc, 'NEG’ ED
(2's complement) 44

Complement Carry Flag, "CCF’ 3F

: Set Carry Flag, ‘SCF’ 37

GENERAL PURPOSE AF OPERATIONS
TABLE 5.3-7

Page 13-33

g s IE ATFIITS
SOURCE
Bc | DE | HL | sp [x| oty
HL | 09 | 19 | 20 | 39
“ADD’ ix | oo | op oD | DD
09 | 19 g | 29
, tv | F0 | FD FO FD
09 | 19 S| 30 29
DESTINATION

ADD WITH CARRY AND HL ED ED ED ED
SET FLAGS ‘ADC’ 4A 5A 6A 7A

SUB WITH CARRY AND HL ED ED ED ED

SET FLAGS ‘SBC’ 42 52 62 72
INCREMENT “INC’ 03 13 23 33 DD FD
‘ 23 23
DECREMENT 'DEC’ 0B 1B 28 3B bD FD
2B 28

16 BIT ARITHMETIC
TABLE 5.3—-8

ROTATE AND SHIFT

A major capability of the Z-80 is its ability to rotate or shift data in the accumulator, any general pur-
pose register, or any memory location. All of the rotate and shift OP codes are shown in table 5.3-9. Also
included in the Z-80 are arithmetic and logical shift operations. These operations are useful in an extremely
wide range of applications including integer multiplication and division. Two BCD digit rotate instructions
(RRD and RLD) allow a digit in the accumulator to be rotated with the two digits in a memory location
pointed to by register pair HL. (See figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed in almost
every program, These bits may be flags in a general purpose software routine, indications of external con-
trol conditions or data packed into memory locations to make memory utilization more efficient.

The Z-80 has the ability to set, reset or test any bit in the accumulator, any general purpose register
or any memory location with a single instruction. Table 5.3-10 lists the 240 instructions that are available
for this purpose. Register addressing can specify the accumulator or any general purpose register on which
the operation is to be performed. Register indirect and indexed addressing are available to operate on
external memory locations. Bit test operations set the zero flag (Z) if the tested bit is a zero. (Refer to
section 6.0 for further explanation of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z-80 CPU. A jump
is a branch in a program where the program counter is loaded with the 16-bit value as specified by one of the
three available addressing modes (Immediate Extended, Relative or Register Indirect). Notice that the jump
group has several different conditions that can be specified to be met before the- jump will be made. If
these conditions are not met, the program merely continues with the next sequential instruction. The
conditions are all dependent on the data in the flag register. (Refer to section 6.0 for details on the flag
register). The immediate extended addressing is used to jump to any location in the memory. This in-
struction requires three bytes (two to specify the 16-bit address) with the low order address byte first
followed by the high order address byte.

Page 13-34

e g EATHEITS
Source and Destination
) H Rotate
A B c D 3 H L] ML) X iy v d) A b - by Left Circutar
)
RLe| ce | ce | e8| ce| ce| cs| c8 | &8 | 20| &8 RLca | o7
07 00 Q1 02 03 04 05 06 d d Rotate
gGD 2% Right Circutar
mRe' | c8 | 8 | o8| ca | 8 | ce | 8 | c8 | 25 | K RRCA | oF
oF | 08 | 0 | oA | 08| oc | o0 | oF d ’
an =
R | e | c8 | o8 | ca | c8 | ca | e8| s | & | &5 aa | 17 Left
17 10 u 12 13 14 15 16 d d
LI T H
o0 | Fo Rotate
ol e =l alelal el s B
TYPE c8 cB
oF 1 B | 19 [1A B | | € |4 d RRA I ¥ Right
ROTATE :_)ED LED s
oR sLa| c8 | c8 | ce | c8 | ce | ce@ | c8 | ca -—— it
SHIFT 27 20 21 2 23 24 2% | 2 8 & o 9 Left arithmetic
% | %
DD
sRA'| cs | c8 | c8 | ¢8 | ce | cs | cs | cs | &5 | 2 shift
2% | 28 | 20 | 2a | 28 | 2¢c | 2 | 2 s |4 [] .—— Right Avithmetic
saL | o8 | e8| c8 | cs | o8 | s | s | s | 29| ER
0 3 | 3 | 3a | 38 | 3¢ | o | 3¢ Shift
e | g [] Right Logica
. €0
RLD £ o
= Rotate Digit
RO ED L !brb"! 1”7—"4’% Bof MUY otc
RRD'
67 acc |

Rotate Digit

(HL) Right ,

ACC

ROTATES AND SHIFTS
TABLE 5.3—-9

For example an unconditional Jump to memory location 3E32H would be:

Address A C3 1 OP Code
A+1| 32 | Low order address

A+2 | 3E | High order address

The relative jump instruction uses only two bytes, the second byte is a signed two’s complement dis-
placement form the existing PC. This displacement can be in the range of +129 to -126 and is measured
from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented by loading
the register pair HL or one of the index registers IX or I'Y directly into the PC. This capability allows for
program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction is
pushed onto the stack before the jump is made. A return instruction is the reverse of a call because the
data on the top of the stack is popped directly into the PC to form a jump address. The call and return
instructions allow for simple subroutine and interrupt handling. Two special return instructions have been
included in the Z-80 family of components. Thereturn from interrupt instruction (RETI) and the return
from non maskable interrupt (RETN) are treated in the CPU as an unconditional return identical to the OP
code C9H. The difference is that (RETI) can be used at the end of an interrupt routine and all Z-8Q peripheral
chips will recognize the execution of this instruction for proper control of nested priority interrupt handling.
This instruction coupled with the Z-80 peripheral devices implementation simplifies the normal return from
nested interrupt. Without this feature the following software sequence would be necessary to inform the
interrupting device that the interrupt routine is completed:

