
Heathkit® Manual

for the

DIGITAL COMPUTER

Model H8
OPERATION 595-2014-02

HEATH COMPANY
BENTON HARBOR. MICHIGAN 49022

Copyright © 1977
Heath Company

All Rights Reserved
Printed in the United States of America

Page 2

TABLE OF CONTENTS

INTRODUCTION. .. 3

TEST ROUTINES
Initial Test Routine 4
Memory Test Routine 9

TROUBLESHOOTING
Precautions for Troubleshooting 15
Troubleshooting Charts 17

OPERATION
Introduction 25
Modes of Operation .. 26

Decimal Point Operation 26
Split Octal Display 27

Use of Front Panel 28
Register Mode .. 28
Memory Mode 28
Cancel 30
Loading and Dumping Data. 30
Executing a Saved Program. 31
Inputting and Outputting 31

THEORY OF OPERATION
System Description 32
CPU Circuit 33
Front Panel (Control Circuit) 36
Power Supply 38
Instruction Set .. 39

SYSTEM CONSIDERATIONS
Memory Map 56
I/O Port Map 57
Bus Functional Pin Definitions 57

System Configurations 58

APPENDIX
Source Program for the Memory Test Routine .. 61
The Functions of a Computer 63
The 8080 Central Processor Unit 68

Specifications 90

Semiconductor Component Number Index 91

Semiconductor Part Number Index 92

CIRCUIT BOARD X-RAY
VIEWS , (Illustration Booklet Page 5)

SCHEMATIC Fold-in

WARRANTY Inside front cover

CUSTOMEN. SERVICE Inside rear cover

Page 3

INTRODUCTION

NOTE: Before you proceed, you must have at least one
memory circuit board installed in your Computer.

Your H8 Digital Computer is an a-bit microcomputer
that uses the popular aD80A microprocessor. The
complete, low-cost, hobbyist Computer consists of an
assembled and tested central processing unit, exclu­
sive front panel, and a power supply capable of sup­
porting the H8 and many accessories.

The front panel includes a i6-key keyboard. four
status lamps, and a 9-digit octal display for reading
and altering memory and register contents. Also in­
cluded in the front panel design is a lK ROM monitor.

The CPU features 7-level vector interrupt capability,
the standard 8080 instruction set, a fully buffered bus
requiring no additional drivers, and 64K of memory
addressing.

The monitor features automatic memory sizing and
input/output initialization upon power-up, and load
and dump routines which eliminate the need for boot
strap and loader programs. Single instruction opera­
tion is also featured for testing and debugging pro­
grams. The monitor remains active during program
execution to continuously monitor the status of the
registers and memory.

Your Computer requires some additional memory be­
fore it is capable of operating. If you wish to com­
municate with the Computer through a terminal de­
vice, you must install a serial or parallel I/O interface.
If no terminals are desired, programs can be entered
and executed through the front panel keyboard.

The Computer uses a 50-line bus oriented design with
ten locations which can be used for memory, parallel
I/O interface, serial I/O interface, and other options.

OPERATION NOTES:

1. Do not remove or install circuit boards or com­
ponents with the power on.

2. Always position the CPU circuit board in the P2
location.

3. Do not install circuit boards in the P10 location.
This location is for expansion only.

4. Locate I/O circuit boards from the P9 location
toward the front.

5. Locate memory circuit boards from the P3 loca­
tion toward the back.

6. Locate circuit boards in alternate positions for
improved ventilation. As more circuit boards
are added. the power supply voltage will de­
crease, thus decreasing the dissipation in the
circuit board regulators. Therefore, the remain­
ing locations can be used without overheating.

7. Do not restrict ventilation. The H8 is convection
cooled. Therefore the air vents, top and bottom.
should not be obstructed.

8. Keep the low/normal switch in the "NORM"
position until you are positive the line voltage is
low.

Page 4

TEST ROUTINES

The purpose of the "Test Routines" is to verify that
your H8 Computer is working properly. Therefore, it
is not necessary, at this time, to have a working know­
ledge of your Computer. If, at any time during the
"Test Routines," you fail to obtain the proper resu Its,
refer to the "Troubleshooting" section.

INITIAL TEST ROUTINE

This routine performs an initial check on your H8
Computer. A series of nine character messages will be
displayed on the front panel LED's. The number of
messages and the delay between them is variable.

The routine is entered in machine language through
the front panel starting at address 40100. Remember
to always enter a 6-digit address. To enter address
40100, you must enter 040100.

The following chart will help you begin to enter the
"Initial Test Routine." You will be given detailed
instructions and examples of each step as the H8 is

KEYS PRESSED/RESULT

turned on; the memory mode is entered: and the loca­
tion is addressed, altered, and checked.

Press the keys in the "Keys Pressed/Result" column
in a sequence from left to right as shown. The "Dis­
play" column shows the display you will observe on
the front panel LED's.

NOTE: In the following chart, X=random number.

Refer to Pictorials 6-1 and 6-2 (Illustration Booklet,
Pages 1 and 2) for the location of the front and rear
panel features.

DISPLAY

Power switch ON (on rear panel).
A medium beep; random display . xxx xxx xxx

• A short beep; all decimal points
light.

•••••• A short beep as you enter each digit and a
medium beep as each 3-digit octal number
is completed. When you enter the sixth
digit, the decimal points go out.

xxx. XXX. XXX.

040 100 XXX

Page 5

KEYS PRESSED/RESULT DISPLAY

A short beep; the decimal points
040 100 XXX

scan from right to left.

A short beep as you enter each digit

liB. and a medium beep when the 3-digit
040 101 XXX octal number is completed. The mem-

ory address increments one location.

•
A short beep; the memory address
decrements one location; the contents 040 100 076
of address 040 100 are displayed in
the DATAiREGISTER LED's.

• A short beep; the memory address 040 101 XXX
increments one location.

A short beep as you enter each digit

111111 and a medium beep when the 3-digit 040 102 XXX
octal number is completed. The mem-
ory address increments one location.

• A short beep; the memory address
decrements one location; the contents 040 101 002
of address 040 101 are displayed in
the DATA/REGISTER LEO·s.
NOTE: You can alter the contents of
the memory location if an error
has been made. For example: If you
accidentally entered 003 at location
040 101, you can alter the contents
by pressing 002 if you are in the
alter mode (scanning decimal points).

ik'e;h' "It'"-mode, pm' the

• A short beep; the memory address
040 102 XXX increments one location.

A short beep you enter as each digit

1111 II and a medium beep when the 3-digit
040 103 XXX octal number is completed. The mem

ory address increments one location.

Page 6

•• •
A short beep as you enter each digit
and a medium beep when the 3-digit
octal number is completed. The mem
ory address increments one location.

II • II
A short beep as you enter each digit
and a medium beep when the 3-digit
octal number is completed. The mem-
my address increments one location.

Continue entering the 3-digit octal numbers in the
"Contflnts" r:olumn. The results will be the same as in
the previous chart; a short beep as you enter each digit
and a medium beep when the 3-digit octal number is
completed. The memory address increments one lo­
cation. If you made an error, press the - key and then
enter the correct 3-digit octal number.

040 104 XXX

040 105 XXX

MEMORY ADDRESS CONTENTS MEMORY ADDRESS CONTENTS

040105 006 040140 131
040106 004 040141 040
040107 041 040142 005
040110 170 040143 302
040111 040 040144 112-

040112 021 040145 040
040113 013 040146 076
040114 040 040147 062
040115 016 040150 315
040116 011 040151 140
040117 171'\ 040152 002
040120 022 040153 076
040121 043 040154 062
040122 023 040155 315 _.
040123 015 040156 05::1
040124 302 040157 000
040125 117 040160 076
U4U12t:i 040 040101 062
040127 016 040162 315
040130 003 040163 140
040131 076 040164 002
040132 377 040165 303
040133 315 040166 105
040134 053 040167 040
040135 000 040170 377
040136 015 040171 262
040137 302 040172 270

Page 7

MEMORY ADDRESS CONTENTS

040173 272
040174 275
040175 377
040176 222
040177 200
040200 377
040201 237
040202 244
040203 377
040204 272
040205 230
040206 377
040207 220
040210 326
040211 302
040212 377
040213 275
040214 272
040215 271
040215 271
040217 373
040220 271
040221 240
040222 377
040223 236
040224 376
040225 362
040226 236
040227 376
040230 362
040231 236
040232 376
040233 362

Page 8

•
•

KEYS PRESSED/RESULT

A short beep; the scanning
decimal points will go out.

A short beep; the left six
decimal points light.

A short beep; the decimal points will
go out.

A short beep; the left six
decimal points will scan
from right to left .

••••••

•

A short beep as you enter each digit
and a medium beep as each 3-digit
octal number is completed. The
decimal points continue to scan.

A short beep; the scanning
decimal points will go out.

A short beep; the "Initial
Test Routine" will execute.
At the end of the fourth display,
the speaker will beep twice and
the routine will repeat.

II. Press these keys simultaneously.
A medium beep and the
routine will stop executing.

DISPLAY

040 234 XXX

X.x.X. x.x.x. XXX

xxx XXX Pc

XXX XXX Pc

040 100 Pc

040 100 Pc

!..fDur HB
15 up Rnd

runn lng
r-~ r--I r--I

XXX xxx xxx

Page 9

MEMORY TEST ROUTINE

The following test routine will exercise a 4K or 8K
block of memory originating at 8K (040000). This
routine is entered through the front panel and func­
tions as follows: The B register is compared with
memory. The HL register pair contains the address
being tested. To initialize the routine; 000 Is written
into all memory locations being tested, the B register
is set to 000, and the HL register pair is set to the
starting address. The HL register pair is incremented
to the ending address and each location is compared
with the B register. The B register is then incremented
to 001 and each memory location is incremented and
compared with the B register. This process continues
until the B register is incremented to 377. The process
described above then repeats.

If the contents of the memory location that's address
is in the HL register pair does not correspond with the
value in the B register, the routine will halt, the

KEYS PRESSED/RESULT

• A short beep; all decimal
points light.

speaker will "beep", and control will return to the
front paneL You can then use the front panel func­
tions to isolate the failure.

NOTE: You cannot test the entire 4K or 8K block of
memory with the "Memory Test Routine." Locations
040000 to 040100 are reserved to support the monitor
program and the uppermost 8010 bytes (057260 to
057377 for 4K and 077260 to 077377 for 8K) are re­
served for the stack. Therefore, only locations 040100
to 040160 are occupied by the "Memory Test
Routine." Refer to the "Memory Map" under "System
Considerations. "

The test routine is entered through the front panel.
The method of entry and the resulting display will be
the same as the "Initial Test Routine." X=random
number.

DISPLAY

XXX XXX XXX

1111 liB 1111
A short beep as you enter each 040 100 XXX
digit and a medium beep as each
3-digit octal number is completed.
When you enter the sixth digit,
the decimals points go out.

A short beep; the decimal points 040 100 XXX
scan from right to left.

1111 •
A short beep as you enter each digit
and a medium beep when the 3-digit 040 101 XXX
octal number is completed. The mem-
ory address increments one location.

Page 10

KEYS PRESSED/RESUL T

• II II
A short beep as you enter each
digit and a medium beep when the
3-digit octal number is completed.
The memory address increments one
location.

II II II
A short beep as you enter each
digit and a medium beep when the
3-digit octal number is completed.
The memory address increments one
location.

II II •
A short beep as you enter each digit
and a medium beep when the 3-digit
octal number is completed. The mem-
ory address increments one location.

II II II
A short beep as you enter each digit
and a medium beep when the 3-digit
octal number is completed. The mem-
ory address increments one location.

Continue entering the 3-digit octal numbers in the
"Contents" column. The results will be the same as in
the previous chart; a short beep as you enter each
digit, a medium beep when each 3-digit octal number
is completed. The memory address will increment
one location. If you make an error, press

the. key and then enter the correct 3-digit octal

number.

NOTE: The contents of the next memory location (040
105) depends upon the amount of memory installed
on your memory board. If you have a 4K board, use
057. If you have an BK board, use 077.

DISPLAY

040 102 XXX

040 103 XXX

040 104 XXX

040 105 XXX

MEMORY ADDRESS CONTENTS MEMORY ADDRESS CONTENTS

040 105 057(4K) 040 113 043
077(8K) 040 114 302

040 106 066 040 115 106
040 107 000 040 116 040
040 110 315 040 117 000
040 111 147 040 120 000
040 112 040 040 121 052

Page 11

MEMORY ADDRESS CONTENTS MEMORY ADDRESS CONTENTS

040122 101 040143 040
040123 040 040144 303
040124 004 040145 121
040125 064 040146 040
040126 176 040147 172
040127 270 040150 254
040130 312

r--------~-- -----
040131 135

040151 300
040152 173

040132 040 040153 255
040133 166 040154 311
040134 000
040135 315
040136 147
040137 040
040140 043
040141 302
040142 125

KEYS PRESSED!RESUL T DISPLAY

A short beep; the scanning 040 155 XXX
decimal points will go out.

• A short beep; all decimal
040 155 XXX

points light.

••• •• II A short beep as you enter each digit 040 100 041
and a medium beep as each 3-digit
octal number is completed. When
you enter the sixth digit, the
decimal points go out.

• A short beep; the memory address 040 101 160
increments one location.

Page 12

•

•
•

KEYS PRESSED!RESUL T

Hold down the • key; the memory

address will continuously increment.
Check the contents to be sure the
routine is entered correctly; release

the. kev at location 040 154.

If you find an error, jlfCSS the key

and enter the correct 3-digit octal

number; press the
exit ALTER.

key again to

A short beep; the left six decimal
points light

A short beep; the decimal points
will go out.

A short beep; the left six decimal
points will scan from right
to left.

1111 •• 1111

•

A short beep as you enter each digit
and a medium beep as each 3-digit
octal number is completed. The
decimal points continue to scan.

A short beep; the scanning
decimal points will go out.

A short beep; the left six
decimal points light.

DISPLAY

Continuously increments.

xxx XXX Change contents.

XXX. XXX. XXX

XXX XXX Pc

XXX XXX Pc

040 100 Pc

040 100 Pc

XXX. XXX. XXX

Page 13

KEYS PRESSED/RESULT DISPLAY

II A short beep; the decimal
XXX XXX bC points will go out.

II A short beep; the "Memory Test
Routine" will execute.

If the routine executes successfully, the B register (left
3 digits) will increment from 000 to 377. The routine
is then complete and may be halted (press the

and. keys simultaneously). When

the routine successfully runs from 000 to 377,

proceed to the "Operation" section.

If the routine fails to execute, the speaker will sound
and the B register (left 3 digits) will display the mem­
ory content where the test failed. The HL register pair

(press • and then II) will display the

memory address where the test failed.

LEAST SIGNIFICANT r DATA DIGIT DJ

D2

Da
D4
D5

MOST SIGNIFICANT { D6
DATA DIGIT D7

Memory failures usually fall into two categories: data
and address. A data failure constitutes a particular
number or group of numbers from 000 to 377 that
cannot be written into or recalled from memory. This
type of failure may be due to faulty data buffers, a
solder bridge, or defective cells in a memory chip.
Since there are eight memory IC's, one for each bit of a
byte, it is possible to write a combination of bytes at
the address where the test routine failed to determine
which, if any, of the memory IC's are at fault. If the
memory IC's are interchanged between bits, the diffi­
culty should move with the faulty IC. Be cautious
when interchanging memory IC's, since these IC's are
MOS devices. The following chart will help you lo­
cate each memory IC.

LOWER4K UPPER 4K

ICI14 ICI06
ICl15 ICI07
IC1l6 ICI08

IC1l7 ICI09
IC1l8 ICllO
ICl19 ICIII

ICl20 IC1l2
ICl21 IC113

Page 14

Address faults are the most difficult to isolate. They
may be caused by solder bridges between address
lines on the circuit board or by a faulty memory Ie.
When address lines are shorted together (held high or
low), the CPU cannot access the memory locations
requested. Often, more than one address will access
the location. Therefore, recalling how the "Memory
Test Routine" functions, you can sec that n given
memory location will be incremented too often.

If the "Memory Test Routine" fails, try to write the
current number in the B register (left 3 digits) into that
memory location. If this number can be written into
memory, the fault is usually address related.

Although address faults are difficult to locate, a pat­
tern will be evident when you examine all address
failures. While displaying the HL register pair, press

the • key after you have checked each failure.

The routine will execute to the next failure. The most
pmcticaJ approach for locating an address failure is to
inspect the circuit board for mechanical faults (solder
bridges, no solder connections, etc.) and then substi­
tute memory IC's, one at a time, until you locate the
problem.

If the "Memory Test Routine" fails to operate at all,
proceed to "Chart 2" in the "Troubleshooting" sec­
tion.

Page 15

TROUBLESHOOTING

1.

IMPORT ANT NOTICE

All Heath computer hardware and software products were designed to work
together as a complete system. Proper operation can be assured only when the
computers are used with Heath designed or approved accessories. Heath does
not assume the responsibility for improper operation resulting from custom
interfacing, custom software, or the use of accessories not approved bv Heath
Company.

The CPU circuit board assembly has been wired and tested at Heath Company. If
it malfunctions during the gO-day warranty period, return the complete circuit
board assembly to Heath Company or a Heathkit Electronic Center. It will be
promptly repaired and returned. Individual replacement parts are not supplied
under warranty. DO NOT attempt to service this circuit board assembly yourself
during the warranty period; to do so voids the warranty.

For out-of-warranty circuit hoards, you can have them repaired by Heath Com­
pany (or a Heathkit Electronic Center], or you can purchase individual replace­
ment parts to do your own service.

The troubleshooting information for your Computer is presented in a series of
test charts. If a particular part is mentioned (0115 for example) as a possible
cause, check that part to see that it is installed and/or wired correctly. Read the
following paragraphs carefully before you begin troubleshooting.

PRECAUTIONS FOR TROUBLESHOOTING

Be cautious when testing transistors and
integrated circuits. Although they have almost
unlimited life when used properly, they are
much more vulnerable to damage from
excessive voltage and current than other circuit
components.

2. Be careful so you do not short adjacent pins
together on the mother board when making vol­
tage measurements. If the probe slips, for exam­
ple, and shorts pin 1 and pin 2, it may damage
one or more components.

Page! 16

3. Do not remove any components or circuit boards
while the Computer is turned on.

4. When you make repairs to the Computer, make
sure you eliminate the cause as well as the effect
of the trouble. If, for example. you find a dam­
aged resister, be sure you find out what [wiring
error, etc.) caused the resistor to be damagt:u. If
the cause is not eliminated, the replacement re­
sistor may also become damaged when the
ComplltAf i!': put hack into operation.

5. Refer to the "X-Ray Views" and "Schematic
Diagram" to locate the various components.

6. The following symbols and procedures are used
in the troubleshooting charts:

JVEsl, Follow the "YES" arrow when you obtain
"v/ the proper result or condition.

rS>
o

Follow the "NO" arrow when you do not
obtain the proper result or condition.

This symbol indicates a bus pin connec­
tion.

This symbol indicates a wire connection to
a circuit board.

• N!O means non-operative. If a component is
NIO, be sure to check the associated cir­
cuitry for wiring errors, assembly errors,
solder bridges, etc. on customer-assembled
units. Also, when wiring errors, solder
bridges, etc. are listed as a possible cause of
trouble, this does not apply to factory­
assembled units.

• Unless called for, pulse width and pulse
shape are not measured. Only the excursion
between TTL high and TTL low states is
important for these tests.

H=TTL high (+2V minimum)

T.=1'TT. low (+.RV mInimum)

• A logic probe may be used instead of an
oscilloscope for all measurements. Where
noted, a logic probe is preferred instead of
an oscilloscope.

In an extreme case where you are unable to resolve a
difficulty, refer to the "Customer Service" informa­
tion inside the rear cover of the Assembly Manual.
Your Warranty is located inside the front cover of
your Assembly Manual.

CHART 1

Proceed to Chart 3.

TROUBLESHOOTING CHARTS

Check fuse Fl and AC wiring.
IC120 i3 NIO.

3. LE0111 is N/O.

Disconnecllhe yellow wire at [QJ . Do
it until you are in·

Q119 or len1 is NIO.

1. Wiring error from ~ to bus pin

@.
2. CPU circuit board is N/O.

IC107 is N/O.

Page 17

1. Wiring error.
2. Solder bridge on the Control Cir­

cuit Board.

Proceed to Chart 2.

Page 18

CHART 2

NOTE: Chart 2 pertains only to the Memory Circuit
Board.

1. Remove IC123 from its soc-
ket on the Memory Circuit ~ ,. Wiring eROf.

Board. This IC will be
~

2. Solder bridge on the bus.

reinstalled later. 3. CPU Cirruit Board is NIO.

2. ION lamp (LED114) is off.

~
~ pulaes are present at IC105 pin S> Address pulses are present al

~ 8 and IC114 through IC121 pin 10 IC104 pin 8 on the Memory Circuit
on the Memory Circuit Board. Board.

~e~ ~
1. Check fOf 8K jumper wire on the

~ Memory Cirruit Board.
2. Address pulses present at le1 03

pin 7.

~E:7

MEMW pulses present at IC102 ~ pins 14, 16,and18andatpin80lall
memory IC's. ~

~
MEMR pulses present at IC102 pin ~
12. NO

~
Data pulses present at IC 122 pins ~
3,5,7.,9, 12, 14, 16, and 18. NO

~
Address pulses present at IC101 f~ pins 3, 5, 7, 9,12,14,16, and 18and
IC102 pins 3, 5, 7, and 9. ~
~

1. ReinstalllC123 on the Memory

~ Circuit Board.
2. ION lamp (LED114) is on.

~
The Memory Circuit Board is operat-
ing. Proceed to Chart 3.

1. IC104 on the Memory Circuit
Board is NIO.

2. A j2 is not present at @

1. le103 or IC104 is N/O.
2. Pulses not present at bus

pins@ ,8 ,®.
3.@) low.

1. IC102 is N/O.

2. MEMW ptJlses nol present at
bus pin @ .

1. IC102 is N/O.
2. MEMR pulses not present at bus

pin ~ .

1. IC122 is NIO.
2. Data Ilulses not present at bus

pins @ Ihrough @ .

1. IC10l or IC102 is N/O.

2. Address flulses not present at
bus pins @ through ~ .

1. IC123 is N/O.
2. One or more memory IC's are

N/O.

CHART 3

1. Remove IC112 from its soc-

kel. This IC will be reinstal- S>0
led later.

2. MON lamp (LED113) goes
out.

1. ReinslalIIC112.
2. Interrupt pulses present at [f]

(IC112 pin 3).

Proceed to Chart 5.

Proceed 10 Chart 4.

Page 19

D~ulses not present from bus pin
~. Check wire harness.

IC107 is NJO.

Page 20

CHART 4

I ~_~ ___ (_IC_l_12_B,-Pi_n_3r)_iS_h_i9_h_· __ ~I~LI-~---(-1C_l_12_B.-Pi_n_3.)_iS_IO_W_· ____ ~I~
~~ L----_-----iI

1. IC112 is N/O.

2. Wiring error.

2 msec clock pulse present at ICl 02
pin,1.

IC102 pin 9 is high.

1. Hold reset and weck ICl 12 pin
1.

2, ICl12 pin 1 is high.

ICl12 is N/O.
Proceed to Chart 6.

110 360 write pulses present at ~ S> lOW ~Ises not present from bus
IC102 pin 13. (Logic probe recom- NO lOW pulses present at ICll0 pin2. NO pin <,gy . Check wire harness.

mended.) L...--------J-;--" v~t" L,:------~

~
1. IC102 is N/O.
2. Wiring error.

4>2 clOCk pulses present at bus pin
@.

IC103 or IC109 Is NiO.

IIC102 is NfO.

1. Hold reset and check [BJ 2>
(!Q104B pin 5). NO

2. lBJ (IC104B pin 5) is low.

IC106 is N/O.
Proceed to Chart 6.

V
360 address pulses present
ICll0 pin 1.

ICI 10 is NfO.

1. Wiring error.
2. Short un bus.

1. Reset not present at bus pin

@'
2. IC111 or 0119 is NIO.
3. Wiring error.

1. IC104, IC105, or ICll1 is NIO.

2. At, through A, not present from
bus pins @ through @ .
Check wire tlarness.

Page 21

I\.RT 5

I I I All d·]S>J" Check for digit pulses from IC119 All digits are out. NO) ________________ ~ Igits have at least one segment N'on"\
. _ for each digit that does not have at
'------:~:---:-----'~ Ion. least one segment on. 'I' I.....-------,-~---.,.-ES -----' '---_-----J

Data pu Ises not present at bus pins

f<i) , fi> , W ' and
~ . Check wire harness.

-'\. ~ ,--D_a_ta_p_U_ls_e_s_p..,.rese __ n-;-t _at_IC_'_'_9_
p
_in_s NO. > L_D_at_a_

p
_u_ls_es_

p
_r..,.e_se_n_t.,..a_t_IC_"_B_Pi_n_s NO _ 10, 11, 12, and 13. -../ 4,5, 12, and 13.

~ ~ L-___________ --J

IC11B is N/O.

361 write pulses present at IC110 ~ 1. ICttO or tCttt is NiO.

2. A., from bus pin ~ not pre-

sent. Check wire harness. L-p_in_6_. ______ ~~--------~~
~ L--__________________ --J

15 VDC present at IC119 pin 16. I~LI-IC-'2-0-iS-N-I-O-.-------.....

J yES

Digit segments A, S, D, and Fare
functioning.

DigHsegmentsC,E.G,andthedec- ~
imal point are functioning. ~

I Proceed to Chart 6.]

1. IC117 or 0115 through 0118 is

N/O.

2. DHhrough 01 from bus pins
I.M1 through @ not pre·

sent. t;heck wire harness.

361 write pulses present at IC116 ~
pin 9. ~

Data pulses present at IC116 pins ~
3,6, II, and 14. NO

L-----...:----.-------I

~ I 0111 through Q114 is NIO.

1. ICll0 or IC111 is NIO.

2. A., from bus pin @ not pre­
sent. Check wire harness,

1.ICl16iSN/O.

2. O;"';hrough Do from bus pins
"!.QJ through @ not pre­

sent. Check wire harness.

Page 22

CHART 6

All keys except the SI key are tunc- S>
tioning. NO

~.,----..I

~~

360 read pulses present at IC113

~
1. IC110 is N/O.

pins 1 and 19. (Logic probe recom- 2. lOR pulses from bus pin i§>
mended.) not present. Wiring error.

Key encoder IC114 generates code ~[
according to the Key Table. ~1._IC_1_1_4_iS_N_I_O_. _____ ----'

~
Key encoder le115 generates code ~ IC 115 i5 NIO.
according to the Key Table. ~ __________ ~

~
ICl13 is NIO.

1. Remove IC112. This IC will
be reinstalled later. ~IIC106 is N/O.

2. Execute reset. ~L ___________ ~

3. IC106 pin 2 is low.

1. Reconnect the wire to [Q] .
2. Execute reset.
3. [Q] is high.

I Proceed to Chart 7. [IC112 is N/O. 1
The following Key Tables give the output states of
ICll4 and ICll5 when a particular key is pressed.

H = TTL high (+2 V minimum) L = TTL low (+.8 V
maximum).

KEY TABLES

KEY ICll5 PIN
PRESSED

KEY IC114 PIN
PRESSED

6 7 9 14 5 7 9 14

NONE H H H H NONE H H H H

8 H H H L <P H H H L

9 H H L L 1 H H T. L

+ H L H L 2 H L H L

- H L L L 3 H L L L

* L H H L 4 L H H L

I L H L L 5 L H L L

L L H L 6 L L H L

• L L L L 7 L L L L

CHART 7

TEST ROUTINE

040100 000
040101 000
040102 303
040103 1nn

040104 040

1. Enter the Test Routine.
2. Set the program counter to

040100.
3. Repeatedly press the SI key.
4. The program counter should in­

crement from 040100 through
040102 and then return to
040100.

~ The program counter remains at ~I Proceed to Chart 8.
~ 040100whentheSlkeyispressed. ~.

LI_p_u_ls_e_s_p_res_'_"_"_L ",_. L_I_C.,-1_1_2_p_in_4_·_--..JI:S>IIC100 i" N/O.

~
I
L

_p_u_ls_e_s_p_re_s_e_nt..,.a_t_I_C-:-1_1_2_p_in_5_'_--I1011Ci08 IS N/O.

~
IC112 is NjO.

Speaker sounds when key entries ~ g1.msec pulse present at ICl12 pin ~IIC103 or IC104 is NIO.
are made. ~ ~.

Your Computer is operating. Pro­
ceed to the "Operations" section.

1.IC112isN/O.
2. Wiring error.

Page 23

Page 24

CHART 8

1. Execute reset.
2. IG108 pin 5 is high and pin 8 is

low.

~
1. Set the program counter to

040100.
2. Press the SI key.
3. Pulses present at [Q] (IG112

pin 8).

,. Wiring error between [Q] and
5102-2.

~IIC108 is NIO.

::S>I Pulses present at IGlOO pin 2.

~ I Pulses present at IC112 pin 5.

~

1~IIC106 is NIO.

1S>IIC108 is N/O.

IICllO is N/O.

Page 25

OPERATION
This section of the Manual explains features and basic
functions of your H8 Digital Computer. An in-deptb
discussion on exactly how to perform the various
front panel functions in writing a program is con­
tained in the HB Software Reference Manual.

INTRODUCTION

Refer to Pictorials 6-3 (Illustration Booklet, Page 3)
and 6-4 (Page 29) while you read the following intro­
duction.

The Computer front panel contains four status lamps,
nine LED displays, and a 16-key keyboard.

Each of the four status lamps, when lit, indicates the
status of the Computer, as follows:

ION - Indicates the CPU is accepting interrupts.

MON - Indicates you have control from the front
panel.

RUN - Indicates the CPU is in a run condition.

PWR - Indicates that +5 volts is present at the front
panel.

The six left LED's display the octal ADDRESS. The
three left digits display the high-order address. while
the three center digits display the low-order address.
The three right digits function as the DAT A/REGIS­
TER displays. In the Memory Mode. the three right
digits display the data contained at the displayed
address. In the Register Mode. the three right digits
alphanumerically display the register you are addres­
sing and the six left digits display the register con­
tents.

The keyboard will be described under "Use of the
Front Panel."

An important internal feature of the Computer is an
audio alert circuit to signal you when you have made
an error or successfully entered data. This audio alert
circuit has three basic functions:

1. A long beep to verify a Master Reset or an
illegal command.

2. A medium beep to verify successful address
or data byte completion.

3. A short beep to verify key stroke.

This feature is very useful when you are entering a
long program through the front panel. By listening to
the feedback signal, you can determine if the Compu­
ter has accepted your data.

Another important feature is the Computer's ability to
determine the amount of memory installed upon ini­
tial power-up. It will do this without destroying the
contents of the memory. A detail ed discussion of this
feature is contained in the Software Reference Man­
ual.

Because the front panel requires a small amount of
support RAM, you must be careful when entering
data in the first 100 octal locations, starting at the
octal address 040000. You will find these locations
useful when using the front panel as an I/O device. A
discussion on exactly how to access the front panel is
contained in the Software Reference Manual.

Page 26

MODES OF OPERATION

The front panel has the foIl owing modes of operation:

Register Mode - Allows you to address any of the
8080's internal registers and read or alter
the data in them.

Memory Mode - Allows you to address any location
in memory and read or alter the data in that
memory location.

Cancel - Allows you to return to the Command
Mode.

Load - Allows you to take the data from auxiliary
storage and place it into memory. This fea­
ture includes a CRC (Cyclic Redundancy
Check) check of the data being loaded to
assure the detection of bad loads.

Dump - Allows you to take data from memory and
place it into auxiliary storage. The data
being dumped is dumped with CRC for
future loading.

Increment and Decrement - Allows you to increment
or decrement one memory address or one
register pair. This feature is very useful
when stepping through a program.

Go - Allows you to execute a program from the
memory location being pointed to by the
program counter.

Single Instruction - Allows you to execute the single
instruction being pointed to by the prog­
ram counter.

Reset - Allows you to execute a hardware reset of the
CPU registers and serial or parallel inter­
faces. This reset is the same reset that oc­
curs at power-up. So you do not acciden­
tally execute a reset, you are required to
press both the q, key and the RST/q, key.
You should avoid using this reset because
you will destroy any information in the
CPU registers and serial or parallel ports. If
reset is executed, you will have to
reinitiate your I/O ports.

Return to Monitor - Allows you to stop the program
being executed and return control to the
front panel monitor. This does not destroy
information in the CPU registers or the se­
rial or parallel ports. You will find this
feature useful in returning from a program
which may be in a loop. To execute a return
to monitor, press both the q, key and the
RTM/q, key.

Input - Allows you to input data from an I/O port and
display it on the front paneL

Output - Allows you to output data from the front
panel to an I/O port.

Auto-Repeat - Allows you to hold down any key on
the front panel, thereby repeating the cor­
responding operation or entry automati­
cally at a 2.5 Hz rate. This allows you to
enter or execute programs using fewer key
strokes. It is especially useful when step­
ping through memory or executing single
instructions.

Input and output commands are very useful in setting
up and initializing an I/O port, such as UART's, that
require a setup word.

DECIMAL POINT OPERA nON

Lit decimal points on the LED displays verify that the
Computer is ready for data input and that the keys
perform their numeric or register function. If the left
six decimal points are lit, information about a register
will be accepted. If all of the decimal points are lit,
information for memory reference will be accepted.

When the decimal points are lit constantly, you can
enter a memory location. When the decimal points are
scanning from right to left, any key entries will alter
that location.

Four decimal point displays can be obtained. These
displays and their functions are:

1.

2.

All decimal points lit constantly - ready to
select a memory address.

Left six decimal points lit constantly - ready to
select a register.

3. All decimal points scanning - ready to alter
memory r:nntents.

4. Left six. decimal points scanning - ready to
alter register contents.

SPLIT OCTAL DISPLAY

The 7 -segment LED displays on the front panel of
your HB display the address and data information in
octal format. This is accomplished by grouping three

Page 27

binary bits together and displaying the equivalent
octal value. An example ofthis octal format is shown
below.

BINARY NUMBER

OCTAL NUMBER

Ii III III

-, -,-, =, I I
Notice thatthe left digit represents only two hits ofthe
binary number, whereas the two right digits represent
thm8 hit~ p.l'lch of the hinary number. Therefore, the

largest octal number the left digit can display is 3,
while the two right digits can each display 7. Thus,
for an 8-bit binary word, the maximum octal value is
377.

16-bit words are displayed in split octal format. In this
type of format, 16-bit words are treated as two 8-bit
words. Therefore, for a 16-bit binary word, the
maximum octal value is 377 377. Notice that
maximum value for each 3-digit octal number is 377.

Page 28

USE OF THE FRONT PANEL

REGISTER MODE

To enter the Register Mode:

1. Press the REG (register) key. The decimal points
in the six left digits will light.

2. Press the desired register pair key. The selected
register pair will be displaYfld in thfl two right
digits. The contents of the register pair will be
displayed in the six left digits, three digits per
register, displayed octally.

To alter the contents of the register pair:

1. Press lhe ALTER key. The six left decimals will
scan from right to left, verifying that you are in
the alter Mode.

2. Enter the six octal digits of the new data. The
data will be entered from right to left.

• Be sure you enter leading zeros so that you
always enter six digits.

• You will hear a short beep as each digit is
entered and a medium beep when each
3-digit octal number is completed.

• If you do not want to change the contents of
the first register of the pair, enter the same
number displayed in that register.

• If only the contents of the first register of the
pair is to be changed, press the CANCEL key
followed by the ALTER key at the comple­
tion of the first three digits. The scanning
decimals will go out, verifying that you are
out of the Alter Mode.

MEMORY MODE

To enter the Memory Mode:

1. Press the MEM (memory) key. All of the deci­
mals will be displayed. The address will be dis­
played in the six left digits and the data of that
address will be displayed in the three right di­
gits.

To alter the address:

1. Enter the six octal digits on the high-and-Iow
order address byte you want.

• Enter the 3-digit octal number for the high­
order address byte first.

• Enter the 3-digit octal number for the low­
order address byte second.

• Be sure you enter leading zeros so that you
always enter six digits.

• You will hear a short beep as each digit is
entered and a medium beep when each
3-digit octal number is completed.

• Upon entering the sixth digit, the decimals
will go out and the monitor program will
return to the memory display mode.

• The left three digits display the high-order
address byte and the center thrAp' digiti; dis­
play the low-order address byte. The right
three digits display the data at the selected
memory address.

Olffi

o MO"J

0""" o p"Vq

O'CN
O'.llor"

0'<""
o "'>\'v--.:

0 ":>"

o "n~
ocu.
o P\/'JR

O,m

o vo"

O'UJ
O::>wr.:

,-, LJ ,-, ,,-, ,-,
I_I I I_I II_I '-'

ADDRESS

HIGH ORDER
ADDReSS LOCATION

LOW O~ OER
ADDRESS LOCATIOf\

, , I_" I
I_I 11_'
HIG~ ORDlR
CONTfNTS

I-' 11-' '_I "_'
CO NHIHS OF

THE A REG I STER

,-, ,,-,
LI , LI

OA TA

ADDRES~

ADDRESS

ADDRESS

"-, I-' 11_' ,-,
LOW ORDER
CONTUHS

,-, ,-, :J ,_, '-' '-
CONTENTS OC

THE F REG I SnR

•• LI '-' " I LI

PCRT
NU"i;B,R

,-, -II
1_' ,e.

- DATAiREGISTER -

DATA AT
LOCA TI ON 040 100

I 1'-'1 I I ,_

- DATA'REGISTER -

REGISTER
IOtrHIFICATION

,-, ,-,-, ,-
- oaTA iA~r;ISTEP -

REGISTER
IDENTIFICATION

[OJ
- DATAfOECISTER -

PICTORIAL 6-4

Page 29

FRONT PANEL MEMORY
DISPLAY

FROI\T PANEL REGISTER
DISPLAY

(PROGRAM COUNHR SELeCTED)

FRONT PANEL REGISTER
01 SPLAY

1M REGISTER PAIR SELECTED!

110 PORT DISPLAY

Page 30

To alter the data at the displayed address:

1. Press the ALTER key. The decimals will scan
from right to left, verifying that you are in the
Alter Mode.

2. Enter the desired octal number on the keyboard.

• The new data will be entered from right to
left.

• Upon entering the third digit, the address
will automatically be incremented one
mflIDory Address.

3. Press the ALTER key. The scanning decimals
will go out, verifying that you are out of the Alter
Mode.

To check the new data entered:

1. Press the - (minus) key. The address will de­
crement one memory address.

2. Press the + (plus) key. The address will incre­
ment one memory address.

• The address will continue to increment or
decrement as long as you press the + (plus)
or - (minus) key.