E gJrreAaTHKITS

Page 13-35

REG,
REGISTER ADDRESSING INDIR.| INDEXED
A B c D E H L (HL) | (iX+d) | (1Y+q)
BIT
DD FD
0 cB cB c8 cB cB cB cB | cB SB cB
47 40 41 42 43 44 45 46 d
46 46
DD FD
) cB c8 c8 cB c8 cB cB cB cB cB
4F 4 9 4B 4D 4E d d
8 4 4A ac 9 %
DD FD
2 c8 cB cB cB cB cB CB cB cB o
- 55 d
57 50 51 52 53 54 56 g g
D F|
3 cB cB cB or:] cB c8 cB cB 20 8
fre 5F 58 59 5A 58 sC 5D SE d d
TEST §E sE
/T DD FD
4 cB cB cB CB CB cB cB cB cs cé
67 0 61 2 65 66 d
6 6: 63 64 % &
D FD
5 cB cB cB c8 c8 cB cB c8 ok cB
6F 68 69 6A B 6C 6D 6E d d
6E 6EF
DD FD
6 cB CB cB cs CB cs ¢B cB CB CB
77 70 71 72 7 74 75 76 d d
3 76 75
FD
7 Jor: CB cB cB cB [e:] cB cB 830 CB
7 78 79 7A 78 7c D 7E d d
7€ 7E
DD FD
i cB c8 CB or:} cB cB cB cB CB CB
87 80 81 82 83 84 85 86 d d
86 86
D
1 CB CB c8 cB cB cB cs cB a8 EE
8F 88 89 8A 88 8C 8D BE d d
8E 8E
DD FD
2 c8 cB CB c8 cB cB CB cB cB CB
97 90 91 92 93 94 95 9 d d
96 96
DD
3 cB cB cB cB c8 cB cB c8 CB ES
RESET oF 98 99 9A 9B 9C 9D 9E d d
BIT 9E 9E
RES’ DI FD
RES" 1, cs | ce | c8 lcs | cB|ca | cas | cs |29 ED
A7 AQ Al A2 A3 A4 A5 A6 d d
A A6
5 cB cB cB CB cB cB cB cB a8 EE
AF A8 A9 AA AB AC AD | AE d d
AE AE
DD FD
6 cB cB cB cB cB CB c8 CB cB cB
B7 BO 81 B2 83 B84 B85 B6 d d
B6 86
FD
7 c8 cB cB cB c8 cB cB CB 85’ cB
BF 88 BY BA BB BC 8D BE d d
BE BE
DD FD
0 cB CB cB cB cB ce cB cB gs SB
c7 co [c2 c3 ca c5 [&3 ds ds
DD FD
1 c8 cB cB cB c8 c8 cB cB cs ¢s
CF c8 c9 CA cB cc cD CE de de
DB FD
2 CcB cB c8 cB cB cB cB cB c8 ce
D7 DO D1 D2 D3 D4 D5 D6 N ds
DD FD
3 CB CB cB cB cB c8 ce CB cB c8
SET DF D8 D9 DA DB BC DD DE d e %E
BIT 0
SET’ DD FD
4 CB cB cB cB cB cB CB CB ce cs
€7 E0 E1 €2 E3 E4 E5 E6 de e
DD FD
5 c8 cB cB cB cB cB cB cB cs c8
EF E8 E9 EA EB EC ED EE de &
DD FD
3 cB cs CB CB cB CB cB cB s cs
F7 FO F1 F2 F3 F4 F5 F6 s de
DD £D
7 or:] cB cB CB CB cB cB cB CB cB
FF F8 F9 FA FB FC FD FE 4o ¢

TABLE 5.3-10

BIT MANIPULATION GROUP

Page 13-36 -

g I EATHIKITS
Disable Interrupt — prevent interrupt before
routine is exited.
IDA n — notify peripheral that service
OUTn, A routine is complete

Enable Interrupt

Return

This seven byte sequence can be replaced with the two byte RETI instruction in the Z-80. This is important
since interrupt service time often must be minimized.

To facilitate program loop control the instruction DINZ e can be used advantageously. This two byte,
relative jump instruction decrements the B register and the jump occurs if the B register has not been decre-
mented to zero. The relative displacement is expressed as a signed two’s complement number. A simple ex-
ample of its use might be:

Address Instruction Comments
N, N+1 LDB, 7 ; set B register to count of 7
N+2toN+9 (Perform a sequence ,
of instructions) ; loop to be performed 7 times
N+10. N+ 11 DINZ -8 ;tojump from N+ 12 toN +2
+ s
N+12 (Next Instruction)
' CONDITION
UN- NON NON PARITY [PARITY | SIGN SIGN REG
COND. | CARRY | CARRY| ZERO ZERO |EVEN OoDD NEG POS B+0
c3 DA D2 CA C2 EA E2 FA F2
JumP 1P’ IMMED, nn n n n n. }.n n n n n
EXT. n n n 1n n n n n n
JUMP R’ RELATIVE | PC+e | 18 38 30 28 20
e-2 e2 "’ e2 e2 e-2
JUMP JP’ (HL) E9
JUMP gp’ REG. 1X) DD
INDIR. E9
JUMP P’ ay) FD
E9
cD ‘DC D4 cc c4 EC E4 FC F4
‘CALL’ IMMED. nn n n n n n n n n n
EXT. n n n n n n n n n
DECREMENT B,
JUMP IF NON RELATIVE | PCte 10
ZERO ‘DINZ’ . e2
RETURN REGISTER | (SP) co D8 Do cs co E8 EO F8 FO
‘RET’ INDIR. (SP+1)
RETURN FROM | REG, (SP) ED
INT ‘RETV INDIR. (sP+1)| 4D
RETURN FROM
NON MASKABLE | REG. {sP) ED
INT ‘RETN’ INDIR. (sP+1} | 45

NOTE—CERTAIN

FLAGS HAVE MORE

THAN ONE PURPOSE.

REFER TO SECTION

6.0 FOR DETAILS JUMP, CALL and RETURN GROUP

TABLE 5.3-11

Page 13-37

s TEATEIKITS

Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a single byte call to any
of the eight addresses listed. The simple mnemonic for these eight calls is also shown. The value of this in-
struction is that frequently used routines can be called with this instruction to minimize memory usage.

OpP
CODE

0000, [C7 ‘R8T O

0008 CF ‘RST 8’

0010, D7 ‘RST 16"

0018, | DF | .gs7 24

0020, E7 “RST 32°

©LWOMmMNOOPX rrepo

0028, | EF | st a0°

0030H F7 ‘RST 48’

o

0038, | FF. | ‘RST 56’

RESTART GROUP
TABLE 5.3—12

INPUT/OUTPUT

The Z-80 has an extensive sel of Input and Qutput instructions as shown in table 5.3-13 and table
5.3-14. The addressing of the input or output device can be either absolute or register indirect, using the C
register. Notice that in the register indirect addressing mode data can be transferred between the 1/0 devices
and any of the internal registers. In addition eight block transfer instructions have been implemented. These
instructions are similar to the memory block transfers except that they use register pair HL for a pointer to
the memory source (output commands) or destination (input commands) while register B ic used as a byte
counter. Register C holds the address of the port for which the input or output command is desired. Since
register B is eight bits in length, the 1/O block transfer command handles up to 256 bytes.

In the instructions IN A, n and OUT n, A the 1/O device address n appears in the lower half of the add-
ress bus (Ag-A5) while the accumulator content is transferred in the upper half of the address bus. In all reg-
ister indirect input output instructions, including block 1/0 transfers the content of register C is transferred
to the lower half of the address bus (device address) while the content of register B is transferred to the
upper half of the address bus.

Page 13-38

—— e A I T B AT IEIT®

SOURCE
PORT ADDRESS

IMMED.| REG.
INDIR,

(n) {c)

A o | ED
n- 78

B ED
40

C ED
48

INPUT “IN’

ED
50

E ED

58
INPUT

DESTINATION

OZ=-LrmuI00>r OmMD
o

H ED
60

L ED
68

‘INF — INPUT & ED
Inc HL, Dec B A2

“INIR'— INP, Inc HL, ED
Dec B, REPEAT IF B0 B2
REG, | (HL) BLOCK INPUT

INDIR COMMANDS
‘IND’—INPUT & ED

Dec HL, Dec B AA

‘INDR’—~INPUT, Dec HL, ED
Dec B, REPEAT iF B#0 BA

INPUT GROUP
TABLE 5.3—13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The NOPis a do-
nothing instruction. The HALT instruction suspends CPU operation until a subsequent interrupt is received,
while the DI and El are used to lock out and enable interrupts. The three interrupt mode commands set the
CPU into any of the three available interrupt response modes as follows, If mode zero is set the interrupting
device can insert any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified
mode where the CPU automatically executes a restart (RST) to location 0038H so that no external hardware
is required. (The old PC content is pushed onto the stack). Mode 2 is the most powerful in that it allows for
an indirect call to any location in memory. With this mode the CPU forms a 16-bit memory address where
the upper 8-bits are the content of register I and the lower 8-bits are supplied by the interrupting device.
This address points to the first of two sequential bytes in a table where the address of the service routine is
located. The CPU automatically obtains the starting address and performs a CALL to this address.

Address of interrupt 8— Pointer to Interrupt table, Reg.

. : I is upper address,
service routine Peripheral supplies lower address

Page 13-39

BLOCK _
> OUTPUT
COMMANDS

B grrEATEIRITS
SOURCE
REG.
REGISTER IND.
A B c Db | E Ho| Lo | O
immep.| (n) | D3
“n
‘ouT’
REG. | (c) | en | ep | e0 | eo | e | ED | ED
IND. 79 | 41 | a9 | &1 | 59 | 61 | 69
‘OUTI — QUTPUT REG. | (C) ED
Inc HL, Dec b IND. A3
‘OTIR’ — OUTPUT, Inc HL, | REG.| (C) ED
Dec B, REPEAT IF B0 IND. B3
“OUTD’ — OUTPUT REG. | (C) ED
Dec HL & B IND, AB
‘OTDR’ — OUTPUT, DecHL | REG. | (C) ED
& B, REPEAT IF B#0 IND. BB
~
PORT
DESTINATION
ADDRESS
OUTPUT GROUP
TABLE 5.3-14
‘NOP’ 00
‘HALT’ 76,
DISABLE INT‘(DI)' | F3
ENABLE INT ‘(EI’ | FB.
SET INT MODE 0 ED
MO’ 26 | 8080AMODE
SET INT MODE E
T DE £5 | CALLTO LOCATION 0038,
SETINTMODE2 | ED | INDIRECT CALL USING REGISTER
‘M2’ 5E | 1AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

MISCELLLANEOUS CPU CONTROL
TABLE 5.3-15

Page 13-40

—

Page 13-41

B0 FLAGS

Each of the two Z-80 CPU Flag registers contains six bits of information which are set or reset by
various CPU operations. Four of these bits are testable; that is, they are used as conditions for jump, call or
teturn instructions. For example a jump may be desired only if a specific bit in the flag register is set. The
tour testable flag bits are:

1) Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator. For examplie, the
carry flag will be set during an add instruction where a carry from the highest bit of the accumulator
is generated. This flag is also set if a borrow is generated during a subtraction instruction, The shift
and rotate instructions also affect this bit.