CANCEL

If you enter a mode or digit by mistake:

1. Press the CANCEL key.

• You will hear a long beep when you press
the CANCEL key, verifying that the remain­
der of the operation has been cancelled.

2. Start the process over again from the beginning,
including re-entering the desired mode.

LOADING AND DUMPING DATA

To load or dump data, you must have a serial or
parallel card along with a load/dump device assigned
to I/O port address 370-371. Since these addresses are
fixed in ROM, the load/dump ports cannot be reas­
signed.

Dumping (Storing) Data

To dump data from memory:

1. Enter the low order byte of the starting address
of the data to be dumped at memory location
040000.

2. Enter the high order byte of the starting address
at memory location 040001.

3. Enter the entry point address in the PC register.

• The entry point address is where you want
the program to begin execution when you
load the data back into memory in the fu­
ture.

4. Return to the Memory Mode and enter the end­
ing address of the data to be dumped.

• The ADDRESS displays will read the ending
address.

• Disregard the DATA displays at this time.

5. Press the DUMP key. The dump device will
start.

• When using the cassette interface, there will
be a delay in the dump process to allow the
tape machine to come up to speed.

• The ADDRESS displays will show the start­
ing address of the data being dumped and
will increment to the ending address.

• The DATA displays will flash with the data
being dumped. You will hear a long beep at
the end of the dump, verifying completion
of this operation.

• The ADDRESS displays will stop at the end­
ing address of the stored data.

Loading Data

To load data:

1. Ready the loading device.

2. Press the LOAD key. The load device will start.

• There will be a delay in the data being
loaded because of the leader on the tape and
the sync characters being read.

• When the leader is complete, the ADDRESS
displays will show the starting address and
increment to the ending address.

• The DATA displays will flash with the data
being loaded. The incoming data is checked
by CRC.

• At the end of a successful load. you will hear
a long beep to verify that the load has been
successful.

• If the load is unsuccessful, you will hear a
pulsing beep to signify a bad load. There­
fore, you must repeat the load procedure.

EXECUTING A SAVED PROGRAM

To execute a program that has been dumped with the
program counter (entry point) saved, and then re­
loaded:

1. Press the GO key.

If you dId not save your program starting
address, you must enter the starting address
in the program counter before pressing the
GO key.

INPUTTING AND OUTPUTTING

To set up and initialize the I/O ports, refer to your
programming card or specific manuals for informa­
tion to he output.

Page 31

Inputting From a Port

To input from a port:

1. Press the MEM (memory) key.

2. Enter three zeros followed by the 3-digit address
of the port you want to input from.

• The ADDRESS displays will show OOOAAA
(AAA is the port address).

3. Press the IN key.

• The three left digits will display the data at
the port.

• Disre~ard the DATA/REGISTER displays.

4. To continue inputting, press the IN key.

• You do not have to re-enter 000 AAA.

Outputting to a Port

To output to a port:

1. Press the MEM (memory) key.

2. Enter the three digit data byte you want to out­
put, followed by the 3-digit port address you
want to output to.

• The ADDRESS displays will show
DDDAAA (DDD is the data byte and AAA is
the port address).

3. Press the OUT key.

4.

• The data will be output to the desired port
address.

• Disregard the DATA/REGISTER displays.

To continue outputting, press the OUT key.

• You do not have to re-enter DDD AAA.

Once a port is initialized, you may input data from
that port and then output the same data to the same
port to check for proper port operation. This process
is known as an echo check.

Page 32

THEORY OF OPERATION

SYSTEM DESCRIPTION

Refer to the System Block Diagram while you read
this System Description.

The basic H8 Digital Computer consists of a central
processing unit (CPU), an input/output (T/O) device,
random access memory (RAM), and a 50-pin bus. You
can expand the HB by adding HddiLiullal I/O devices
for communications with peripherals such as video
terminals, hard-copy machines, and tape readers.

The CPU contains an on-board, read-only memory
(ROM) programmed to communicate with the front

CPU -"" I

"" -= -, ,
OJ :» - '" --l

'" '" '" :» ",

A
--l V>
» V>

" "" I/O c co
A V> c:

V>

I NT lfOw liaR "
"- if r--

r-r-
r-
r---

V'
CONTROL

r-.,.
CIRCUIT

vi'
INT IIOW liOR ~

Iii ------

U
p
~ rv

r-
p

~

panel and additional I/O devices. This eliminates the
need to hand load a boot program upon initial
power-up of the H8.

The 50-pin bus contains sixteen address lines, eight
bi-directional data lines, five of the CPU's available
interrupt lines, and the system control lines. Tho four
basic control signals are the I/O read, I/O write, mem­
ory read, and memory write. A read signal indicates
information going from a device to the CPU and a
write signal indicates information going from the
CPU to a device.

V>

-<
V)

--l
",

:5
("">

0
z
-I

~ '" 0 -< :. r- .. MR MW

y MEMORY .. (RAM)

y

SYSTEM BLOCK DIAGRAM

® ~'¥fM9¥faiij
Page 33

CPU CIRCUIT

Refer to the CPU Block Diagram (Illustration Booklet,
Page 4) and the Schematic Diagram (fold-in) whilfl
you read the Theory of Operation.

This Theory of Operation will describe the general
operation of the CPU circuit. For a detailed descrip­
tion ofthe 8080A microprocessor, refer to "The 8080
Central Processor Unit" section of the "Theory of
Operation."

The heart of the CPU circuit is the 8080A micro­
processor (IC213). Because the microprocessor is a
dynamic device, it must have an external clock. Clock
generator IC212 generates the 2-phase, nonoverlap­
ping, 2.048 MHz dock signal.

PDo through PD7 , the 8-bit bi-directional data bus,
contains both incoming and outgoing data, along
with the 80BOA status word. The status word appears
on the data bus at the end of T I of all machine cycles.
A negative going signal on the status strohe (STSTB)
line from the clock generator (IC212) signals the sys­
tem controller (IC214) that the data on the data bus at
this time is the status word. The status word is then
removed from the data bus and decoded into the fol­
lOWing control signals: memory read (MEMR), mem­
ory write (MEMW), I/O read (lOR), I/O write (lOW),
and intelTu pL enable (INTE). These control signals are
then buffered and inverted by the read/write buffer
(IC20aA) and presented on the data bus for system
control.

The 80aOA microprocessor has a 16-line address bus,
Ao through A ,s• supplying 65.536 possible memory
locations. These address signals are buffered and in­
verted by address buffers IC205 and IC206 to supply
ample drive to the bus. Address lines AIO through A 15

are decoded by address decoder IC207. If all the in­
puts of IC207 are high, indicating an address below
1024, and aMEMR pulse is present at pin 11 ofIC207,
the ROM (IC204) will be enabled and the Data In
buffer (TC211) will be disabled. The data on the data
bus of the system controller (IC214) at this time is then
rlp.termined by the specific address in ROM being

selected by address lines Ao through A lO • This address
decoding process iH thfl ,<;Ame process that occurs on
each memory board when you read from RAM into
the microprocessor. When the address bus is indicat­
ing any address above 1025, the ROM is disabled and
its output is in its high impedance state to prevent
interference on the data bus.

MEMORY WRITE CYCLE

When the microprocessor executes an instruction to
store an 8-bit word in memory, the following se­
quence occurs:

1. The system controller (IC214) examines the
status word and determines that a memory \-"rite
cycle is occurring.

2. The memory write control line (pin 20) of the
system controller (IC214) goes low and all other
control lines remain high.

3. The memory write signal is then inverted and
buffered by the read/write buffer (IC208A) be­
fore going onto the bus to enable memory.

4. The lack of a memory read pulse at pin 1 of
IC215 disables the Data In buffer (IC211) and
enables the Data Out buffer (IC210).

5. The high-order address lines (A13 through A 15)

are decoded. selecting the specific memory
board addressed.

6. The low-order address lines (Ao through Ad are
decoded, thus selecting the specific word loca­
tion on the selected memory board.

7. Once the memory board and location are
selected, the MEMW (memory write) pulse al­
lows the information on the data bus to be writ­
ten into that mAmmy locFltion.

Page 34

MEMORY READ CYCLE

When the microprocessor executes an instruction to
retrieve an 8-bit word from memory, the following
sequence occurs:

1. The system controller (IC214) examines the
status word and determines that a memory read
cycle is occurring.

2. The memory read control line (pin 24) of the
system controller (IC214) goes low and all other
control lines remain high.

3. The memory read signal is then inverted and
buffered by the read/write buffer (IC208A) be­
fore going onto the bus to enable memory.

4. A memory read pulse at pin 1 of IC215 enables
the Data In buffer (IC211) and disables the Data
Out buffer (IC2i0).

5. The high-order address lines (Al3 through A'5)
are decoded, selecting the specific memory
board addressed.

6. The low-order address lines (Ao through A1z) are
decoded, selecting the specific word location on
the selected memory board.

7. Once the memory board and location are
selected, the MEMR (memory read) pulse allows
the information on the data bus to be read by the
microprocessor.

I/O CYCLE

The input/output (I/O) cycle enables the micro­
processor to receive data or output data. I/O write and
I/O read cycles are very similar to memory write and
memory read cycles. When the I/O cycle status word
is decoded by the system controller, the I/O control
lines are used to enable the input or output device.
Only the low-order address lines (Ao through A1) are
decoded for I/O instructions, giving you 256 decimal
locations for input or output ports. NOTE: The top 30
1/0 locations are reserved for system software. You
should avoid writing programs that address these
locations.

INTERRUPTING THE PROCESSOR

While the CPU is in the process of executing a pro­
gram, it may hp. p'Flllp.d tlpon to service an input or
output device before any information is lost. To do
this, the microprocessor must be interrupted, allow­
ing it to store the results of any computations and its
place in the current program. Interrupts are executed
by taking any of the seven inputs of the interrupt
decoder (IC217) to logic O. When pin 14 of the inter­
rupt decoder goes low, it drives the uUlput (ViIi 5) of
IC209D high. This signals the microprocessor that an
interrupt has occurred. The microprocessor finishes
its current instruction and sends a status word to the
system controller [IC214). The system controller de­
codes the status word as an interrupt and enables the
interrupt buffer (IC218). At this time, an 8-bit status
word is presented on the data bus and is decoded by
the microprocessor (IC213).

Only bits 3, 4, and 5 of the 8-bit word are variable,
depending upon which of the seven interrupt lines
were pulled low. The variable bits indicate which of
the seven memory locations (10, 20, 30,40,50,60, or
70) the microprocessor should address for instruc­
tions on servicing that interrupt. Bits 0,1,2,6, and 7
of the 8-bit word are preset and indicate a restart
instruction.

Interrupt ° is used as a general reset interrupt. Upon
initial power-up, the CPU will receive an interrupt 0,
causing it to execute a general power-up procedure.
Interrupt 10 is lIsed to Sp.fvir.e the control r:ircuit
board and interrupt 20 is used to implement the
single instruction mode. When an interrupt is en­
abled, the outputs of the interrupt decoder (IC217) are
set according to the chart on Page 35.

Several features have been incorporated in the CPU
for future expansion and flexibility. These features
will be explained in the following paragraphs.

HOLD ACKNOWLEDGMENT

To provide for direct memory access (DMA) , the CPU
circuitry must be completely disconnected from the
system bus. This is done by using the hold feature of
the a080A microprocessor.

Page 35

INTERRUPT DECODER IC217

INTERRUPT A2 (pin 6)
o (pin 10) 1
10 (pin 11) 1
20 (!Jiu 12) 1
30 (pin 13) 1
40 (pin 1) 0
50 (pin 2) 0
60 (pin 3) 0
70 (pin 4) 0
no interrupts 1

When the CPU receives a hold request (IC213 pin 13),
the huld acknowledge line (HLDA, pin 21) goes high
after a brief delay. The HLDA is used to disable ad­
dress, data, and control buffers so an external device
can communicate with memory. IC216B is used as a
delay latch to allow sufficient time to complete the
current cycle before disabling the data buffers.

The HLDA circuitry works as follows:

1. The HLDA line (IC213 pin 21) at logi cO prevents
the delay latch (IC216B) from being clocked by
the cf>2 input (pin 11).

2. When the HLDA line (IC213 pin 21) goes high,
the delay latch (IC216B) is clocked at the end of
the llext cf>2 LYciu, setting the Q uutpul (pin 9)
high and the Q output (pin 8) low.

~. A high at the Q output (pin 9) of the delay latch
(IC216B) will disable the address buffers (IC205
and IC206) and the read/write buffer (IC208A).

4. A low at the Q output (pin 8) of the delay latch
(IC216B) will disable the Data Out buffer
(IC210).

Al (pin 7) Ao (pin 9) Gs (pin 14)
1 1 L (low)
1 0 L

0 1 L

0 0 L
1 1 L
1 0 L
0 1 L
0 0 L
1 1 H (high)

IC209C is used to drive the bus with the HLDA signal.
The polarity of the HLDA signal is determined by
jumpers Jl, J2, and J3.

Ml CYCLE

The MI cycle, generated on the CPU circuit board, is
the first machine cycle of an instruction.

The microprocessor (IC213) generates a sync pulse at
pin 19 during T I and T 2 of each machine cycle. This
sync pulse is coupled to pin 5 of the clock generator
(IC212) where it is gated wiLh LIlt: cf>1 signal to produce
the STSTB pulse (pin 7). The STSTB (status strobe)
pulse indicates to the system controller the presence
of a status word on the data bus. Because the M, signal
at PD5 of the data bus is so narrow (approximately 50
nsec), it is stretched by combining it with the STSTB
pulse (pin 3) and the sync pulse (pin 1) at IC216A.

When the D input (pin 2) of IC216A goes high, along
with the clear input (pin 1) indicating anMI cycle, the
leading edge of the next STSTB pulse (pin 3) will
clock IC216A. The Q output (pin 6) will then go to
logic O. When the sync pulse [pin 1) returns to logic 0,
IC21GA will be cleareJ <llld the Q uutpuL (pin 6) will
return to logic 1, indicating the end of the MJ cycle.
The Ml signal is inverted and buffered by IC208B and
coupled to the control circuit board.

Page 36

FRONT PANEL (CONTROL CIRCUIT)

~
... ICI16lCll7

SEGNIENT
ICI04A -,/ SELECT .. ICI05 I ADDRESS BUS Ie 110 l ~v A DnES S

DECOD I NG

L[D 101 TfiROUGH LED 109
DISPLAYS

"V QIOI THROUGH Q1l8

I CI02. I CI03.
I CI07, I CI08.

CONTROL BUS ICIll,IC1l2

II "f -V CONTROL "
CIRCUIT

Ie llS
ICl19

v DIGIT
SELECT

I

J
~

A A IC1141el15 A SWIOI THROUGH
Ie 113 KEYROARD SIN 116

BUS DRIVEl< ~ DATrIBUS
'f DECODER v KEYBJARD

"
CONTROL BLOCK DIAGRAM

Refer to the Control 'Circuit Block Diagram and the
Schematic Diagram while yuu reau lhls description.

The front panel is an I/O device assigned to address
360 and 361. Information is output to the 7-segment
displays and input from the keyboard under control
of thp. ROM (on the CPU circuit board). The ROM
contains the appropriate software to service the front
panel.

Because the displays are multiplexed, they must be
continuously refreshed under CPU control. The front
panel gel1emtes a level 10 interrupt when it is ready to
be refreshed. This interrupt is generated on the front
panel by dividing the r;p2 clock. ICI03 divides the 2
MHz clock by 4096, producing a pulse every 2 msec.

This pulse is coupled through an inverter (ICI09F) to
the clock input (pin 11) of ICI02B. ICI02B holds the
interrupt until the CPU has responded to this inter­
rupt. Upon receiving the clock pulse atIC102B pin 11,
the Q output (pin 9) will go high. The Q output of
ICI02B is gated together with the Q output (pin 6) of
ICI06 at ICI12B. At this time, the output (pin 3) of
IC112B goes low, interrupting the microprocessor.
Once the microprocessor has received the interrupt
signal. it will generate an address on the bus accord­
ing to the following table.

FRONT PANEL ADDRESS 360 AND 361

1\7 A6 A5 A4 - - Al -
A3 A2 Ao

360 0 0 0 0 1 1 1 1

3tH 0 0 0 0 0 1 1 0

These address signals are decoded by ICI04A, ICI05,
and ICIIlA and B. They are then gated together with
the I/O read and I/O write signals at ICllO.

The first address signal generated by the service
routine (contained in ROM) is a 360 write signal. A
360 ,,,-,rite signal causes pin 3 of TCIIOB to go low,
clocking ICIOB and lellB and latching the high-and
low-order data bits from the data bus. Once data is
latched in ICIIB, it is decoded by the digit select
decoder (ICl19). ICl19 selects one of nine LED's to be
turned on.

The 3608 write signal also clears ICI02B, removing
the interrupt signal from the CPU, i:iIld docks ICI02.
When ICl02A is clocked, it latches the Ds bit of the
data bus, causing the Q output (pin 5) ofICI02A to go
low, turning on the :MON lamp (LEDl13). The MON
lamp indicates that the front panel is being serviced
by the CPU.

The second address signal generated is the 3618 sig­
nal at the output (pin 6J of ICIIDA. When this output
goes low, the segment select decoders (ICl16 and
JCl17) will latch the data from the eight bits of the
data bus. This data is then driven directly to the seven
segments and the decimal point of the selected LED.
The segment select decoders determine the value to
be displayed on the LED's.

To insure that only the proper segments are turned on
in any selected display, the segment select decoders
(IC116 and ICll7) must be cleared prior to selecting
Hny digit. The 2 msec clock, used 10 generate the
interrupt, is coupled to pin 10 of ICI07. rCI07 is a
monostable with a time constant of approximately 1.5
msec. Each time a new digit is selected, ICI07 wHl be
triggered, enabling the segment select decoders
(ICllB and ICl17). ICl07 allows the data to remain in
the decoders approximately 1.5 msec before resetting
them. This is just prior to a new interrupt being gen­
erated, so that as new digits are selected, the segment
select decoders will have been cleared by ICI07. As
ICI07 times out and pin 5 returns to logic 0, the Q
output (pin 5) of ICI02 will go high, turning off the
MON lamp. Each time this interrupt is generated, the
CPU checks to determine how many of the nine digits
have been serviced and stores this information in a
scratch pad location for ROM. The ROM program will
continue to update all nine displays, one display
every 2 IIlsec.

Upon servicing the ninth digit, the ROM program will
generate an address decoded as a 3608 read signal,
causing pin 11 of ICII0D to go low, thus turning on

Pagp. 37

the data buffer (ICl13). At this time, the data on the
data bus will be a function of the key pressed. ICl14
and IC115 decode the keys according to the following
tables.

IC114

KEY 1\3 1\2 Al 1\0

1> H H H L

1 H H L L

2 H L H L

3 H L L L

4 L H H L

5 L H L L

6 L L H L

7 L L L L

No key H H H H

ICl15

-KEY Aa A2 Al Ao

8 H H H L

9 H H L L

+ H L H L

- H L L L

" L H H L

I L H L L

L L H L

• L L L L

No key H H H H

The CPU spends approximately 200 "",sec updating
the front panel, or approximiltely 10% of its total
process time.