2) Zero Flag (Z) — This flag is set if the result of the operation loaded a zero into the accumulator. Other-
wise it is reset.

3) Sign Flag (S) — This flag is intended to be used with signed numbers and it is set if the result
of the operation was negative, Since bit 7 (MSB) represents the sign of the number (A negative
number has a 1 in bit 7), this flag stores the state of bit 7 in the accumulator.

4) Parity/Overflow Flag (P/V) — This dual purpose flag indicates the parity of the resuit in the accumulator
when logical operations are performed (such as AND A, B) and it represents overflow when signed
two’s complement arithmetic operations are performed. The Z-80 overflow flag indicates that the
two’s complement number in the accumulator is in error since it has exceeded the maximum pos-
sible (+127) or is less than the minimum possible (-128) number than can be represented in two’s
complement notation. For example consider adding:

+120 = 0111 1000
+105 = 01101001

C= 0 11100001 = -95 (wrong) Overflow has occured

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error.
For this case the overflow flag would be set. Also consider the addition of two negative numbers:

-5 = 1111 1011
-16 = 1111 0000
C= 1 11101011 = -21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an over-
flow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and it is
reset if it is odd.

There are also two non-testable bits in the tlag register. Both of these are used for BCD arithmetic. They are:

1) Half carry (H) — This is the BCD carry or borrow result from the least significant four bits of operation.

When using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a
previous packed decimal add or subtract.

2) Subtract Flag (N) — Since the algorithm for correcting BCD operations is different for addition or
subtraction, this flag is used to specify what type of instruction was executed last so that the

DAA operation will be correct for either addition or subtraction.

The Flag register can be accessed by the programmer and its format is as follows:

SI1Z | X|H|{XI|P/V[N]C

X means flag is indeterminate.

Page 13-42

= g IEATHKITS

Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table a ‘®* indicates
that the instruction does not change the flag, an ‘X’ means that the flag goes to an indeterminate state, a ‘0’
means that it is reset, a 1’ means that it is set and the symbol ‘4’ indicates that it is set or reset according to
the previous discussion. Note that any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the block search
instruction sets the Z flag if the last compare operation indicated a match between the source and the
accumulator data. Also, the parity flag is set if the byte counter (register pair BC) is not equal to zero. This
same use of the parity flag is made with the block move instructions. Another special case is during block
input or output instructions, here the Z flag is used to indicate the state of register B which is used as a byte
counter. Notice that when the 1/O block transfer is complete, the zero flag will be reset to a zero (i.e. B=0)
while in the case of a block move command the parity flag is reset when the operation is complete. A final
case is when the refresh or I register is loaded into the accumulator, the interrupt enable flip flop is loaded
into the parity flag so that the complete state of the CPU can be saved at any time.

Page 13-43

= griEATEIICITS

P

Instruction Cl|Z 4/ S|N|H Comments

ADD A,s: ADC As $1Eivisiofs 8-bit add or add with carry

SUBs:SBC A, s, CPs, NEG 1Vt 8-bit subtract, subtract with carry, compare and

negate accumulator

AND s 0OjtiPItiol1 } Logical operations

OR s; XOR s OjtiP|¢]|0]0 And set’s different flags

INC s e t|Vitio|ls 8-bit increment

DECm o t|Vitlis 8-bit decrement

ADD DD, ss tlelele|0|X 16-bit add

ADC HL.ss Titvitiolx 16-bit add with carry

SBC HL. ss $IEIVIE1]X | 16-bit subtract with carry

RLA; RLCA,RRA, RRCA {|e|olei0j0 Rotate accumulator *

RL m; RLC m: RR m; RRC m ttPitlolo Rotate and shift location s

SLA m:SRA m:SRL m

RLD, RRD o L PI¢iO|O Rotate digit left and right

DAA (Pt let Decimal adjust accumulator

CPL o(eie 0]] Complement accumulator

SCF Ijeje1e|0|0 Set carry

CCF t|®|®/®|0|X | Complement carry

IN 1, (C) ® $IPt|0]0 Input register indirect

INI; IND; OUTL; QUTD o IXIXIT|X] Block input and output

INIR;INDR;OTIR; OTDR o IXIXITIX Z=0if B+# 0 otherwise Z = 1

LDI, LDD o XIt|X|0]0 Block transfer instructions

LDIR, LDDR * XI0|X[0]0 P/V =1ifBC # 0, otherwise P/V =0

CPI, CPIR, CPD, CPDR ot IXI1]X Block search instructions

Z = 1if A= (HL), otherwise Z = 0
- P/V = 1 if BC # 0, otherwise P/V=0

LDA,I;LD A R o tiFF$|0|0 The content of the interrupt enable ilip-flop (IFF)

is copied into the P/V flag

BIT b, s o TIXIX|0]1 The state of bit b of location s is copied into the Z flag

NEG Sitiviglil g Negate accumulator

The following notation is used in this table:

Symbol Operation

C Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

4 Zero flag. Z=1 if the result of the operation is zero.

S Sign flag, $=1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result, If P/V
holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds overflow, P/V=1
if the result of the operation produced an overflow.

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator.

N Add/Subtract flag. N=1 if the previous operation was a subtract.

Hand N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the re-
sult into packed BCD format follpwing addition or subtraction using operands with packed BCD format.

$ The flag is affected according to the result of the operation.

. The flag is unchanged by the operation.