Page 38

MISCELLANEOUS CONTROLS

The CPU circuit generates an Ml pulse at the begin­
ning of each machine cycle. This Ml signal is used to
trigger a pulse-stretching monostable (ICI07) and
turn on the RUN lamp. The RUN lamp will remain on
as long as the Ml cycle is generated (every 4.7 msec).
An Ml pulse will not be generated if the CPU is in a
hold or wait cycle.

The interrupt enable line from the CPU is used to tUTn
on the ION lamp. This interrupt signal is also used to
enable the single instruction divide-by-four counters
(IC108A and B).

When the interrupt enable line is low, IClOBA and B
will count two Ml cycles before the Q output (pin 11)
goes low. If, during the update process, D5 set the
latch (ICI0B), the Q output (pin 2) will be high, ena­
bling ICllZC. When the Q output (pin 11) of ICIOB
goes low, pin 6 ofICl12C will go low. Pin 6 ofICl12
going low is decoded as a level 20 interrupt. Execu­
tion of additional instructions is halted unless the
single instruction key is pressed. The CPU will not
execute additional instructions, but will continue to
update the front panel and strobe the keys for addi­
tional instructions.

AUDIO ALERT

The audio alert signal is produced by dividing the cp2
clock signal by 2048, producing approximately a 1
kHz signal. This signal is gated together with the Q
output (pin 10) of the data latch (ICI06). When the Q
output is high, the audio signal is coupled to the
speaker. When the Q output is low, Ie1Uo is disabled
and the speaker is turned off. Data bit Dr controls the
speaker and is latched by the front panel service
routine when selecting a display digit.

RETURN TO MONITOR

Generating a level 10 interrupt returns the computer
to monitor control. Press the cp and the RTM/cp keys
simultaneously generates the level 10 interrupt. The
key signals are gated together in ICIIIA and inverted
by IC112. This signal is coupled to the level 10 inter­
rupt line and returned to the microprocessor (IC2B).

Pressing the cp and the RST/cp keys simultaneously
generates a hardware reset in IC112, which drives
Q119. When Ql19 is turned on, the reset line to the
CPU is pulled low, causing the CPU to be reinitiated
and perform the entire start-up procedure.

POWER SUPPLY

Refer to the Power Supply Block Diagram while you
read this Theory of Operation.

The H8 power supply consists of three unregulated
supplies. These supplies are +8VDC at 10 amps and

±18VDC at 250 milliamps. Each supply is coupled to
the bus for use by each card. Each card has its own
on-board regulators to su pply + 5 VDC. All regulators
use over-current protection.

+ 8 V D C UN R [G U LA IE D

POWER

SUPPLY
+18 VDC UNREGULA TED

-18 VDC UNREGULATED

* ON BOARD REGULATORS

POWER SUPPLY BLOCK DIAGRAM

Page 39

INSTRUCTION SET

A computer, no matter how sophisticated, can only
do what it is "told" to do. A computer is told what to
do via a series of coded instructions referred to as a
program. The realm of the programmer is referred to
as software, in contrast to the hardware that com­
prises the actual computer equipment. A computer's
software refers tu all uf the programs that have been
written for that computer.

When a computer is designed, thp. enginp.erfl provinp.
the Central Processing Unit (CPU) with the ability to
perform a particular set of operations. The CPU is
designed slIch that a specific operation is performed
when the CPU control logic decodes a particular in­
struction. Consequently, the operations that can be
performed by a CPU define the computer's instruc­
tion set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All
computers implement certain arithmetic operations
in their instruction set, such as an instruction to add
the contents of two registers. Often logical operations
(for example, OR the contents of two registers) and
register operate instructions (for example, increment
a register) are included in the instruction set. A com­
puter's instruction set also has instructions that move
data between registers, between a register and mem­
ory, and between a register and an T/O device. Most
instruction sets also provide conditional instruc­
tions. A conditional instruction specifies an opera­
tion to be performed only if certain conditions have
been met; for example, jump to a particular instruc­
tion if the result of the last operation was zero. Condi­
tional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions
into a coherent program, the programmer can "tell"
the computer to perform a very specific and useful
function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (for
example, a series of 1 's and O's), that is called machine
code. Because it would be extremely cllmbersome to
program in machine code, programming languages
have been developed. There are programs available
which convert the programming language instruc­
tions into machine code that can be interpreted by the
processor.

One type of programming language is assembly lan­
guage. A unique assembly language mnemonic is
assigned to each of the computer's instructions. The
programmer can write a program (called the source
program) using these mnemonics and certain
operands; the source program is then converted into
machine instructions (called the object code). Each
assembly language instruction is converted into one
machine code instruction (1 or more bytes) by an
assemhlp.r progmm. AssAmhly l:mgllagp..c: arflllsually
machine dependent (for example. they are usually
able to run on only one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types
of instructions:

• Data Transfer Group - move data between
registers or between memory and registers.

• Arithmetic Group - add. subtract. incre­
ment, or decrement data in registers or in
memory.

• Logical Group - AND, OR, EXCLUSIVE­
OR, compare. rotate, or complement data in
registers or in memory.

• Branch Group - conditional and uncondi­
tional jump instructions, subroutine call in­
structions, and return instructions.

• Stack, I/O, and Machine Control Group -
includes I/O instructions, as well as instruc­
tions for maintaining the stack and internal
control flags.

Instruction and Data Formats

Memory for the BOBO is organized into 8-bit quantities
called bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in
memory.

The 8080 can directly address up to 65,536 bytes of
memory, which may consist of both read-only mem­
ory (ROM) elements and random-access memory
(RAM) elements (read/write memory).

Page 40

Data in the 8080 is stored in the form of H-hit hinilry
integers:

DATA WORD

MSB LSB

When a register or data word contains a binary
number, it is necessary to establish the order in which
the bits of the number are written. In the 8080, BIT 0 is
referred to as the Least Significant Bit (LSB), and BIT
7 (of an 8-bit number) is referred to as the Most Sig­
nificant Bit (MSB).

The 8080 program instructions may be one, two, or
three bytes in length. Multiple byte instructions must
be stored in successive memory locations; the address
of the first byte is al ways used as the addrt:ss of the
instructions. The exact instruction format will de­
pend on the particular operation to be executed.

Single-Byte Instructions

I D7
1

, Do lOp Code

Two·Byte Instructions

Byte One I D7 ' , Do lOp Code

Byte Two I D7' , DO I Data or
Address

Three-Byte Instructions

Byte One I D7' I DO lop Code

Byte Two I D7' I DO I) Dm
or

Byte Three I D7 I I Do I Address

Addressing Modes

Often the data to be operated on is stored in memory.
When multi-byte numeric data is used, the data, like
instructions, is stored in successive memory loca­
tions, with the least significant byte first, followed by
increasingly significant bytes. The 8080 has four dif­
ferent modes for addressing data stored in memory or
in registers:

• Direct - Bytes 2 and 3 of the instruction
contain the exact memory address of the
data item (the low-order bits of the address
are in byte 2, the high-order bits in byte 3).

• Register - The instruction specifies the
register or register pair in which the data is
located.

® ~f§f+j'nHfj
• Register Indirect - The instruction

specifies a register pair which contains the
memory address where the data is located
(the high-order bits of the address are in the
first register of the pair, the low-order bits in
the second).

• Immediate - The instruction contains the
data itself. This is either an 8-bit quantity or
a 16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through con­
secutively increasing memory locations. A branch
instruction can specify the address of the next in­
struction to be executed in one of two ways:

• Direct - The branch instruction contains
the address of the next instruction to be exe­
cuted. (Except for the "RST" instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

• Register Indirect - The branch instruction
indicates a register pair which contains the
address of the next instruction to be exe­
cuted. (The high-order bits of the address
are in the first register of the pair, the low­
order bits in the second.)

The RST instruction is a special l-byte call instruc­
tion (usually used during interrupt sequences). RST
includes a 3-bit field; program control is tr:msferred
to the instruction whose address is eight times the
contents of this 3-bit field.

Condition Flags

There are five condition flags associated with the
execution of instructions on the 8080. They are Zero,
Sign, Parity, Carry, and Auxiliary Carry, and are each
represented by a l-bit register in the CPU. A flag is
"set" by forcing the bit to 1; "reset" by forcing the bit
to O.

Unless indicated otherwise, when an instruction af­
fects a flag, it affects it in the following manner.

Zero:

Sign:

If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

If the most significant bit of the result of
the operation has the value 1, this flag is
set; otherwise it is reset.

Parity:

Carry:

Auxiliary
Carry:

If the modulo 2 sum of the bits of the
result of the operation is 0 (for example. if
the result has even parity), this flag is set;
otherwise it is reset (for example, if the
result has odd parity).

If the instruction resulted in a carry
(frum iiJdiLiull), ur a borrow (from sub­
traction or a comparison) out of the
high-order bit, this flag is set;
otherwise it is reset.

If the instruction caused a carry out
of bit 3 and into bit 4 of the resulting
value, the auxiliary carry is set;
otherwise it is reset. This flag is
affected by single precision
additions, subtractions, increments,
decrements, comparisons, and logical
operations, but is principally used
with additions and increments
preceding a DAA (Decimal Adjust
Accumulator) instruction.

Symbols and Abbreviations

The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS MEANING

accumulator Register A

addr 16-bit address quantity

data

data 16

byte 2

byte 3

port

r, rl, r2

ODD, SSS

8-bit data quantity

16-bit data quantity

The second byte of the instruction

The third byte of the instruction

8-bit address of an I/O device

One of the registers A, B, C, 0, E, H, L

The bit pattern designating one of the
registers A, B, C, 0, E, H, L
(DOD = destination, SSS = source):

rp

RP

rh

rl

PC

SP

Page 41

DDD or SSS REGISTER NAME
BINARY OCTAL

111 7 A
000 0 B
001 1 C
010 2 D
011 3 E
100 4 H
101 5 L

One of the register pairs:

B represents the B, C pair with B as
the high-order register and C as the
low-order register;

D represents the D, E pair with 0 as
the high-order register and E as the
low-order register;

H represents the H, L pair with H as
the high-order register and L as the
low-order register;

SP represents the 16-bit stack pointer
register.

The hit pattern designating one of
the register pairs B, D, H, SP:

RP REGISTER PAIR

00 B-C
01 D-E
10 H-L
11 SP

The first (high-order) register of a
designated register pair.

The second (low-order) regisler uf a
designated register pair.

16-bit program counter register (PCH
and PCL are used to refer to the
high-order and low-order 8-bits,
respectively).

16-bit stack pointer register (SPH
and SPL are used to refer to the
high-order and low-order 8-bits,
respectively) .

Page 42

rm Hit m of the register r (bits are numbered
7 through 0 from left to right).

Z, S, P, The condition flags:
CY,AC

()

v

+

*

n

NNN

Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry,
respectively.

The contents of the memory location or
registers enclosed in the parentheses.

"Is transferred to"

Logical AND

Exclusive OR

Inclusive OR

Addition

Two's complement subtraction

Multiplication

"Is exchanged with"

The one's complement (e. g., (A))

The restart number a through 7

The binary representation 000
through 111 for restart number 0
through 7 respectively.

Description Format

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is
described in the following manner:

1. The numbers above the mnemonic are the octal
opcodes for the instruction.

2. The assembler format, consisting of the instruc­
tion mnemonic and operand fields, is printed in
BOLDFACE on the left side of the first line.

3. The name of the instruction is enclosed in
parentheses on the right side of the first line.

4. The next liners) contain a symbolic description
of the operation of the instruction.

5. This is followed by a narrative description of the
operation of the instruction.

6. The following liners) contain the binary fields
and patterns that comprise the machine instruc­
tion.

7. The last four lines contain incidental informa­
tion about the execution of the instruction. The
number of machine cycles and states required to
execute the instruction are listed first. If the
instruction has two possible execution times, as
in a conditional jump, both times will be listed,
separated by a slash. Next, any significant data
addressing modes (see Page 62) are listed. The
last line lists any of the five Flags that are af­
fected by the execution of the instruction.

Data Transfer Group

This group of instructions transfers data to and from
registers and memory. Condition flags are not af­
fected by any instruction in this group.

1 (0-~,7) (0-5,7)
MOV r1, r2 (Move Register)

(rl) ~ (r2)
The contlmt of rP.gi ster r2 is moved to register r1.

0
I D

I
D D S

I s I s

Cycles:
States: 5

Addressing: register
Flags: none

1(0-7)6
MOV r, M [Move from memory)

(r) ~ ((H) (LJ)
The content of the memory location, whose ad­
dress is in registers Hand L, is moved to register
r.

0 I D D D I 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

16 (0-7)
MOV M, r (Move to memory)

[(H) (L)) _ (r)
The content of register r is moved to the memory
location whose address is in registers Hand L.

0 0 S S S

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

o (0-7)6
MVI r, data (Movc Immcdiate) 0(0-7)6

066

(r) _ (byte 2)

The content of byte 2 of the instruction is moved
to register r.

0 0 D D D 0

data byte

Cycles: 2
States: 7

Addressing: immediate
Flags: none

MVI M, data (Move to memory immediate)
(m) (L)) - (byte 2)
The content of byte 2 of the instruction is moved
to the memory location whose address is in regis­
ters Hand L.

o I 0 I o o

data byte

Cycles: 3
States: 10

Addressing: immed.lreg. indirect
Flags: none

001
021

(B, C)
(D, E)

041
061

(H, L)
(S, P)

Page 43

LXI rp. data 16 (Load register pair immediate)

072

(rh) _ (byte 3),
(rl) _ (byte 2)

Byte 3 of the instruction is moved into the high­
order register (rh) of the register pair rp. Byte 2 of
the instruction is moved into the low-order regis­
ter (rt) of the register pair rp.

oT o I R I p I o I o I o r 1

low-order data

high-order data

Cycles: 3
States: 10

Addressing: immediate
Flags: none

LDA addr (Load Accumulator direct)

062

fA} - ((byte 3) (byte 2))
The content of the memory location, whose ad­
dress is specified in byte 2 and byte 3 of the
instruction, is moved to the accumulator.

o r 0 r 1 1 1 i 1 I o I 1 I 0

low-order addr

high-order addr

Cycles: 4
States: 13

Addressing: direct
Flags: none

STA addr (Store Accumulator direct)
((byte 3) (byte 2)) _ (A)
The content of the accnmulator is moved to the
memory location whose address is specified in
byte 2 and byte 3 of the instruction.

o 1 0 1 1 1, I 0 J 0 I 1 I 0

low-order addr

high-order addr

Cycles: 4
States: 13

Addressing: direct
Flags: none

Page 44

052
LHLD addr (Load Hand L direct)

042

(L) +- ((byte 3) (byte 2))
(H) +- {(byte 3) (byte 2) + 1)
The content of the memory location, whose ad­
dress is specified in byte 2 and byte 3 of the
instruction, is moved to register L. The content of
the memory lucation at the succeeding address is
moved to register H.

o I o I 1 I 0 I 1 I 0 I 1 I 0

low-order addr

h igh-ordpr arlrlr

Cycles: 5
States: 16

Addressing: direct
Flags: none

SHLD addr (Store Hand L direct)
((byte 3) (byte 2)) +- (L)
((bytc 3) (bytc 2) + 1) <c- (H)

The content of register L is moved to the memory
location whose address is specified in byte 2 and
byte 3. The content of register H is moved to the
succeeding memory location.

o I o I 1 I 0 I 0 I 0 I 1 I 0

low-order addr

high·order addr

Cycles: 5
States: 16

Addressing; direct
Flags: none

012 (B, C) 032 (D, E)

LDAX rp (Load accumulator indirect)
(A) +- ((rp))
The content of the memory location, whose ad­
dress is in the register pall' rp, is moved to register
A. NOTE: Only register pairs rp = B (registers B
and C) or rp = D (registers D and E) may be
specified.

0 I 0 R I P I I 0 I 1 I 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

002 (B, C) 022 (D, E)

STAX rp (Store accumulator indirect)

353

((rp)) +- (AJ
The content ofregister A is moved to the memory
location whose address is in the register pair rp.
NOTE: Only register pairs rp = B (registers Band
C) or rp = D (registers D and E) may be specified.

0 I 0 R I P I 0 I 0 I 1 I 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

XCHG (Exchange Hand L with D and E)
(H) +4(D)
(L) ~(E)
The contents of registers Hand L are exchanged
with the contents of registers D and E.

Cycles: 1
States: 4

Addressing: register
Flags: none

Arithmetic Group

This group of instructions performs arithmetic opera­
tions on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Aux­
iliary Carry flags according to the standard rules.

All subtraction operations are performed via two's
complement arithmetic and set the carry flag to one to
indicate a borrow and clear it to indicate no borrow.

20 (0-5,7)
ADD r (Add Register)

(A) <c- (A) + (r)
The content of register r is added to the content of
the accumulator. The result is placed in the ac­
cumulator.

1 I 0 I 0 0 0 S S S

Cycles:
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

200

ADD M (Add memory)

306

(A) (,-- (A) + ((H) (Ll)
The content of the memory location whose ad­
dress is contained in the Hand L registers is
added to the content of the accumulator. The
result is placed in the accumulator.

1101010'011'1'0

Cycles:
States:

Addressing:
Flags:

2

7
reg. indirect
Z,S,P ,CY ,AC

ADI DATA (Add immediate)
(A) <-- (AJ + (byte 2)

The content of the second byte of the instruction
is added to the content of the accumulator. The
result is placed in the accumulator.

data byte

21 (0-5,7)

Cycles:
States'

Addressing:
Flags:

2
7

immediate
Z,S,P,CY,AC

ADC r (Add Register with carry)
(A) (,-- (A) + (r) + (CY)

o

The content of register r and the content of the
carry bit are added to the content of the ac­
cumulator. The result is placed in the ac­
cumulator.

1 ! 0 I 0 0 S S S

Cycles:
States: 4

Addre~~ing : n'!gister
Flags: Z,S,P,CY,AC

Page 45

216
ADC M (Add memory with carry)

316

(A) (,-- (A) + ((H) (L)) + (CY)
The content of the memory location whose ad­
dress is contained in the Hand L registers and the
content of the CY flag are added to the content of
the accumulator. The result is placed in the ac­
cumulator.

I 0 o o

Cycles:
States:

Addressing:
Flags:

2
7

r"9. i ndi reet

Z,S,P,CY,AC

o

ACI data (Add immediate with carry)
(A) (,-- (A) + (byte 2) + (CY)
The content of the second byte of the instruction
and the content of the CY flag are added to the
content of the accumulator. The result is placed
in the accumulator.

0 0 0

data byte

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

22 (0·5.7)
SUB r [Subtract Register)

(A) (,-- (A) - (r)
The content of register r is subtracted from the
content of the accumulator. The result is placed
in the accumulator.

[1 0 0 0 S S S

Cycles:
States: 4

Addressing: re(Jist,,'
Flags: Z,Sp,CY,AC

Page 46

226
SUB M (Subtract memory)

326

(A) _ (A) - ((H) (L))

The content of the memory location whose ad­
dress is contained in the Hand L registers is
subtracted from the content of the accumulator.
The result is placed in the accumulator.

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

o

SUI data (Subtract immediate)
(AJ _ (A) - (byte 2)
The content of the second byte of the instruction
is subtracted from the content of the ac­
cumulator. The result is placed in the ac­
cumulator.

1 I 0 0 0

data byte

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P ,CY,AC

23 (0-5,7)
SBB r (Subtract Register with borrow)

(Al _ (A) - (rl - (c.y)
The content of register r and the content of the CY
flag are both subtracted from the content of the
accumulator. The result is placed in the ac­
cumulator.

1 I 0 I 0 S S S

Cycles:
States: 4

A1.....1. ____ : __ • ._-_:_ _-
Flags: Z,S,P ,CY,AC

® ~fh*ifBifj}
236
SBB M (Subtract memory with borrow]

336

(AJ - (A) - ((H) (L)) - (ey)
The content of the memory location whose ad­
dress is contained in the Hand L registers and the
content of the CY flag are both su btracted from
the content of the accumulator. The result is
placed in the accumulator.

1 I 0
I 0 1 I 0

Cycles: 2
States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

SBI data (Subtract immediate with borrow)
fA) -<- (A) - (byte 2) - (CY)
The contents of the second byte of the instruction
and the contents of the CY flag are both sub­
tracted from the content of the accumulator. The
rC1Sult b placed in the accumulator.

1 I 1 \ 0 I 1
I

1 0

data byte

Cycles: 2
States: 7

Addressing: immediate

Flags: Z,S,P,CY,AC

o (0-5,7)4
INR r (Increment Register)

(r) _ (r) + 1
The content of register r is incremented by one.
NOTE: All condition flags except CY are affected.

0 0 D D D a 0

Cycles:
States: 5

Flags: Z,S,P,AC

064
INR M (Increment memory)

((H) (L)) ~ ((H) (Ll) + 1
The content of the memory location whose ad­
dress is contained in the Hand L registers is
incremented by one. NOTE: All condition flags
except CY are affected.

0 I 0 0 0 0

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z,S,P,AC

o (0-5,7J5
OCR r (Decrement Register)

065

(r) ~ (r) ~ 1
The content of register r is decremented by one.
NOTE: All condition flags except CY are affected.

0 0 D D D 0

Cycles:
States: 5

Addressing: register
Flags: Z,S,P,AC

OCR M (Decrement memory)
((H) (Ll) <- ((H) (L)) ~ 1
The content of the memory location whose ad­
dress is contained in the Hand L registers is
decremented by one. NOTE: All condition flags
except CY are affected.

Cycles:
States:

Addressing:
Flags:

o

3
10
reg. indirect
Z,S,P,AC

o

003 (B,C)
023 (O,E)

043 (H,L)
063 (s,p)

INX rp (Increment register pair)
(rh) (rl) <- (rh) (rl) + 1
The content of the register pair rp is incremented
by one. NOTE: No condition flags are affected.

0
I 0 R I P

Cycles:
States:

Addressing:

013 (B,C)
033 (O,E)

Flags:

I 0 I 0 I

1
5
register
none

053 (H,L)
073 (S,p)

OCX rp (Decrement register pair)
(rh) (rI) ~ (rh) (rl) ~ 1

1 I 1

The content of the register pair rp is decremented
by one. NOTE: No condition flags are affected.

o I 0 R I P I
Cycles:
States: 5

Addressing: register
Flags: none

011 (B,C) 051 (H,L)
031 (D,E) 071 (S,P)

OAD rp (Add register pair to Hand L)
(H) (L) <- (H) (L) + (rh) (rl)
The content of the register pair rp is added to the
content of the register pair Hand L. The result is
placed in the register pair Hand L. NOTE: Only
the CY flag is affected. It is set if there is a carry
out of the double precision add; otherwise it is
reset.

o I 0

Cycles:
States:

Addressing:
Flags:

3
10
register
CY

Page 48

047
DAA (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is ad­
justed to form two 4-bit Binary-eoded-Decimal
digits by the following process:

1. If the value of the least significant 4 bits of
the accumulator is greater than 9, or if the
AC flag is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of
the accumulator is now greater than g, or
if the CY flag is set, 6 is added to the most
significant 4 bits of the accumulator.

NOTE: All flags are affected.

Logical Group:

Cycles: 1
States: 4
Flags: Z,S,P,CY,AC

This group of instructions performs logical (Boolean)
opp.rations on data in registers and memory and on
condition flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry,
and Carry flags according to the standard rules.

24 (0-5,7)
ANA r (AND Register)

(A) ~ (A) 1\ (r)
The content of rf~gistP.r r is logically anded with
the content of the accumulator. The result is
placed in the accumulator. The CY flag is
cleared.

0 0 0 S S S

Cycles:
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

246
ANA M (AND memory)

346

(A) +- (A) 1\ ((H) (L))
The contents of the memory location whose ad­
dress is contained in the Hand L registers is
logically anded with the content of the ac­
cumulator. The result is placed in the ac­
cumulator. The CY flag is cleared.

I 0 I 1 I 0 I 0 I 1 I 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ANI data (AND immediate)
(A) +- (A) 1\ (byte 2)
The content of the second byte of the instruction
is logically anded with the content of the ac­
cumulator. The result is placed in the ac­
cumulator. The CY and AC flags are cleared.

I 1 o I 0 I 1

data byte

Cycles: 2

States: 7
Addressing: immediate

I 1

Flags: Z,S,p.CY,AC

25 (0-5.7)
XRA r (Exclusive OR Register)

(A) ~ CA) V- (r)

I 0

The content of register r is exclusive-OR'd with
the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags
are cleared.

0 0 S S S

Cycles:
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

256
XRA M (Exclusive OR Memory)

356

(A) _ (A) ¥ ((H) (L))
The content of the memory location whose ad­
dress is contained in the Hand L registers is
exclusive-OR'd with the content of the ac­
cumulator. The result is placed in the ac­
cumulator. The CY and AC flags are cleared.

I 0 I 1 I 0 I 1 I 1 I 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

XRI data (Exclusive OR immediate)
(A) _ (A) ¥ (byte 2)
The content of the second byte of the instruction
is exclusive-OR'd with the content of the ac­
cumulator. The result is placed in the ac­
cumulator. The CY and AC flags are cleared.

1 I I 0 I 1 I 1 I 0

data byte

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P ,CY,AC

26 (0-5,7)
ORA r (OR Register)

(A) _ (A) V (r)

The content of register r is inclusive-OR'd with
the content of the accumulator. The result is
placed in tho accumulator. The CY and AC flags
are cleared.

I 0 I 1 0 S S s

Cycles:
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

Page 4"

266
ORA M (OR memory)

366

(A) _ (A) V ((H) (L))
The content of the memory location whose ad­
dress is contained in the Hand L registers is
inclusive-OR'd with the content of the ac­
cumulator. The result is placed in the ac­
cumulator. The CY and AC flags are cleared.

I 0 I 1 I 1 0 I 1 I 1 I 0

Cycles: 2
States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

ORI data (OR Immediate)
(A) _ (A) V (byte 2)
The content of the second byte of the instruction
is inclusive-OR'd with the content of the ac­
cumulator. The result is placed in the ac­
cumulator. The CY and AC flags are cleared.

1 I

~.:a 1 L:
I 1 I 1

I 0

Cycles: 2
States: 7

Addressinq: immediate
Flags: Z,S,P,CY,AC

27 (0-5,7)
CMP r (Compare Register)

(A] - (r)
The content of register r Is subtracted from lhe
accumulator. The accumulator remains un­
changed. The condition flags are set as a result of
tho subtraction. The Z flag is set to 1 if (A) = (r).
The CY flag is set to 1 if (A) < (r).

I 0 I 1 I 1 S I s s

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

Page 50

276
CMP M (Compare memory)

376

(A) - ((H) (L))
The content of the memory location whose ad­
dress is contained in the Hand L registers is
subtracted from the content of the accumulator.
The accumulator remains unchanged. The con­
dition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A) = {(H) {Ln. The CY flag
is set to 1 if (A) < (fH) (L)).

1 I 0 I I 1

Cycles: 2

States: 7
Addressing:

FlaQs:
reg. indirect
Z.S.P .CY .AC

o

CPI data (Compare imIllediate)

007

(A) - (byte 2)
The content of the second byte of the instruction
is subtracted from the content of the ac­
cumulator. The condition flags are set by the
result of the subtraction. The Z flag is set to 1 if
(A) = (byte 2). The CY flag is set to 1 if (A) < (byte
2).

1 I

data byte

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,S,P,CY,AC

o

RLC (Rotate left)
(An+1) +- (A ..); (Ao) +- (A7l
(CY) +- (A7)

The content of the accumulator is rotated left one
position. The low-order bit and the CY flag are
both set to the value shifted out of the high-order
bit position. Only the CY flag is affected.

Cycles:
States: 4
Flags: CY

017

RRC (Rotate right)

027

(An) +- (A1I - 1); (A7) +- (Ao)

(CY) +- (Ao)
The content of the accumulator is rotated right
one position. The high-order bit and the CY flag
are both set to the value shifted out of the low­
order bit position. Only the CY flag is affected.

Cycles:
States: 4
Flags: CY

RAL (Rotate left through carry)

037

(An+l) +- (An); (CY) +- (A7)
[Ao) +- rCY)
The content of the accumulator is rotated left one
position through the CY flag. The low-order bit is
set equal to the CY flag and the CY flag is set to the
value shifted out of the high-order bit. Unly the
CY flag is affected.

0 I 0
I

0
I 1 0

Cycles: 1
States: 4
Flags: CY

RAR (Rotate right through carry)
(An) +- (An+1); (CY) +- (Ao)
(A7) +- (CY)
The content of the accumulator is rotated right
one position through the CY flag. The high-order
uiL is sellu lhe CY flag amllhe CY flag b lSellu lhe
value shifted out of the low-order bit. Only the
CY flag is affected.

Cycles: 1

States: 4
Flags: CY

057
CMA (Complement accumulator)

077

(A) <-- (A)
The content of the acc.umulator is complemented
(zero bits become 1, one bits become 0). No flags
are affected.

Cycles: 1
States: 4
Flags: none

CMC (Complement carry)

067
STC

(CY) <-- (CY)
The CY flag is complemented. No other flags are
affected.

0 I 0 I 1

Cycles:
States:
Flags:

(Set carry)
(CY) <-- 1

I 1 I 1 I 1

4
CY

The CY flag is set to 1. No other flags are affected.

0 I 0 I 0 I 1 I 1 I 1

Cycles:
States: 4

Flags: CY

Branch Group

This group of instructions alters normal sequential
program flow.

Condition flags are not affected by any instruction in
this group.

The two types of bnmc.h instructions are uncondi­
tional and conditional. Unconditional transfers sim­
ply perform the specified operation on register PC
(the program counter). Conditional transfers examine

Page 51

the status of one of the four processor flags to deter­
mine if the specified branch is to be executed. The
conditions that may be specified are as follows:

CONDITION CCC OCTAL

NZ - not zero (Z = 0) 000 0
Z - zero (Z - 1) 001 1

NC - no carry (ey = 0) 010 2
C - carry (CY = 1) 011 3

PO - parity odd (P = 0) 100 4
PE - parity even (P = 1) 101 5

P - plus (S = 0) 110 6
M - minus (8 = 1) 111 7

303
IMP addr (Jump)

(PC) <-- (byte 3) (byte 2)

Control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the
current instruction.

1 1 1 I

::I (0-7)2

0 I 0 I 0 I 0

low-order addr

high-order addr

Cycles: 3
States:

Addressing:
10
immediate
none Flags:

I 1 T 1

Jcondition addr (Condition jump)
If (CCC),

(PC) (byte 3) (by to 2)
If the specified condition is true, control is trans­
ferred to the instruction whose address is
specified in byte 3 and byte 2 of the current in­
struction; otherwise, control continues sequen­
tially.

1 I 1 I C 1 c 1
C 10 1 1 1 0

low·order addr

high-order addr

Cycles: 3
States: 10

Addressing: immediate
Flags: none

Page 52 ___ ,~~f¥fit{$fif5~

315
CALL addr (Call)

((SP) - 1) +- (PCH)
((SP) - 2) +- (PCL)
(SP) +- (SP) - 2
(PC) +- (byte 3) (byte 2)
The high-order eight bits of the next instruction
address are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction
address are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.
Control is transferred to the-instruction whose
address is specified in byte 3 and byte 2 of the
current instruction.

1 I 1 I o I 0 I 1 I

low-order addr

high-order addr

Cycles: 5
States: 17

1 I o I 1

Addressing: immediate/reg. indirect
Flags: none

3 (0-7) 4
Ccondition addr (Condition call)

If (CCC) ,
((SP) - 1) +- (PCH)
((SP) - 2) +- (PCL)
(SP) +- (SP) - 2
(PC) +- (byte 3) (byte 2)

If the specified condition is true, the actions
specified in the CALL instruction (see above) are
performed; otherwise, control continues sequen­
tially.

low-order addr

high·order addr
------------- -----------------~

Cycles: 3/5
States: 11/17

Addressing: immediate/reg. indirect

Flags: none

311
RET (Return)

(peL) +- ((SP]);
(PCH) +- ((SP) + 1);
(SP) +- (SP) + 2;

The content of the memory location whose ad­
dress is specified in register SP is moved to the
low-order eight bits of register Pc. The content of
the memory location whose address is one more
than the content of register SP is moved to the
high-order eight bits of register PC. The content
of register SP is incremented by 2.

1 I I 0 I 0

Cydp.~· 3

States: 10

I 0 I 0

Addressing: reg. indirect
Flags: none

3 (0-7) 0
Rcondition (Conditional return)

If (CCC),
(PCL) +- ((SP))
(PCH) +- ((SP) + 1)
(SP) +- (SP) + 2

If the specified condition is true, the actions
specified in the RET instruction (see above) are
performed; otherwise, control continues sequen­
tially.

1 I C C

Cycles:
States:

Addressing:
Flags:

3 (0-7)7
RST n (Restart)

((SP) - 1) +- (PCH)
((SP) - 2) +- (PCL)
(SP) ~ (SP) - 2
(PC) ~ 8 * (NNN)

C 0 I 0
I 0

1/3
5/11
reg. indirect
none

The high-order eight bits of the next instruction
address are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction

address are moved to the memory location whose
address is two less than the content ofregister SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose
address is eight times the content of NNN.

1 I N N I N 1 I 1 I

Cycles: 3
States: 11

Addressing: reg. indirect

Flags: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IOlolololOlolololololNINJNlololol
Program Counter After Restart

351
peHL (Jump Hand L indirect - move Hand L

to PC)
(PCH) _ (H)
(PCL) _ (L)

The content of register H is moved to the high­
order eight bits of register PC. The content of
register L is moved to the low-order eight bits of
register Pc.

o 0 o

Cycles:
States: 5

Addressing: register
Flags: none

Stack, I/O, and Machine Control Group

This group of instructions performs I/O, manipulates
the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

3U5

325
(B, C)
(D, E)

045

Page 53

(H, L)

PUSH rp (Push)

365

((SP) - 1) _ (rh)
((SP) - 2) _ (rl)
(SP) _ (SP) - 2

The content of the high-order register of register
pair rp is moved to the memory location whose
address is one less than the content of register SP.
The content of the low-order register of register
pair rp is moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is det:fenwuted by 2.
NOTE: Register pair rp = SP may not be
specified.

1 I R p o o

Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

PUSH PSW (Push processor status word)
((SP) - 1) _ (Aj

([SP) - 2}o - (ey), ((SP) - 2}1 _ 1

[(SP) - 2}2 - (P), ((SP) - 2)3 _ 0
aSP) - 2)4 - fAC)' ((SP) - 2h _ a
((SP) - 2)6 +- (Z), ((SP) - 2h +- (S)
(SP) +- (SP) - 2
The content of the accumulator is moved to the
memory location whose address is one less than
register SP. The contents of the condition flags
are assembled into a processor status word and
the word is moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.

1 I 1 I

Ds

s z

Cycles: 3
States: 11

Addressing:

Flags:

reg. indirect

none

FLAG WORD

o AC 0 p CY

Page 54

301 (B.C)
321 (D,E) 341 (H,L)

POP rp (Pop)

361

(d) -- ((SP))
(rh) _ ((SP) + 1)
(SP) _ (SP) + 2

The content of the memory location, whose ad­
dress is specified by the content of register SP is
moved to the low-order register of register pair
rp. The content of the memory location whose
address is one more than the content of register
SP is moved to the high-order register of register
pair rp. The content of register SP is incremented
by 2. NOTE: Register pair rp = SP may not be
specified.

I 1 R p I 0 I 0 I 0 ! 1

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: none

POP PSW (Pop processor status word)
(ey) - ((SP))o
(P) - {(SP))2
(AC) - ((SP))4
(Z) - ((SP))s
(S) -- ((SP)h
(A) _ ((SP) + 1)
(SP) _ (SP) + 2
The content of the memory location whose ad­
dress is specified by the content of register SP is
used to restore the condition flags. The content of
the memory location whose address is one more
than the content of register SP is moved to regis­
ter A. The content of register SP is incremented
by 2.

0 0 0

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

!@~ fU¥S'ifbHl
343
XTHL (Exchange stack top with Hand L)

371

(L) ~ ((SP))
(H) ~ ((SP) + 1)
The content of the L register is exchanged with
the content of the memory location whose ad­
dress is specified by the content of register SP.
The content of the H register is exchanged with
the content of the memory location whose ad­
dress is one more than the content of register SP.

I 0 o I 0 I 1 I 1

Cycles: 5
States: 18

Addressing: reg. indirect
Flags: none

SPHL (Move HL to SP)

333

(SP) _ (H) (L)
The contents of registers Hand L (16 bits) are
moved to register SP.

1 I 1 I 1 I o o

Cycles:
States: 5

Addressing: register
Flags: none

IN port (Input)
(A)(---(data)
The data placed on the eight-bit bi-directional
data bus by the specified port is moved to the
accumulator.

0 :o~t 0

input

Cycles: 3
States: 10

Addressing: direct
Flags: none

323
OUT port (Output)

373

(data) +- (A)
The content of the accumulator is placed on the
eight-bit bi-directional data bus for transmission
to the specified port.

1 I I 0 I 1 0 0

output port

Cycles: 3
States: 10

Addressing: direct
Flags: none

EI (Enable interrupt)

363

The interrupt system is enabled following the
execution of the next instruction.

1 I 1 I I 1 I a I 1

Cycles:
States: 4
Flags: none

DI (Disable interrupt)
The interrupt system is disabled immediately
following the execution of the DI instruction.

1 I 1 I I 1 0
I 0 I 1

I 1

Cycles:
States: 4

Flags: none

Page 55

166
HLT (Halt)

000

The processor is stopped. The registers and flags
are unaffected.

0 I 1 I 0 0

Cycles:
States: 7

Flags: none

NOP (No op)
No operation is performed. The registers and
flags are unaffected.

0 I 0 I 0 I 0 0 0 0 0

Cycles:
Statp.s~ 4

Flags: none

Page 56 __ .da;;~>fffiH5iifi*fj@

SYSTEM CONSIDERATIONS

MEMORY MAP

The Memory Map illustrates the use of the specified
memory locations.

END OF ADDRESS SP)\CE ,---------------,

END OF RAM

USER AREA

THE STACK AUTOMATICALLY SlARTS
AT THE UPPER BOUNDARY OF
ME,ylORY. THE IIWNITOR WILL USE
A iV\AXIMUM Of 12° 8 (8°101 LOCP.TIONS
II NDICATED BY SHADED AREA).

USER PROGRAMS SHIRT
AT 040 100 WHEN LOADE D.

~------~~---------1040 100

BEGINNING OF RAM--.-I--------------;040 000 8K IDECIJ'I1ALl

---------RESERVED FOR EXPAIIJSION.
NOT RECOMMENDED FOR
ClJSTOMER USE.

004 OOO}
FRONT PANEL MONITOR IROiM lK

~-------------------~OOO 000

1/0 PORT MAP

The I/O Port Map illustrates the use of the specified
I/O port addresses.