0 The flag is reset by the operation.

1 The flag is set by the operation.

X The flag is a “don’t care.”

\% P/V flag affected according to the overflow result of the operation.

P P/V flag affected according to the parity result ,f the operation.

r Any one of the CPU registers A, B, C, D,E ,Y,L.

5 Any 8-bit location for all the addressing modes allowed for the particular instruction. .

s§ Any 16-bit location for all the addressing modes allowed for that instruction.

i Any one of the two index registers IX or 1Y.

R Refresh counter,

n 8-bit value in range <0, 255>

nn 16-bit value in range <0, 65535>

m Any 8-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERA ION
s TABLE 6.0-1

Page 13-44

= QI IEATHKITS

Page 13-45
|
= s ATERITS

7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z-80 instructions set. The instructions are logically arranged
into groups as shown on tables 7.0-1 through 7.0-11. Each table shows the assembly language mnemonic
OP code, the actual OP code, the symbolic operation, the content of the flag register following the execu-
tion of each instruction, the number of bytes required for each instruction as well as the number of memory
cycles and the total number of T states (external clock periods) required for the fetching and execution of
each instruction. Care has been taken to make each table self-explanatory without requiring any cross refer-
ence with the test or other tables.

Page 13-46

= s iEATHKITS
Symbolic Flags OP-Code (I:Jfo' (l;‘foﬁd gl? i‘
Mnemonic Operation C|ZP/VS|N|H|[76 543 210 Bytes Cycles | Cycles | Comments
LDy r rer ¢|lelefefejo 01 T 1 1 1 4 L r Reg.
LDr,n r+n elejoje|eje [00 r 110 2 2 7 000 B
« n - 001 C
LD r, (HL) < (HL) eleleieieo|e (0]l r 110 1 2 7 010 D
LD r, (IX+d) 1+ (IX+d) eleojejefe|e |11 011 101 3 5 19 011 E
01 r 110 100 H
- d - 101 L
LD r, (IY+d) 1« (1Y+d) e(oiefe|e]|e |1l 111 101 3 5 19 111 A
01 r 110
- d =
LD (HL), r (HL) <1 ojejejeie|e (01 110 r H 2 7
LD (IX+d), r (IX+d) «r e|o|ejeioie (1] 011 101 3 N 19
01 110 r
- d -
LD (IY+d), r (IY+d) «r ®|e/fsieieie (1] 111 101 3 5 19
01 110 «
- d -
LD (HL), n (HL) «n eje/feieleie (00 110 110 2 3 10
-~ n Ed
LD (IX+d},n | (IX+d)«n olorefefoieo]ll 011 101 4 5 19
00 110 110
-~ d —
- n -
LD (IY+d),n | (IY+d)«n eleieiejeinil] 111 101 4 5 19
00 110 110
- d -
- n -
LD A, (BC) A~ (BC) ejele|e ® 100 001 010 | 1 2 77
LD A, (DE) A+ (DE) eleoio|e e |00 011 010 1 2 7
LD A, (nn) A < (nn) ele e]e e 100 111 010 3 4 13
- n -
- n -
LD (BC), A (BC)«A elejojele|e (00 000 010 1 2 7
LD (DE), A (DE) < A ele/e|[eo|eje 100 010 010 1 2 7
LD (nn), A (nn) « A e|e/e|[ej@je 00 110 010 3 4 13
-~ n —r
- n -
LD A1 A« o/ LIIFF$] O 0111 101 101 2 2 9
01 010 111 ¢,
LD A, R A«<R o| $]IFF ¢/ 0] 011 101 101 2 2 9
R 01 011 111
LDL A IT<A ¢le|e|leje|e 1] 101 101 2 2 9
01 000 111
LDR, A R« A efeol el e olelll 101 101 2 2 9
01 001 111

Notes: 1, 1 means any of the registers A,B,C,D,E, H, L

IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation:

= flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

t = flag is affected according to the result of the operation.

8-BIT LOAD GROUP
TABLE 7.0-1

Page 13-47

Op-Code No. No. No.
Symbolic P of of M of T
Maemonic Operation Clz /V S| N| H| 76 543 210 Bytes Cycles | States Comments
‘thdd,on | ddenn ele|e|e[*|e|00 ado 0o1 | 3 3 10 ad Pair
+~ n - 0o BC
<~ n - 01 PE
£ 1X, nn IX +nn ole[ejelejel1] 011 101 | 4 4 14 10 HL
06 100 001 11 Ssp
n -
- n -
1D Y. nn 1Y < nn a|efo|lefefe] 1l 111 101 4 4 14
00 100 001
- n -
- n - .
1.0 HL, (nn) H « (nn+1) e|[ojejeiele] 00 101 010 3 5 16
L« (nn) “ n -
- n -
11 g4, (nn) ddy «~(nmn+l) | efejefel ele|1]l 101 101 | 4 6 20
ddLv(nn) 01 ddl 011
- n -
“ n -
182 1X, (nn) Xy~ (n+l)] ool ool ele]ll 011 101 4 6 20
IXL*—(nn) 00 101 010
- n -
- n -
LD 1Y, (nn) IYy«-(ntl) | ofefejefololil 111 101 | 4 6 20
1Y, + (n) 00 101 010
- n -
- n -
133 (nn), HL {nn+1) « H ool efe] ol e| 00 100 010 3 5 16
(nn) L ~ n -
- n -
LD nn), dd (nn+1)~—ddH o|e|ejefofefll 101 101 4 6 20
(nn)~—ddL 01 440 011
- n -
- n -
Ly fon), IX (nn+1)*—IXH ele| ool olejll OIl 101 4 6 20
(nn) « IXy 00 100 010
- n =
- n -
L (an), 1Y (nn+1)'—!YH olejo el o o 11 111 101 4 6 20
(nn) - 1Y 00 100 010
- n -
- n -
11y 8P, HL SP«HL o|lefo|eleofofll 111 001 1 1 6
LD AP IX SP+1X o|o|[ofef efef11011101| 2 2 10
11 111 001
LD RPIY SP«1Y o|e|o|ef ofefll 111 101 2 2 10
11 111 001 qq Pair
FUSH qq (SP—Z)«qu olo|e|ef ef e 11 gq0 101 1 3 11 00 BC
(SP-1) + qqy 0t DE
PUSHIX (SP-2) —1X; | ole@f o] el @elo)11 011 101 | 2 4 15 10 HL
(SP-1) ‘--le,l 11 100 101 11 AF
PUSH LY (SP-2) 1Y | ofe|elej e @11 111 101 | 2 4 15
(SP-1) « 1Yy 11 100 101
FOF 4q quo—(SPH) o|ejoje| o e 11 qq0 001 1 3 10
qa = (5P)
POP X IXH«(SP'PI) elejeole| ofe11 011701 2 4 14
lXLO-(SP) 11 100 001
rOrly IYHF(SP-H) o|o|o|e| ofof 11 111 101 2 4 14
1Y, <GP i1 100 00t

PMotes: dd isany of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
{PAIR)y,;, (PAIR), refer to high order and low order eight bits of the register pair respectively.
H L __
Eg.BCy =C,AFL <A

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
4 flag is affected according to the result of the operation.

16-B1T LOAD GROUP
TABLE 7.0-2

Flags Op-Code J
T No. No. No.
Symbolic b of of M | of T
Mnemonic Operation VIS|NIH|76 543 210 Bytes Cycles | States Comments
EX DE, HL DE --HIL eieje|e (1] 101 O11 1 1 4
EX AF, AP AF -- AR eleieie |00 001 000 1 1 4
EXX (Bi}(:(“) oo ele]I 011 001 1 1 4 Register bank and
DE bk auxiliary register
H L bank exchange
EX (SP), HL H« (8P+1) ®|ele|e |1l 100 O1] 1 5 19
L~ (5P}
EX (SP), IX IXH~(5P+I) ®lefefe]l 011 101 2 6 23
X ~ sy 11 100 011
FX (SP), 1Y IY”w(SP«#l) e e lefe 1] 11l 10t 2 6 23
IYLH(SI’) 100 011
O
L1 (DEY — (11L) tielolofir 101 101 | 2 4 16 Load (HL) into
DE «~ DE+1 10 100 000 (DE), increment the
pointers and
HL o HL+} decrement the byte
BC - BCAp counter (BC)
LDIR (DEY « (HL) Ope {0y 0411 101 101 2 S 21 IfBC+#0
DE « DI+ 10 110 000 2 4 16 IfBC=0
HEL < HL+¢
BC «~ BC-1
Repeat until
BC =0
®
LhD (tDEY - (1L Pirefolo 11 101 101 2 4 16
DI~ Dr-| 10101 000
HL «- H1-t
BC - BCT
LDDR (DE)Y - (111 Gleiat ol 101 101 2 N 21 HBC+0
DI~ DE-} 10 111 000 2 4 16 IfBC=90
HL « HL-]
BC — B(-
Repeat until
BC =0
®
CP1 A - (HL) PP e 101 101 2 4 16
HL « HL+] 10 100 001
BC « B(-)
©
CPIR A~ (HI) Plrpp e 11101 oy 2 5 21 IfBC # 0 and A # (HL)
HL - HL+1 10 110 001 2 4 16 IfBC=0orA =(HL)
BC —~ BC-
Repeat until
A= (HL) or
BC =0
@
CPD A - (HL) TN b 1ot 100 2 4 16
HL «- HI.-1 10 101 001
BC -~ BC-1
@
CPDR A~ (HL) WLyt 1 101 101 2 5 21 lfBC#OandA#(HL)
HI — HL-1 10 il 001 2 4 16 IfBC=0o0rA=(HL)
BC ~ BC-1
Repeat until
A =(HL) or
BC =0
Notes: (D P.v flag is O if the result of BC-1 = 0. otherwise P/V = |
@ ZRagaslitA = (HL), otherwise Z =
Flag Notation: e = flag not affected, 0 = flag reset, | = flag set, X = flag is unknown,
t = flag is affected aceording to the result of the operation.
EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP
TABLE 7.0-3

= I EATEHKITS

Page 13-49

Flags Op-Code
. [No. No. No.
Symbolic / of of M of T

Mnemonic Operation CIZ{VISIN|H|[76 543 210 Bytes Cycles | States Comments

ADD A, r A A+r tlt|Vvi{t)ojt j10][o00] r 1 1 4 r Reg.

ADD A, n AeA+n tfelvitiofs |11[0o0] 130 | 2 2 7 gg? g

-ono- 010 D
ADD A, (HL) A~ A+(HL) |t|tlvitio]|tji0]000] 110 1 2 7 011 E
ADD A, (IX+d) A=A+ (X+d) |t 11 |V{t|o]s {11 011 101 | 3 5 19 }8? :f

10 110 i A

- d -
ADD A, (1Y+d) A«~A+dY+d) [t {1 {VIit]o(t |11 111 101 3 5 19

10 110
ADC A, s A-A+s+CY[t 2|V t|0]s sisany of r, n,
SUB s AeA-s vl vis|i]s (HL), (IXed),

B (IY+d) us shown for

SBC A,s AcA-s=-CYit{tiVvit|1}s ADD instruction

AND s Ae—A A s Oty P|1]0]1

OR s A—A V s O(tiPJtjojo The indicated bits

- replace the 000 in

XOR s AcAes OprjPiaofo the ADD set above.