3778

PORT ADDRESS

373 8

3728

371 8

3708

361 8

360 8

3008

R~SERVED

CONSOLE CONTROL PORT

CONSOLE DATA PORT

LOAD AND DUMP CONTROL PORT

LOAD AND DUMP DATA PORT

RESERVED

FRONT PANEL SEGMENT SElECT

FRONT PANEL COMMANDS, DIGIT
SELECT, AND KEY PA D

RESERVED

BUS FUNCTIONAL PIN DEFINITIONS

AwAo (output, three-state) ADDRESS BUS - The
address bus provides the address to memory (up to
64K 8-hit words) or denotes the I/O device number for
up to 256 input and 256 output devices. Ao is the least
significant address bit.

D7-Do (input/output. thru-state) DATA BUS - The
data bus provides bi-directional communication be­
tween the CPU, memory. and I/O devices for instruc­
tions and data transfers. Also, during the first clock
cycle of each machine cycle, the BOBOA outputs a
status word on the data hus that describes the current
machine cycle. Do is the least significant data bit.

~2 (output) - A CPU board supplied clock phase
(TTL compatible).

5201-

24 G N D *
23 MEMW

22 0'2

21 Ifow

20 RDYIN*

19 1\\1

18 G~D*

16 06

13 D3

12 D2

II D 1

10 DO

I NT2*

8 I'HI*

IN T7

6 I NT 6

4 I NT 4

-18V

GND

a G ND

S201-

49 +8V

48 +8V

47 +18V

46 ROM DISABLE

45 A 15

44 A 14

43 Ai3

t.2 A 12

411\11

40 7\)Q

38 A8

37 A 7

36 A 6

35 AS

34 A4

33 A 3

32 A2

31 A I

3U AO

29 RESET

28 M~MR

27 HOLD *

26 IloR

25 HLDA*

*HEATH COMPANY RESERVES THE RIGHT
TO CHANGE THESE PIN DESIGNATIONS.

Page 57

HOLD (input) - The HOLD signal requests the CPU
to enter the HOLD state. The HOLD state allows an
external device to gain control of the 8080A address
and data bus as soon as the aOSOA has completed its
use of these buses for the current machine cycle. It is
recognized under the following conditions:

1, The CPU is in the HALT state.

2. The CPU is in the T 2 or T IV state and the READY
signa 1 is ar:tivp..

Page 58

As a result of entering the HOLD state, the CPU ad­
dress bus and data bus will be in their high impe­
dance state. The CPU acknowledges this state with
the HOLD ACKN'OWLEDGE (HLDA) pin.

HLDA (output) HOLD ACKNOWLEDGE - The
HLDA signal appears in response to the HOLD signal
and indicates that the data and address bus will go to
their high impedance state. The HLDA signal begins
at:

1. T3 for READ memory or input operation.

2. The clock period following T3 for WRITE mem­
ory or output operation.

In either case, the HLDA signal appears after the ris­
ing edge of cpi and high impedance occurs after the
rising edge of cp2.

INT l -INTr (input) INTERRUPT REQUEST - The
CPU recognizes an interrupt request on these lines at
the end of the current instruction or while halted. If
the CPU is in the HOLD state or if the interrupt enable
flip-flop is reset, it will not honor the request.

RESET (input) - While the RESET signal is activated,
the contents of the program counter are cleared. After
RESET, the program will start at location 0 in mem-

ory. The TNTF. ann HT.nA flip-flops are also reset. The
flags. accumulator, stack pointer. and registers are not
cleared. NOTE: The RESET signal must be active for a
minimum of three clock cycles.

MEMR and IIOR (output) MEMORY READ and IN­
PUT/OUTPUT READ - The read control signals are
derived from the logical combination of the appro­
priate Status Bit (or bits) and the DBIN input from the
aoaOA.

MEMW and I/OW (output) MEMORY WRITE and IN­
PUT/OUTPUT WRITE - The write control signals
are derived from the logical combination of the ap­
propriate Status Bit (or hits) and the WR input from
the a080A.

RDYIN (input) READY INPUT - Provides an asyn­
chronous wait request to the clock generator which
generates the synchronous READY signal for the mi­
croprocessor.

Ml (output) The first MACHINE CYCLE - Provides a
sigmll to innicate that the CPU is in the fetch cycle for
the first byte of an instruction.

ROM DISABLE (input) ROM DISABLE - An external
provision to disable the on-board ROM.

SYSTEM CONFIGURATIONS

Your H8 Digital Computer consists of the central pro­
cessing unit, front panel, power supply. and mother­
huunl. The mUlher drcuil boanl is used fur inslalling
memory and serial and parallel I/O cards. Memory
must be added for the Computer to be operational.
Memory size may range from 4K bytes to 32K bytes.
An on-board ROM aI10ws the following commands to
be executed upon power-up.

1. Memory display and alter.

2. Register display and alter.

3. Input and output to and from a port.

-1. Load and dump (with and I/O card and storage
device).

Therefore, the Computer can execute machine lan­
guage programs using the front panel as an I/O de­
vil.:e.

You can add the following Heath accessories to ex­
pand your Computer system:

Heath Memory Card - Contains 4K of static RAM. By
adding the 4K chip set, you Gall expalld lhe memory to
aK. A maximum of four Memory Cards (32K total
memory) can be installed.

Heath Parallel I/O Interface - Provides three ports of
parallel I/O. Each port has eight bits input and eight
hits output, with complete hand-shaking available.

Page 59

Heath Serial I/O and Cassette Interface - The Cas­
sette Interface allows programs to be stored (dumped)
onto tapes and then retrieved (loaded) in the future.
The Serial Interface is used with a terminal as a sys­
tem console or an l/U device.

Heath Paper Tape Punch/Reader - l.ommunicates
through an 8-bit parallel port.

Heath CRT Terminal - Communicates with the
Computer serially. The CRT Terminal can also com­
municate with the Paper Tape Punch/Reader in paral­
lel.

The following pages show various system configura­
tions available with the H-8 Digital Computer.

SYSTEM 1

CRT OR TTY TERMINAL

IOPTIONAL)

FRONT PANEL

IINCLUDED WITH H81

CPU iltL-__ ~
8080A WITH lK RONI

IINCLUDED WITH HS) N'

MEMORY BOARD 4K II1..L-__J

ICAN BE EXTENDED
TO 8KI

10PTIONALI

ADDITION.II.L MEMORY I
BOARDS (MAX I MUM V'L--_...I

BOARDS IN H8 IS
4. I3ZK OF N

MEMORY TOTALi

SER IAl I/O
AND

CASSETTE INTERFACE
(OPTIONAl) N'

HEATH
/' BUS

STANDARD AUDIO
CASSETTE

PLAYER/RECORDER
(OPTIONAl)

Page 60

FRONT PANEL

!INCLUDED WITH H8l

SYSTEM 2

CRT OR TTY

TERM I NAL

(OPTIONAL)

CPU kl....-_---I
8080A WITH lK ROM

(INCLUDED WITH 1-18)1\1"

MEMORY BOARD 4K ill
ICAN BE EXTENDED L..-__j

TO 8K)
(OPTIONAL) N"

ADDITIONAL MEMORY I ... BOARDS IMAX I ML M Io""LL..-__j

BOARDS IN H8 IS
4. (32K OF

MEMORY TOTALI N

SERIAL I/O
AND

CASSETTE
INTERFACE

(OPTIONAU

PARALLEL I/O
INTERFACE

VtL...-.._

(OPTIONAL) N'

TO/FROM OTHER
PARALLEL I/O SOURCES

IFOR EXAMPLE-PRINTER)

PA PER TA PE

PUNCH/REA DER

(OPTIONAL)

Page 61

APPENDIX

SOURCE PROGRAM FOR THE MEMORY TEST ROUTINE

HLA1H m:,MllhY 11."1 RUU1JNE.

UWYRIGHT I'll}, HEATH CO.

4()U,O
:'';;' t,()

,1(, I 00

401(1) 041 U,O
40 I ()J 0;" ~)AO

4u 1 0,'; 01>6 OO\)
A10 I I,) .,\ J ',; '14:;
401.1 J ()43
40' 14 ,W;" 106

401 I.l (JOb 000
401 :~ t 0:;.",::.' 10:1,
to! ?4 004

401::':', 064
40t2b 'I ;; (~)

040
O:d

040

()40

040

3 *** 4 >I<

,) >I<

<> *
I

El
9

lO >1<*
II *
1 " *
1:3 >I<

14 *
J ~i >I<

j 6
I}
HI >1'*
19 '*
20 >I<

:.> 1 *
:2:) *
l3
:!.4

2~.J **
26 *
:u*
:w '*
3{)

31 ~iTART

32 FNl.i
,\3

34
:~ ~.,

,S"
,,1
Jb
39
40
41
4:'
4.1
44
4::i
46
4/

EN II,Y

>I<

MEM.I

4B *
49 *
:50
~:.; 1

~:;;3

54
~j~5 MEM3
~) ()

CAXXXX 02/15/77. 13.12.46. PAGE

HEATH MEMORY TEST ROUTINE.

COPYRIGHl HEA1H COMPANY
l.iENfON HARBOR. MI. 2/191}

THIS ROUTINE IS USED TO EXERCIZE HO SYSTEM MEMORY BOARUS.
THE ROOTINE IS ENTEREl.i INTO MFMFnRY VIA THE FRONT PANEL. THE
~fARTrNG AND ENDING ADDRESSES ARE ENTERED, AND EXECUTION IS BEGUN.

THE PROGRAM WILL RUN INDEFINITEL.Y IF NO ERRORS ARF FOUND. IT HALTS
IF AN ERROR IS DETECTED.

STARTING AND ENDING ADDRESSES:

THE STARTING ADDRESS IS ENTERED (LOW BYTE FIRST) IN LOCATIONS 40101
AND 40102. THE ENDING ADDRESS IS ENTERED (LOW BYTE FIRST) IN L,OCATIONS
40104 ANn 4010~).

IHE PROGRAM HALTS WITH 40134 IN THE PC REGISTER IF AN ERROR IS FOUND.
fHE HL REGISTER PAIR CONTAINS THE ADnRESS OF THE BYTE IN ERROR.

FllU
EOU

ORO

I XL
[Xl

lrfW

MV.I
CALL
INX
.JNI:

40160A
AO()OOA ' :I ?OD

40J()OA

H,,; TART'
t<,I:NII

IT,il AF,I,A.

M.O
CMr'
H
MEMl

DEFAULT ETARr ADDRFES
DEfAULT END AnDRESS

SlART 01 USER RAM

(HI.
(!'IF)

STAk I ING ADDRF~:;S

~"NH f Nt; flI.tnREt;B

lERO A BY IT
SFE it' Ar END

NOT YFT AT ENV

SlART DIAGNOSING MEMORY. INCREMFNT EACH BYTE IN tURN. AND COMPARE
fHAI kESULl TO THF EXPECTED VALUE.

MVI 1',0
LHLD ENTI~Yt1
1NF, })

INR
MflV

(B) • EXPECTED VALUE
(HLI START ADDRESS
NEW PASS: EXPECT NEW VALUE

INCREMENT LOCATION
(AI VALUE

*

Page 62

HEATH MEMORY TEST ROUTINE.
COPYRIGHT 1977. HEATH CO.

40127 270
40130 312

40133 166
40134 000

40135 315
40140 046
40141 302
40144 303

40147 172
40150 254
40151 300
40152 173
40153 r,c~·

~~~ 

40154 311 

40155 

135 040 

147 040 

125 MO 
121 MO 

57 
58 
59 

60 * 
61 
62 
63 
64 
65 MEM4 
66 
67 
68 
69 
70 
71 
72 
73 

74 ** 
75 * 
76 * 
77 
78 eMP 
79 
80 
81 
82 
83 
84 
85 

eMP 
JE 

B 
MEM4 

CAXXXX 02/15/77. 13.12.46. 

COMPARE TO EXPECTED VALUE 
IS OK 

HAVE ERROR. (HL) ~ ADDRESS OF BYfE IN ERROR. 

HLT 
NW 

CALL 
INX 
JNE 
JMP 

eMP 
H 
MEM3 
MEM2 

SEE IF AT END OF RANGE 

NOT AT END OF PASS YET 
AT END OF PASS 

CMP - COMPARE (DE) TU (HL) 

EXIT WITH 'Z' SET IF (HL) = (DE) 

MOO A,D 
X~ H 
RNE NUl EQUAL 
MOV A,E 
XRA L 
RET RETURN WITH 'Z' SET IF EQUAL 

E~ 

PAGE 



~~f'f9%S¥'fi:~ __________________________________________________________________ p.a.g.8.6_3 

THE FUNCTIONS OF A COMPUTER 

This section of the Manual introduces certain basic 
computer concepts. It provides background informa­
tion and definitions which will be IIsefll1 in lRtp.r 
sections of this ManuaL Those already familiar with 
computers may skip this material, at their option. 

A TYPICAL COMPUTER SYSTEM 

A typical digital computer consists of: 

a) A central processor unit (CPU) 
b) A memory 
c) Input/output (I/O) ports 

The memory serves as a place to store instructions, 
the coded information that directs the activities of the 
CPU, and data, the coded information processed by 
the cPU. A group of logically related instructions 
stored in memory is referred to as a program. The 
CPU "reads" each instruction from memory in a logi­
cally determined sequence, and uses it to initiate pro­
cessing actions. If the program sequence is coherent 
and logical, processing the program produces intel­
ligible and useful results. 

The memory is also used to store the data to be man­
ipulated, as well as the instructions that direct man­
ipulation. The program must be organized such that 
the CPU does not read a non-instruction word when it 
expects to see an instruction. The CPU can rapidly 
access data stored in memory, but often the memory is 
not large enough to store the data required for a par­
ticular application. This problem can be resolved by 
provid ing the computer with one or more input ports. 
The CPU can address these ports and input the data 
contained there. The addition of input ports enables 
the computer to receive information from external 
e4uilJllWllt(such as a paper tape reader or floppy disk) 
at high rates of speed and in large volumes. 

A computer also reqllirAs onA or morA output ports 
that permit the CPU to communicate the result of its 
processing to the outside world. The output may go to 
a display, for use by a human operator, to a peripheral 
device that produces "hard copy," such as a line 
printer, to a peripheral storage device, such as a 
floppy disk unit, or the output may constitute process 

control signals that direct the operations of another 
system, such as an automated assembly line. Like 
inpl1t ports, outpllt ports are addressable. The input 
and output ports together permit the processor to 
communicate with the outside world. 

The CPU unifies the system. It controls the functions 
performed by the other com ponents. The CPU fetches 
instructions from memory, decodes their binary con­
tents and executes thenl. It alsu references llleillury 
and I/O ports as necessary in the execution of instruc­
tions. In addition. the CPU recognizes and responds 
to certain external control signals, such as interrupt 
and wait requests. The functional units within a CPU 
that enable it to perform these functions are described 
below. 

THE ARCHITECfURE OF A CPU 
A typkal central pcucessor unit (CPU) consists ofthe 
following interconnected functional units: 

• Registers 
• Arithmetic/Logic Unit (ALU) 
• Control Circuitry 

Registers are temporary storage units within the CPU. 
Some registers, such as the program counter and in­
struction register, have dedicated uses. Other regis­
ters, such as the accumulator, are for general-purpose 
use. 

Accumulator 

The accumulator usually stores one of the operands to 
be manipulated by the ALU. A typical instruction 
might direct the ALU to add the contents uf some 
other register to the contents of the accumulator and 
store the result in the accumulator itself. In general, 
the accumulator is both a source (operand) and a 
destination (result) register. 

Often a CPU includes a number of additional general 
purpose registers used to store operands or inter­
mediate data. The availability of general-purpose re­
gisters eliminates the need to "shuffle" intermediate 
results back and forth between memory and the ac­
cumulator, thus improving processing speed and ef­
ficiency. 

Portions of this section of the Manual are reprinted by permission of Intel 
Corporation (Copyright 1976J. 



Page 64 ___________________________________________________________________________ ~-~ f¥f¥ft9¥ffi5;~ 

Program Counter (Jumps, Subroutines and the 
Stack) 

The instructions that make up a program are stored in 
the system's memory. The central processor refer­
ences the contents of memory in order to determine 
what action is appropriate. This means the processor 
must know which location contains the next instruc­
tion. 

Each of the locations in memory is numbered to dis­
tinguish it from all other locations in memory. The 
number that identifies a memury luccrliull is ccrlled its 
address. 

The processor maintains a counter that contains the 
address of the next program instruction. This register 
is called the program counter. The processor updates 
the program counter by adding "1" to the counter 
each time it fetches an instruction. Therefore, the 
program counter is always current (pointing to the 
next instruction). 

The programmer therefore stores his instructions in 
numerically adjacent addresses, so the lower addres­
ses contain the first instructions to be executed and 
the higher addresses contain later instructions. The 
only time the programmer may violate this sequential 
rule is when an instruction in one section of memory 
is a jump instruction to another section of memory. 

A jump instruction contains the address of the in­
struction which is to follow it. The next instruction 
may be stored in any memory location, as long as the 
programmed jump specifies the correct address. Dur­
ing the execution of a jump instruction, the pToceS50f 
replaces the contents of its program counter with the 
address embodied in the instruction. Thus, the logi­
r.al continuity of the program i.~ ml1intainect 

A special kind of program jump occurs when the 
stored program "calls" a subroutine. In this kind of 
jump, the processor is required to "remember" the 
contents of the program counter at the time the call 
occurs. This enables the processor to resume execu­
tion of the main program when it is finished with the 
last instruction of the subroutine. 

A subroutine is a program within a program. Usually 
it is a general-purpose set of instructions that must be 
executed repeatedly in the course of a main program. 
Routines which calculate the square, the sine, or the 
logarithm of a program variable are good examples of 
functions often \'\Tl'itten as subroutines. Other exam-

pIes are programs designed for inputting or output­
ting data to a particular peripheral device. 

The processor has a special way of handling sub­
routines, in order to insure an orderly return to the 
main program. When the processor receives a call 
instruction, it increments the program counter and 
stores the counter's contents in a reserved memory 
area known as the stack. The stack thus saves the 
address of the instruction to be executed after the 
subroutine is completed. Then the processor loads 
the address specified in the call into its program 
counter. The next instruction fetched is therefore the 
first step of the subroutine. 

The last instruction in any suhrolltine is fl rf~tllrn 

Such an instruction need specify no address. When 
the processor fetches a return instruction, it simply 
replaces the current contents of the program counter 
with the address on the top of the stack. This causes 
the processor to resume execution of the program at 
the point immediately following the original call in­
struction. 

Subroutines are often nested; that is, one subroutine 
will sometimes ca]J a second subroutine. The second 
may call a third, and so on. This is perfectly accepta­
ble, as long as the processor has enough capacity to 
store the necessary return addresses, and the logical 
provision for doing so. In other words, the maximum 
depth of nesting is determined by the depth of the 
stack itself. If the stack has space for storing three 
return addresses, then three levels of subroutine nest­
ing may be accommodated. 

Processors have different ways of maintaining stacks. 
Some have facilities for the storage of return addres­
ses built into the processor itself. Other processors 
use a reserved area of external memory as the stack 
and simply maintain a pointer register which con­
tains the address of the most recent stack entry. The 
external stack allows virtually unlimited subroutine 
nesting. In add ilion, if the processor provides instruc­
tions that cause the contents of the accumulator and 
other general-purpose registers to be "pushed" onto 
the stack or "pupped" off the stack via the address 
stored in the stack pointer, multi-level interrupt pro­
cessing (described later in this section) is possible. 
The status of the processor (for example, the c()ntent~ 
of all the registers) can be saved in the stack when an 
interrupt is accepted and then restored after the inter­
rupt has been serviced. This ability to save the proces­
sor's status at any given time is possible even if an 
interrupt service routine, itself, is interrupted. 



Instruction Register and Decoder 

Every computer has a word length characteristic of 
that machine. A computer's word length is usually 
determined by the size of its internal storage elements 
and interconnecting paths (referred to as buses); for 
example, a computer whose registers and buses can 
store and transfer eight bits of information has a 
characteristic word length of eight bits and is referred 
to as an 8-bit parallel processor. An 8-bit parallel 
vrucessur generally finus it musl effidenllu deal with 
8-bit binary fields, and the memory associated with 
such a processor is therefore organized to store eight 
bits in each addressable memory location. Data and 
instructions are stored in memory as 8-bit binary 
numbers, or as numbers that arc integral multiples of 
eight bits: 16 bits, 24 bits, and so on. This characteris­
tic 8-bit field is often referred to as a byte. 

Each operation the processor can perform is iden­
tified by a unique byte of data known as an instruction 
code or operation code. An 8-bit word used as an 
instruction code can distinguish between 256 alterna­
tive actions, more than adequate for most processors. 

The processor fetches an instruction in two distinct 
operations. First, the processor transmits the address 
in its program counter to the memory. Then the mem­
ory returns the addressed byte to the processor. The 
CPU stores this instruction byte in the instruction 
register, and uses it to direct activities during the 
remainder of the instruction execution. 

The mechanism by which the processor translates an 
instruction code into specific processing actions re­
quires a more elaborate explanation than is given 
here. The concept, however, shuulll he intuilively 
clear to any logic designer. The eight bits stored in the 
instruction register can be decoded and used to selec­
tively activate one of a number of output lines, in this 
case up to 256 lines. Each line represents a set of 
activities associated with execution of a particular 
instruction code. The enabled line can be combined 
with selected timing pulses to develop electrical sig­
nals that can then be used to initiate specific actions. 
This translation of code into action is performed by 
the instruction decoder and the associated control 
circuitry. 

An 8-bit instruction code is often sufficient to specify 
a particular processing action. There are times, how­
ever, when execution of the instruction requires more 
information than eight bits can convey. 

One example of this is when the instruction refer­
ences a memory location. The basic instruction code 

Page 65 

idcntifies the operation to be performed, but cannot 
specify the object address as well. In a case like this, a 
two- or three-byte instruction must be used. Succes­
sive instruction bytes are stored in sequentially adja­
cent memory locations, and the processor performs 
two or three fetches in succession to obtain the full 
instruction. The first byte retrieved from memory is 
placed in the processor's instruction register, and 
subsequent bytes are placed in tern porary storage; the 
processor then proceeds with the execution phase. 
Such an instructiun Is referred tu as variabl~ length. 

Address Register(s) 

A CPU may use a register or register pair to hold the 
address of a memory location to be accessed for data. 
If the address register is programmable, (for example, 
if there are instructions that allow the programmer to 
alter the contents of the register) the program can 
"build" an address in the address register prior to 
executing a memory reference instruction (for exam­
ple, an instruction that reads data from memory, 
writes data to memory, or operates on data stored in 
memory). 

Arithmetic/Logic Unit (ALU) 

All processors contain an arithmetic/logic unit, often 
referred to simply as the ALU. The ALU, as its name 
implies, is that portion of the CPU hardware which 
performs the arithmetic and logical operations on the 
binary data. 

The ALU must contain an adder capable of combin­
ing the contents of two registers in accordance with 
the logic of binary arithmetic. This provision permits 
the vrUl.:essur tu verfuHu arllilluelic manivultlLlul1s on 
the data it obtains from memory and from its other 
inputs. 

Using only the basic adder, a capable programmer can 
write routines which will subtract, multiply and di­
vide, giving the machine complete arithmetic 
capabilities. In practice, however, most ALU's pro­
vide other built-in functions, including hardware 
subtraction, Boolean logic operations, and shift 
capabilities. 

The ALl] contains flag bits which specify certain 
conditions that arise in arithmetic and logical rna 
nipulations. Flags typically include carry, zero, sign, 
and parity. It is possible to program jumps which are 
conditionally dependent on the status of one or more 
flags. Thus, for example, the program may be de­
signed to jump to a special routine if the carry bit is set 
following an addition instruction. 



Page 66 

Control Circuitry 

The control circuitry is the primary functional unit 
within a CPU. Using clock inputs, the control cir­
cuitry maintains the proper sequence of events re­
quired for any processing task. After an instruction is 
fetched and decoded, the control circuitry issues the 
appropriate signals (to units both internal and exter­
nal to the CPU) for initiating the proper processing 
action. Often the control circuitry is capable of re­
sponding to external signals, such as an interrupt or 
wait request. An interrupt request causes the control 
circuitry to temporarily interrupt main program 
execution, jump to a special routine to service the 
interrupting device, then automatically return to the 
main program. A wait request is often issued by a 
memory or I/O element that operates slower than the 
CPU. The control circuitry will idle the CPU until the 
memory or 1/0 port is ready with the data. 

COMPUTER OPERATIONS 

There are certain operations basic to almost any com­
puter. A sound understanding of these basic opera­
tions is a necessary prerequisite to examining the 
specific operations of a particular computer. 

Timing 

The activities of the central processor are cyclical. 
The processor fetches an instruction, performs the 
operations required, fetches the next instruction, and 
so on. This orderly sequence of events requires pre­
cise timing, and the CPU therefore requires a free­
running oscillator clock that furnishes the reference 
for all processor actions. The combined fetch and 
execution of a single instruction is referred to as an 
instruction cycle. The portion of a cycle identified 
with a clearly defined activity is called a state. And 
the interval hetween pulses of the timing oscillator is 
referred to as a clock period. As a general rule, one or 
more clock periods are necessary for the completion 
of a state, and there are several states in a cycle. 

Instruction Fetch 

The first state(s) of any instruction cycle is dedicated 
to fetching the next instruction. The CPU issues a read 
signal and the contents of the program counter are 
sent to memory, which responds by returning the 
next instruction word. The first byte of the instruction 
is placed in the instruction register. If the instruction 
consists of more than one byte. additional states are 
required to fetch each byte of the instruction. When 

the entire instruction is present in the CPU, the pro­
gram counter is incremented (in preparation for the 
next instruction fetch) and the instruction is decoded. 
The operation specified in the instruction will be 
executed in the remaining states of the instruction 
cycle. The instruction may call for a memory read or 
write, an input or output andlor internal CPU opera­
tion, such as a register-to-register transfer or an add­
registers operation. 

Memory Read 

An instruction fetch is merely a special memory read 
operation thot brings the instruction to the CPU's 
instruction register. The instruction fetched may then 
call for data to be read from memory into the CPU. The 
CPU again issues a read signal and sends the proper 
memory address; memory responds by returning the 
requested word. The data received is placed in the 
accumulator or one of the other general-purpose reg­
isters (not the instruction register). 

Memory Write 

A memory write operation is similar to a read except 
for the direction of data flow. The CPU issues a write 
signal, sends the proper memory address, then sends 
the data word to be written into the addressed mem­
ory location. 

Wait (Memory Synchronization) 

As previously stated, the activities of the processor 
are timed by a master clock oscillator. The dock 
period determines the timing of all processing activ­
ity. 

The speed of the processing cycle is limited by the 
memory's access time. Once the processor has sent a 
read address to memory, it ellTIOot proceed until the 
memory has had time to respond. Most memories are 
capable of responding much faster than the proces­
sing cycle requires. A few, however, cannot supply 
the addressed byte within the minimum time estab­
lished by the processor's clock. 

Therefore, a processor contains a synchronization 
provision, which permits the memory to request a 
wait state. When the memory receives a read or write 
enable signal, it places a request signal on the proces­
sor's READY line, causing the CPU to idle temporar­
ily. After the memory has had time to respond, it frees 
the processor's READY line, and the instruction cycle 
proceeds. 



Input/Output 

Input and Output operations are similar to memory 
read and write operations with the exception that a 
peripheral I/O device is addressed instead of a mem­
ory location. The CPU issues the appropriate input or 
output control signal, sends the proper device ad­
dress, and either receives the data being input or 
sends the data to be output. 

Data can be input/output in either parallel or serial 
form. All data within a digital computer is rep­
resented i.n binary [',orled fmm. A hin~fY d~ta word 
consists of a group of bits; each bit is either a one or a 
zero. Parallel I/O consists of transferring all bits in the 
word at the same time, one bit per line. Serial I/O 
consists of transferring one bit at a time on a single 
line. Katurally, serial I/O is much slower, but it re­
quires considerably less hardware than does parallel 
I/O. 

Interrupts 

Interrupt provisions are included on many central 
processors as a means of improving the processor's 
efficiency. Consider the case of a computer proces­
sing a large volume of data, portions of which are to be 
output to a printer. The CPU can output a byte of data 
within a single machine cycle but it may take the 
printer the equivalent of many machine cycles to ac­
tually print the character specified by the data byte. 
The CPU could then remain idle, waiting until the 
printer can accept the next data byte. If an interrupt 
capability is implemented on the computer, the CPU 
can output a data byte, then return to data processing. 
When the printer is ready to ::Iccept thp. np.xt rlFltFl hytp., 
it can request an interrupt. When the CPU acknow­
ledges the interrupt, it suspends main program 
execution and automatically branches to a routine 
that will output the next data byte. After the byte is 

Page 67 

output, the CPU continues with main program execu­
tion. Note that this is, in principle, quite similar to a 
subroutine call, except the jump is initiated exter­
nally rather than by the program. 

More complex interrupt structures are possible in 
which several interrupting devices share the same 
processor hut have different priority levels. Interrup­
tive processing is an important feature that enables 
maximum utilization of a processor's capacity for 
high system throughput. 

Hold 

Another important feature that improves the 
throughput of a processor is the hold. The hold provi­
sion enables Direct Memory Access (DMA) opera­
tions. 

In ordinary input and output operations, the proces­
sor supervises the entire data transfer. Information to 
be placed in memory is tranferrerl from the input 
device to the processor, and then from the processor 
to the designated memory location. In similar fash­
ion, information that goes from memory to output 
devices goes by way of the processor. 

Some peripheral devices, however, are capable of 
transferring information to and from memory much 
faster than the processor itself can accomplish the 
transfer. If any appreciable quantity of data must be 
transferred to or from such a device, system 
throughput will be increased by having the device 
accomplish the transfer directly. The processor must 
temporFlrily suspend its operation during such a 
transfer to prevent conflicts that would arise if pro­
cessor and peripheral device attempted to access 
memory simultaneously. Therefore, a hold provision 
is included on some processors. 



page 68 

THE 8080 CENTRAL PROCESSOR UNIT 

The 8080 is a complete 8-bit parallel, central proces­
sor unit (CPU) for use in general-purpose digital 
cumputer systems. It is fabricated on a single LSI 
chip, using Intel's n-channel silicon gate MOS pro­
cess. The 8080 transfers data and internal state infor­
mation via an 8-bit, bi-directional 3-statp, data bus 
(Do-D7)' Memory and peripheral device addresses are 

AlO 
GND 

3 

transmitted over a separate 16-bit 3-state address bus 
(Ao-AI5)' Six timing and control outputs (SYNC, 
DBIN, WAIT, WR, HLDA and INTEl emanate from the 
8080, while four control inputs (READY, HOLD, INT 
and RESET), four power inputs (+12V, +5V, -5V, 
and GND). and two clock inputs (CPI and CP2) are ac­
cepted by the 8080. 

40 A" 
39 A,. 
38 A'3 
37 A'2 
36 o A'5 

35 o A9 

34 A8 
33 o A7 

32 A6 
10 8080 31 A. 
11 30 o A. 

RESET 12 29 A3 
HOLD 13 28 T12V 

INT 14 27 A, 

'5 26 A, 

INTE 0 16 25 Ao 
DBIN 0 17 24 WAIT 

WR 18 23 READY 

SYNC 19 22 0, 
+5V 20 21 HLDA 

PICfORIAL 7-1 

8080 Pin Designations 



ARCHITECTURE OF THE 8080 CPU 

The 8080 CPU consists of the following functional 
units: 

• Register array and address logic 
• Arithmetic and logic unit (ALU) 
• Instruction register and control section 
• Bi-directionaI. 3-state data bus buffer 

Pictorial 72 illustrates the functional blocks within 
the 8080 CPU. 

Registers 

The register section consists of a static RAM array 
organized into six 16-bit registers. 

• Program counter (PC) 
• Stack pointer (SP) 
• Six 8-bit, general-purpose registers ar­

ranged in pairs, referred to as B, C; D, E; and 
H,L. 

• A tempOrAry rAgi.<:tAr pAir CAlled W, 7.. 

The program counter maintains the memory address 
of the current program instruction and is incremented 

POWER1- +12V 
SUPPLIES _ +5V 

__ -fN 

-GND 

(8 BIT; 
INTERNAL DATA BUS 

ACK 

Page f\~ 

automatically during every in<:trndion fetch. The 
stack pointer maintains the address of the next avail­
able stack location in memory. The stack pointer can 
be initialized to use any portion of read-write memory 
as a stack. The stack pointer is decremented when 
data is "pUshed" onto the stack and incremented 
when data is "popped" off the stack (for example, the 
stack grows "downward"). 

The six general-purpose registers can be used either 
as single registers (8-bit) or as register pairs (16-bit). 
The temporary register pair, W, Z, is not program 
addressable and is only used for the internal execu­
tion of instructions. 

8-bit data bytes can be transferred between the inter­
nal bus and the register array via the register-select 
multiplexer. 16-bit transfers can proceed between the 
register array and the address latch or the incremen­