CPs A~s [A 3 I I

INC r rer+t eltfVvitjo|t]oo ¢ [T00]| 1 1 4

INC (HL) HL)y—(HLy+1je |1 Vit|0 [t [oo t1o[100]) | 1 3 1

INC (1X+d) (IX+d) «- |t [VIitof 1 ory 1o 3 6 23

(TX+d)+1 00 110[100]
. d o
INC (1Y +d) (1Y +d) — el IVItIO It 111 1ol 3 6 23
Ay +1 00 110100
- d .

DECm mem-1 e[Vt]} (Ga1) m is any of r, (HL),
(IX+d), (1Y +d) as
shown for INC.
Same format and
states as INCL
Replace 100 with
101 in OP code.

Notes: The V symbol in the #/V flag column indicates that the P/V flag contains the overflow of the result of the

operation Similarly the P symbol indicates panty. V= L meansoverflow, V = 0 means not overflow, P = |
means parity of the resultis even, P = 0 meany panty of the resalt is odd.

Flag Notation: e = flag not affected. 0 = Nag reset, | = flag set, X = flag is unknown,
1 = flag is affected according to the result of the aperation.

8BIT ARITHMETIC AND LOGICAL GROQUP

TABLE 7.04

Page 13-50

e A TR ATEIRITS

i

Flags Op-Code .
P No. No. No.
Symbolic / of of M of T .
Mnemonic Operation Cl|ZI VIS|N|[H|76 543 210 Bytes Cycles | States Comments
DAA Converts acc. PP tIPIt e {00 100 111 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
B with packed
BCD operands
CPL A<ZA elolefelr|1]00 101 111 | 1 1 4 Complement
i accumulator
« (one’s complement)
NEG A—0-A PPe VIt e 1l 101 101 2 2 8 Negate acc. (two’s
01 000 100 complement)
CCF CY ~CY tleleflej0|X]00 121 111 | 1 l- 4 Complement carry
) . flag
f SCF CY 1 I[eje|lef0]0]|00 110 111 1 1 4 Set carry flag
NOP No operation |e|e/e]|e e e {00 000 000 | 1 1 4
it HALT CPUhalted |e|e[e|e|e|el01 110 110 | 1 1 4
DI IFF <0 olefejejefe!1] 110 011 1 1 4
: El IFF « 1 e|ojeieiofe |11 111 011 1 1 4
’ MO Setinterrupt e e|e|e|e|e |11 101 101 | 2 2 8
mode 0 01 000 110
IM1 Set interrupt e/ele|sie|e|1] 101 101 2 2 8
mode | 01 010 110
M2 Set interrupt el efe|e|efe i1l 101 101 2 2 8
mode 2 01 011 110
Notes: IFF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

$ = flag is affected according to the result of the operation.

| , GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
TABLE 7.0-5

= s

Page 13-51

No. No. No.
Symbolic Flags Op-Code of of M of T
Mnemonic Operation Cl|Z P/V SN |H|76 543 210 Bytes Cycles | States Comments
ADD HL, s5 HL +« HL+ss tjelele 0 IX 00 ssl 001 1 3 11 8 Reg.
00 BC
ADCHL, ss | HL~HL+ss+CY[t | ¢{ V|t [0 {x |11 101 101 | 2 4 15 (1)(1) gf
01 ss1 010 1 SP
SBC HL, ss HL<HL-ss-CY |31 ¢l VIt |1 [X]11 101 101 2 4 15
01 ssO0 010
ADD IX, pp IX—IX+pp [t|efe[e]|0 [X{11 011 101 2 4 15 PP Reg.
00 ppl 001 00 BC
01 DE
10 IX
11 sp
ADD 1Y x 1IY<IY+1r tle|le]e]|O [X]11 111 101 2 4 15 e Reg.
00 rrl 001 00 BC
01 DE
10 1Y
11 Nid
INC ss ss + ss + 1 eloe|lele|e |00 ssO 011 1 1 6
INCIX IX<IX+1 eleofelejo ioil]l O11 101 2 2 10
00 100 011
INC 1Y IY <« 1Y + 1 eielojeje joil]l 111 101 2 2 10
00 100 011
DEC ss ss «— ss - 1 ejefefe|e |0|00 ssl 011 1 1 6
DEC IX IX+~IX-1 ¢iolojeoje (eil]l OII 101 2 2 10
00 101 011
DECIY IY «1Y -1 oleofleloie o] 11! 101 2 2 10
00 101 011
Notes: ss is any of the register pairs BC, DE, HL, SP

pp is any of the register pairs BC, DE, 1X, SP
rr s any of the register pairs BC, DE, 1Y, SP.

Flag Notation:

16-BIT ARITHMETIC GROUP

TABLE 7.0-6

© = flag not affected, 0 = flag reset, | = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

Page 13-52

= JrEATHKITS
Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation VIS|N|H[76 543 210 Bytes Cycles | States Comments
RLCA H olef0 00 000 111 1 1 4 Rotate left circular
kA ’A- 9 accumulator
RLA .I.7 -— o. ofe{0]0]00 010 111 1 1 4 Rotate left
A accumulator
RRCA -—..v—mz elefofl0]|00 001 111 1 1 4 Rotate right circular
A accumulator
RRA —.7——0 . elefofoloo 011 111| 1 1 4 Rotate right
A accumuiator
RLCr Pltf0o|0[11 001 011 2 2 8 Rotate left circular
00 r register r
RLC (HL) Pls|0|O]11 001 O11 2 4 15 r Reg.
oo[o00]110 000 B
RLC (IX+d) [—] Plt|ojoft1 o11 101} 4 6 23 8‘1)(1) CD
1 (HL), (X+d), (1Y +d) 11 ml 011 011 E
«~ d - 100 H
101 L
[000]11
) 0000010 111 A
RLC (1Y+d) Pits]ofof11 111 101 4 6 23
11 003 01t
- d -
oo[000]110
RLm _ plelolo [o10) Instruction format and
("Ld states are as shown
oot e v for RLC,m. To form
H new OP-code replace
RRCm Pitioto [000]of RLC,m with
m = r, (HL). (1X+d), (1Y +d) shown code
RRm .7 — o-l Pltsjo]o
m = r (HL) {1X+d), (1Y+d)
SLAm T = dfes plsfo]o
m 2, (HLL (1X+d). (1Y+d)
SRAm [Pltfoo| (@
m = (HL). (1X+d), (1Y+d)
SRLm o7 _—w 0 Plt]jo]O
m =1, (HL), (1X¢d). (1Y+d)
RLD Al b g [dou pltlofo]11 101 101] 2 5 18 Rotate digit left and
L] 01 101 111 right between the
accumulator
[and location (HL).
RRD A [o P{t{o}o |11 101 101] 2 s 18 The content of the
01 100 i11 upper half of the
accumulator is
unaffected

Fiag Notation:

® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

ROTATE AND SHIFT GROUP

TABLE 7.0-7

HEAfI‘I—IKIT@ |

Page 13-53

Flags OpCode
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation V| S{N|H|76 543 210 Bytes Cycles | States Comments
BIT b, r Z+T, X] X 1111 001 011 | 2 2 8 T Reg.
01 b T 000 B
BITb, (HL) | Z—(HL), x| x|of1}11 001 011 2 3 12 8‘1)(1) 1C>
01 b 110 o1 | E
BIT b, (IX+d) Z»—(I)(*'-d)b XEX[o]1431t 011 101 4 S 20 100 H
11 001 011 101 L
111 A
- d =
01 b 110 b Bit Tested
BIT b, (1Y+d) Z<~(1Y+d)h X Xjoj1}11 111 101 4 S 20 000 0
001 1
1 011
11 00 010 2
- 4 = 011 3
01 b 110 100 4
101 s
110 6
111 7
SETb, r rb-r—l e|le|efe{li 001 O11 2 2 8
mE
SETb, (HL) | (HL) «1 elefe|e]|11 001 011} 2 4 15
o] » 110
SET b, (IX+d) | (IX+d), -1 elejo|e]ll 011 10! 4 6 23
11 001 011
- 4 -
11] b 110
SET b, (1Y+d) (lY'l'd)b*-l ele|lofejll 111 101 4 6 23
il 001 01t
- d -
1 v 110
RES b, m s+ 0 To form new OP-
m=r, (HL) code replace [11]
(I)’(+d) ’ of SET b,m with
(Y+d) [i0). Flags and time

Notes: The notation Sy indicates bit b (0 to 7) or location s.

Flag Notation:

o = flag not affected, 0 = flag reset, | = flag set. X = flag is unknown,

t = flag is affected according to the result of the operation.

BIT SET, RESET AND TEST GROUP
TABLE 7.0-8

states for SET
instruction

Page 13-54
B g H IS ATEIIITS

Flags Op-Code
; P No. No. No.
Symbolic / of of M of T
Mnemonic Operation ClZ| VIS|N{H|76 543 210 Bytes Cycles | States’ | Comments
JP nn PC < nn o|e|e|ejeiaf11 000 011 3 3 10
- n —
-~ n - Condition
JP cc, nn If conditioncc)] ¢| e |o |e e |ol 1]l cc 010 3 3 10 NZnon zero
is true PC «nn, e n N 00t { Z zero
otherwise = 010 | NCnon carry
continue - r 0il | C carry
i 100 } PO parity odd
H 101 | PE parity even
e 110 | P sign positive
o JRe PC~PC+e slefoejele|e|00 011 000 2 3 12 111 } M sign negative
o - e-2 -
JRC,e IfC=0, efejeje|ele 00 111 000 2 2 7 If condition not met
continue
- a2 —
IfC=1, 2 3 12 If condition is met
PC — PC+e
: JRNG, e IfC=1, olofetoleateloo 110 000 2 2 7 If condition not met
L continue
i - e-2 -
i@ If C=0, 2 | 3 12 If condition is met
PC—PC+e
L JRZe Ifz2=0 oje]e|e|efe|00 101 0OO| 2 2 7 it condition not met
continue
) - g2 -
ifz=1, 2 3 12 If condition is met
PC~PC+e
N JRNZ, e Ifz=1, ejele|eia|ef00 100 000| 2 2 7 It condition not me¢
continue 2
- -2 -
IfZz=0,) 2 3 12 1f condition met
PC—PC+e
JP (HL) PC ~HL e|ojojeflefej]l 10] 001 1 i 4
JP (1X) PC +1X o|eje|efoafei]] 011 101 2 2 8
11 101 001
JP (1Y) PC 1Y o|o|o|e|lefle] 11 111 101 2 2 8
11 101 001
DINZ,e B~ B-1 eleieolelelel 00 010 000 2 2 8 B=0
IfB=0,
. - e-2 -
continue
IfB #0, 2 3 13 IFB#0
PC—PC+e

Notes: e represents the extension in the relative addressing mode.
e is a signed two’s complement number in the range <-126, 129>

e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of e.

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

JUMP GROUP
TABLE 7.0-9