ter/decrementer circuit. The address latch receives 
data from any of the three register pairs and drives the 
16 address output buffers (Ao-AJ5), as well as the in­
crementer/decrementer circuit. The incremen­
tHr/rl er.mmentp.r r:irf:ll it rp.f:Hives data from the address 
latch and sends it to the register array. The 16-bit data 
can be incremented, decremented, or transferred be­
tween registers. 

INSTRUCTION 
DECODER 

AND 
MACHINE 

CYCLE 
ENCODING 

TIMING 
AND 

CONTROL 

BI·DIRECTIONAL 
DATA BUS 

B (8) 

REG. 

n tal 
REG. REG. 

H 18) L 
REG. REG. 

STACK POINTER 

18) 

18' 

18' 

(16) 

PROGRAM COUNTER (1., . 
INCREMENTER/DECREMENTER J 

ADDRESS LATCH 116) 

A,5 . Au 
ADDRESS BUS 

REGISTER 
ARRAY 

PICfORIAL 7-2 8080 CPU Functional Block Diagram 



Page 70 ________________________________________________________________________ ~~f¥f9SS¥ff~i~ 

Arithmetic and Logic Unit (ALU) 

The AJ.lJ contains the following registers: 

• An 8-bit accumulator 

• An 8-bit temporary accumulator [ACT) 

• A 5-bit flag register: zero, carry, sign, parity 
and auxiliary carry 

• An 8-bit temporary register (TMP) 

Arithmetic, logical, and rotate operations are per­
formed in the ALU. The ALU is fed by the temporary 
register (TMP) and the temporary accumulator (ACT) 
and carry flip-flop. The result of the operation can be 
transferred to the internal bus or to the accumulator; 
tbe ALU also feeds the flag register. 

The temporary register (TMP) receives information 
from the internal bus and can send all or portions of it 
to the ALU, the flag register, and the internal bus. 

The accumulator (ACC) can be loaded from the ALU 
and the internal bus and can transfer data to the tem­
porary accumulator (ACT) and the internal bus. The 
contents of the accumulator (ACC) and the auxiliary 
carry flip-flop can be tested for decimal correction 
during the execution of the DAA instruction (see the 
Instruction Set). 

Instruction Register and Control 

During an instruction fetch, the first byte of an in­
struction (containing the OP code) is transferred from 
the internal bus to the 8-bit instruction register. 

The contents of the instruction register are, in turn, 
available to the instruction decoder. The output of the 
decoder, combined with various timing signals, pro­
vides the control signals for the register array, ALU, 
and data buffer blocks. In addition, the outputs from 
the instruction decoder and external control signals 
feed the timing and state control section which gen­
erates the state and cycle timing signals. 

nata HU!'> Huffer 

This 8-bit, bi-directional, 3-state buffer is used to iso­
late the CPU's internal bus from the external data bus 
(Do through D7)' In the output mode, the internal bus 
content is loaded into an 8-bit latch that, in turn, 
drives the data bus output buffers. The output buffers 
are switched off during input or non-transfer opera­
tions. 

During the input mode, data from the external data 
bus is transferred to the internal bus. The internal bus 
is precharged at the beginning of each internal state, 
except for the transfer state [T3-described later). 

THE PROCESSOR CYCLE 

An instruction cycle is the time required to fetch and 
execute an instruction. During the fetch, a selected 
instruction (one, two or three bytes) is extracted from 
memory and deposited in the CPU's instruction regis­
ter. During the execution phase, the instruction is 
decoded and translated into specific processing ac­
tivities. 

Every instruction cycle consists of one, two, three, 
four, or five machine cycles. A machine cycle is re­
quired each time the CPU accesses memory or an I/O 
port. The fetch portion of an instruction cycle re­
quires one machine cycle for each byte to be fetched. 
The duration of the execution portion of the instruc­
tion cycle depends on the kid of instruction that has 
been fetched. Some instructions do not require any 
machine cycles other than those necessary to fetch the 
instruction; other instructions, however, require ad­
ditional machine cycles to write OI" read data to/from 
memory or I/O devices. The DAD instruction is an 
exception in that it requires two additional mar:hine 
cycles to complete an internal register-pair add (see 
the Instruction Set). 

Each machine cycle consists of three, four, or five 
states. A state is the smallest unit of processing activ­
ity and is the interval between two successive 
positive-going transititions of the cPt driven clock 
pulse. The 8080 is driven by a 2-phase clock oscil-



Page 71 ~f§f9hS9if§fi!ij ______________________________________________________________________ _ 

lator. All processing activities are referenced to the 
period of this clock. The two non-overlapping clock 
pulses,..pl and ..p2, are furnished by external circuitry. 
The cf>1 clock pulse divides each machine cycle into 
states. Timing logic within the 8080 uses the clock 
inputs to produce a SYNC pulse. which identifies the 
beginning of every machine cycle. The SYNC pulse is 
triggered by the low-to-high transition of 4>2, os 
shown in Pictorial 7-3. 

q,2 

SYNC 

FIRST STATE OF 
"EVERY MACHINE 

CYCLE 

"SYNC DOES NOT OCCUR IN THE SECOND AND THIHD MACHINE 
CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES 
ARE USED FOR AN INTERNAL REGISTER-PAIR ADD. 

PICTORIAL 7-3 cPl, 1>2, and SYNC Timing 

There are three exceptions to the defined duration of a 
state. They are thl'! WAIT state, the hold (HLDA) state, 
and the halt (HL TA) state, described later in this sec­
tion. Because the WAIT, HLDA, and HLTA states 
depend upon external events, they are of indetermi­
nate length. Even these exceptional states, however, 
must he synchronized with the pulses of the driving 
clock. Thus, the duration of all states are integral 
multiples of the clock period. 

To summarize then, each clock period marks a state; 
three to five states constitute a machine cyr.lP.; imcl nnl'! 
to five machine cycles comprise an instrnction cycle. 
A full instruction cycle requires anywhere from four 
to eighteen states for its completion, depending on 
the kind of instruction involved. 

Machine Cycle Identification 

With the exception of the DAD instruction, there is 
just one consideration that determines how many 
machine cycles are required in any given instruction 
cycle: the number of times the processor must refer­
ence a memory address or an addressable peripheral 
np-vir.e, in order to fetch and execute the instruction. 
Like many processors, the 8080 is so constructed that 
it can transmit only one address per machine cycle. 
Thus, if the fetch and execution of an instruction 

requires two memory references, then the instruction 
cycle associated with that instruction consists of two 
machine cycles. Iffive sl1ch references are called for, 
the instruction cycle contains five machine cycles. 

Every instruction cycle has at least one reference to 
memory, during which the instruction is fetched. An 
instruction cycle must always have a fetch, even if the 
execution of the instruction requires no further refer­
ences to memory. The first machine cycle in every 
instruction cycle is therefore a fetch. Beyond that, 
there are no fast rules. It depends on the kind of 
instruction that is fetched. 

Consider some examples. The add-register (ADD r) 
instruction is an instruction that requires only a 
single machine cycle (fetch) for its completion. In this 
one-byte instruction, the contents of one of the CPU's 
six general-purpose registers is added to the existing 
contents of the accumulator. Since all the information 
necessary to execute the cUlllmand is contained in the 
eight bits of the instruction code, only one memory 
reference is necessary. Three states are used to extract 
the instruction from memory, and one additional 
state is used to accomplish the desired addition. The 
entire instruction cycle, thus, requires only one 
machine cycle that consists of four states, or four 
periods of the external clock. 

Suppose now, however, that you wish to add the 
contents of a specific memory location to the existing 
contents of the accumulator (ADD M). Although this 
is quite similar in principle to the example just cited, 
several additional steps will be used. An extra 
machine cycle will be used in order to address the 
desired memory location. 

The actual sequence is as follows. First the processor 
extracts from memory the 1-byte instruction word 
addressed by its program counter. This takes three 
states. The 8-bit instruction word obtained during the 
fetch machine cycle is deposited in the CPU's instruc­
tion register and used to direct activities during the 
remainder of lhe instruction cycle. Next, the proces­
sor sends out, as an address, the contents of its Hand L 
registers. The B-bit data word returned during this 
MEMORY READ machine cycle i~ placed in a tem­
porary register inside the 8080. By now, three more 
clock periods (states) have elapsed. In the seventh and 
final state, the contents of the temporary register are 
added to those of the accumulator. Two machine cy­
cles, consisting of several states in all, complete the 
"ADD M" instruction cycle. 



__ p_a_ge __ 7_2 _________________________________________________________________ ,a;:~·f§f&6S¥¥'{*1Sm 

At the opposite extreme is the save Hand L registers 
(SHLD) instruction, which requires five machine cy­
cles. During an "SHLD"· instruction cycle, the con­
tents of the processor's Hand L registers are deposited 
in two sequentially adjacent memory locations; the 
destination is indicated by two address bytes which 
are stored in the two memory locations immediately 
following the operation code byte. The following 
sequence of events occurs: 

(1) A fetch machine cycle, consisting of four 
states. During the first three states of this 
machine cycle, the processor fetches the 
instruction indicated by its program 
counter. The program counter is then in­
cremented. The fourth state is used for in­
ternal instruction decoding. 

(2) A MEMORY READ machine cycle, consist­
ing of three states. During this machine 
r.yr.lp., thp. hyte indicated by the program 
counter is read from memory and placed in 
the processor's Z register. The program 
counter is incremented again. 

(3) Another MEMORY READ machine cycle, 
consisting ofthree states, in which the byte 
indicated by the processor's program 
counter is read from memory and placed in 
the W register. The program counter is in­
cremented in anticipation of the next in­
struction fetch. 

(4) A MEMORY WRITE machine cycle, of 
three states, in which the contents of the L 
register are transferred to the memory loca­
tion pointed to by the present contents of 
the Wand Z registers. The state following 
the transfer is used to increment the W, Z 
register pair so it indicates the next mem­
ory location to receive data. 

(5) A MEMORY WRITE machine cycle. of 
thrp.p. RtsltP.R, in which the contentR of the H 
register are transferred to the new memory 
location pointed to by the W, Z register 
pair. 

In summary, the "SHLD" instruction cycle contains 
five machine cycles and takes 16 states to execute. 

Most instructions fall somewhere between the ex­
tremes typified by the "ADD r" and the "SHLD" in-

structions. The input (INP) and the output (OUT) 
instructions, for example, require three machine cy­
cles: a FETCH, to obtain the instruction; a MEMORY 
READ, to obtain the address of the object peripheral; 
and an INPUT or an OUTPUT machine cycle, to com­
plete the transfer. 

\Vhile no one instruction cycle will consist of more 
than five machine cycles, the following ten different 
types of machine cycles may occur within an instruc­
tion cycle: 

(1) FETCH (MIl 
(2) MEMORY READ 
(3) MEMORY WRITE 
(4) STACK READ 
(5) STACK WRITE 
(O) INPUT 
(7) OUTPUT 
(8) INTERRUPT 
(q) HALT 

(10) HALT. INTERRUPT 

The machine cycles that actually do occur in a par­
ticular instruction cycle depend upon the kind of 
instruction, with the overriding stipulation that the 
first machine cycle in any instruction cycle is always 
a fetch. 

The processor identifies the machine cycle in pro­
gress by transmitting an 8-bit status word during the 
first state of every machine cycle. Updated status in­
formation is presented on the 8080's data lines (Do-

D7). during the SYNC interval. This data is saved in 
latches, and used to develop control signals for exter­
nal circuitry. Table 7-1 shows how the positive-true 
status information is distributed on the processor's 
data bus. 

Status signals are provided principally for the control 
of external circuitry. Simplicity of interface, rather 
than machine cycle identification. dictates the logical 
definition of inoiviollfll statllf; hitR. Yon will thp.refoTfl 
observe that certain processor machine cycles are un­
iquely identified by a single status bit, but others are 
not. The MI status bit (D6), for example, unambigu­
ously identifies a fetch machine cycle. A stack read, 
on the other hand, is indicated by the coincidence of 
STACK and MEMR signals. Machine cycle identifica­
tion data is also valuable in the test and de-bugging 
phases of system development. Table 7-1 lists the 
status bit outputs for each type of machine cycle. 



State Transition Sequence 

Every machine cycle within an instruction cycle con­
sists of three to five active states (referred to as T " T 2, 

T~, T4 • T5 orT .. ). The actual number of states depends 
upon the instruction being executed, and on the par­
ticular machine cycle within the greater instruction 
cycle. The state transition diagram in Pictorial 7-4 
shows how the 8080 proceeds from state to state in the 
course of a machine cycle. The diagram also shows 
how the ready, hold, and interrupt lines are sampled 
during the machine cycle, and how the conditions on 
these lines may modify the basic transition sequence. 
In the present discussion, we are concerned only with 
the basic sequence and with the ready function. The 
hold and interrupt functions will be discussed later. 

The 8080 CPU clOf!fl not rlirf!ctly indicate its internal 
state by transmitting a "state control" output during 
each state; instead, the 8080 supplies direct control 
output (INTE, HLDA, DBIN, WR and WAIT) for use by 
external circuitry. 

Recall that the 8080 passes through at least three 
states in every machine cycle, with each state defined 
by successive low-to-high transitions of the $1 clock. 
Pictorial 7-5 shows the timing relationships in a typi­
cal fetch machine cycle. Events that occur in each 
state are referenced to transitions of the 4>1 and 4>2 
clock pulses. 

The sync signal identifies the first state (T I) in every 
machine cycle. As shown in Pictorial 7-5, the sync 
signal is related to the leading edge of the $2 clock. 
There is a delay (tDd between the low-to-high transi­
tion of 4>2 and the positive-going edge of the sync 
pulse. There also is a corresponding delay (also tnd 
between the next 4>2 pulse and the falling edge of the 
sync signal. Status information is displayed on Do-D7 
during the same 4>2 to 4>2 interval. Switching of the 
status signals is likewise controller! hy 1>2. 

The rising edge of 4>2 during T 1 also loads the proces­
sor's address lines (Ao-AI5J. These lines become stable 
within a brief delay (tDA ) of the 4>2 clocking pulse, and 
remain stahle until the first 4>2 pulse after state T3 • 

This gives the processor ample time to read the data 
returned from memory. 

Page 73 

Once the processor has sent an address to memory, 
there is an opportunity for the memory to request a 
wait. This is done by pulling the processor's ready 
line low, prior to the "ready set-up" interval (tRS) 

which occurs during the cp2 pulse within stilte T2 or 
T w. As long as the ready line remains low, the proces­
sor will idle, giving the memory time to respond to 
the addressed data request. Refer to Pictorial 7-5. 

The processor responds to a wait request by entering 
an alternative state (T w) at the end of T 2, rather than 
proceeding directly to the T3 state. Entry into the T w 
state is indicated by a wait signal from the processor, 
acknowledging the memory's request. A low-to-high 
transition on the wait line is triggered by the rising 
edge of the 4>1 clock and occurs within a brief delay 
(tDel of the actual entry into the T w state. 

A wait period may be of indefinite duration. The 
processor remains in the waiting condition until its 
ready line again goes high. A ready indication must 
precede the falling edge of the 4>2 clock by a specified 
interval (tRS), in order to guarantee an exit from the T w 

state. The cycle may then proceed, heginning with the 
rising edge of the next cpl clock. A WAIT interval will 
therefore consist of an integral number of T w states 
and will always be a multiple of the clock period. 

Instructions for the 8080 require from one to five 
machine cycles for complete execution. The 8080 
sends out eight bits of status information on the data 
bus at the beginning of each machine cycle (during 
sync time). The following table defines the status 
information. 

STATUS INFORMATION DEFINITION 

Data Bus 

Symbols Bit Definition 

INTA* 

WO 

Do Acknowledge signal for interfllpt re­
quest. Signal is used to gate a restart 
instruction onto the data bus when 
DBIN is active. 

D, Indicates that the operation in the 
current machine cycle is a write 
memory or output function (WO = 0). 
Otherwise, a ready memory or input 
operation will be executed. 



Page 74 ______________________________________ C·y.··f§f¥9iUGii 

STACK D2 Indicates that the address bus holds 
the pushdown stack address from the 
Stack Pointer. 

HLTA D3 Acknowledge signal for halt instruc-
tion. 

OUT D4 Indicates that the address bus con-
tains the address of an output device 
and the data bus contains the output 
data when WR is active. 

Ml Ds Provides a signal to indicate that the 
CPU is in the fetch cycle for the first 
byte of an instruction. 

INP* nB TnnkAtes thAt the address bus con-
tains the address of an input device 
and the input data should be placed 
on the data bus when DBIN is active. 

MEMR * D7 Designates that the data bus is used 
for memory read data. 

*These three status bits can be used to control the flow 
of data onto the 8080 data bus. 

STATUS WORD CHART 

Do INTA 0 0 0 0 0 

0, WO 1 0 0 

02 STACK 0 0 0 1 1 

D3 HLTA 0 0 0 0 0 

04 OUT 0 0 0 0 0 

05 M, 1 0 0 0 0 

D6 INP 0 0 0 0 0 

07 MEMR 0 0 

0 

1 

0 

0 
0 

0 

1 

0 

8080 STATUS LATCH 

~" • 9 0, 

o • , 7 

0, 3 

8080 ~4 4 
S 5 

~~ 6 

SYNC ~ 
081N flI-

Q1 02 ST AT US 

U " 
LATCH 

~ 0, Do 7-
~ tg-7 

9 P,'o 
16 ttr--
'8 8212 ~ 
20 'l9 

- 22 ~ CLOCK GEN, 

~u & DRIVfR r< CLR 

" 
OS2 "'10 OSI 

13 I' y' 
~ 

STATUS ~ __ --+-A-_-----, 

TYPE OF MACHINE CYCLE 
I 

0 0 

0 1 1 1 

0 0 0 0 
0 0 1 1 

1 0 0 0 

0 1 0 
0 0 0 0 

0 0 1 0 

TABLE 7-1 8000 Status Bit Definitions 

INTA 

lliTACK 
HLTA 
OUT 
Ml 

INP 
MEMR 

DB IN 



NO 

NO 

G)_RESET Till 
READY+HLTA 

12' 

YES 

READY.HLTA 

READY ~~ 
I---------~~~~----------~READY 

NO 

SET INTERNAL 
INT F/F 

YES 

YES 

SET INTERNAL 
HOLD F/F 

I 

I 
I 131 

I HOLD 
I MODE 
I 

I 

_____ ..J 

RESET INTERNAL 
HOLD F/F 

HOLD 

INT. INTE 

RESET HLTA 

SET INTERNAL 
HOLD F/F 

(3) 

RESET INTERNAL 
HOLD F/F 

Page 75 

HOLD 

(11 INTE F/F IS RESET IF INTERNAL INT FIF IS SET. 
!2l INTERNAL INT FilS RESET IF INTE FIF IS RESET . 
• 31 S~E PAGE 82. 

PICfORIAL 7-4 CPU State Transition Diagram 



Page 76 

The events that take place during the Ta state arc 
determined by the kind of machine cycle in progress. 
In a fetch machine cycle, the processor interprets the 
datu on its data bus as an instruction. Dllring a mem­
ory read or a stack read. data on this bus is interpreted 
as a data word. The processor outputs data on this bus 
during a memory write machine cycle. During I/O 
operations, the processor may either transmit or re­
ceive data, depending on whether an output or an 
input operation is involved. 

Pictorial 7-6 illustrates the timing that is characteris­
tic of a data input operation. As shown, the low-to­
high transition of 1>2 during T2 clears status informa­
tion from the processor's data lines, preparing these 
lines for the receipt of incoming data. The data pre­
sented to the processor must have stabilized prior to 
both the "cP1 - data set-up" interval (tDS'). that pre-

T, 

., h ri\ h 
I \ 

/ 

I ® X 
-1 

SYNC / i 
l I 
I' READY 

I 

WAIT I / 
'. 
! 

OAIN 
DATA 

1\ 
STATUS I 
INfORMATION i 

I 
DATA 

A,s.O SAMPLE READY i M~MORV ADDRESS HOLD AND HALT 
OR HALT 
liD DEVICE NUMBER OR 

0,·0 MEMORY 
STATUS INFORMATION ACCESS TIME 

INTA OUT ADJUST 
HLTA WO 

I MtMH M, 
INP STACK : 

NOTE: ® Refor to Status Word Chart on Page 73. 

ccdes the falling edge of the 1>1 pulse defining state 
T3 , and the "cP2 - data set-up" interval (tvs2L that 
precedes the rising edge of 4>2 in state T a. This same 
data must remain stable during the "data hold" inter­
val (tDH) that occurs following the rising edge of the 4>2 
pulse. Data placed on these lines by memory or by 
other external devices is sampled during Ta. 

During the input of data to the processor, the 8080 
generates a DBIN signal which is used externally to 
enable the transfer. Machine cycles in which DBIN is 
available include: fetch, memory read, stack read, and 
interrupt. DBIN is initiated by the rising edge of cP2 
during state T. lmrl terminated by the corresponding 
edge of cP2 during T a. Any T w phases intervening 
between T2 and Ta will therefore extend DBIN by one 
or more clock periods. 

T3 T. 

n h h 
I \ { \ I L 

Y. ; " •• u •• ".. 

--~OATiNG ---_. 
L...- WRITE MODE 
----+---

FLOATING 
I 

DATA READ MODE 
STABLE 

: 

1\ 
r 

! 

II 

FETCH DATA 
OR 
INSJHUCTION INSTRUCTION 

OR EXECUTION 
WRITE DATA IF REQUIRED 

I 

PICTORIAL 7-5 Basic 8080 Instruction Cycle 



A15.0 

D7.0 

SYNC 

DBIN 

READY 

WAIT 

WR 

STATUS 
INFORMATION 

SYNC 

DBIN 

·"1" 

"0" 

"1" 

BYTE 
ONE -+ - - - - - - --+--~-.;.p;;:...,. I FLOATING 

I 

NOTE: ® Refer to Status Word Chart on Page 73. 

PICTORIAL 7-6 Input Instruction Cycle 

+-__ +----1 

Page 77 

I 

INPUT DATA TO 
ACCUMULATOR 

\.L.._J 

ReAOY~------~-----+------+------+------+------+------+-----~------+----+~----
"1" 

"0" 
WAIT~--~--~----~------~-----+------+------+------+------+------+----r~----

STATUS 
INFORMATION 

NOTE: ® Refer to Status Word Chart on Page 73. 

PICTORIAL 7-7 Output Instruction Cycle 

o 



.p.a.9.e_7.8 ________________________________ ©5=&z,fU o+#dBifj 
Pictorial 7-7 shows the timing of a machine cycle in 
which the processor outputs data. Output data is de­
stined either for memory or for peripherals. The rising 
edge of </>2 within state T 2 clears status information 
from the CPU's data lines, and loads in the data which 
is to be output to external devices. This substitution 
takes place within the "data output delay" interval 
(tDD) following the </>2 clock's leading edge. Data on 
the bus remains stable throughout the remainder of 
the machine cycle, until replaced by updated status 
infurmation in the subsequent T 1 state. A ready signal 
is necessary to complete an output machine cycle. 
Unless such,an indication is present, the processor 
enters the T w state, following thp. T 2 state. Data on the 
output lines remains stable in the interim. and the 
processing cycle will not proceed until the ready line 
again goes high. 

The 8080 CPU generates a WR output for the syn­
chronization of external transfers, during those 
machine cycles In which the prOl.:essur uuLl'uLs data. 
These include memory write, stack write, and output. 
The negative-going leading edge of WR is referenced 
to the rising edge of the first 4>1 clock pulse following 
T2, and occurs within a brief delay (tDd of that event. 
WR remains low until re-triggered by the leading 
edge of </> 1 during the state following T 3. Note that any 

T II' states intervening between T 2 and T 3 of the output 
machine cycle will necessarily extend WR. in much 
the same way that DBIN is affected during data input 
operations. 

All processor machine cycles consists of at least three 
states: T 1> T 2, and T 3 as just described. If the processor 
has to wait for a response [rum the peripheral or 
memory with which it is communicating, the 
machine cycle may also contain one or more T w 
states. During the three basic states, data is transfflrred 
to or from the processor. 

After the T 3 state, however. it becomes difficult to 
generalize. T4 and To states are available, ifthe execu­
tion of a particular instruction requires them. But not 
all machine cycles make use of these states. It de­
pends upon the kind of instruction being executed, 
and on the particular machine cycle within the in­
struction cycle. The processor will terminate any 
machine cycle as soon as its processing activities are 
com pleted, rather than proceeding through the T 4 and 
Ts states every time. Thus the 8080 may exit a 
machinfl cyclfl following the T 3, the T 4, or the T 5 state 
and proceed directly to the T, state of the next 
machine cycle. 

STATE ASSOCIATED ACTIVITIES 

1', A memory address or I/O device number is 
placed on the address bus (A'5xo); status 
information is placed on data bus (D7xo), 

T2 The CPU samples the ready and hold in-
puts and checks for halt instruction. 

Tw Processor enters wait state if ready is low, 
(optional) or if halt instruction has been executed. 

Ts An instruction byte (fetch machine cycle), 
data byte (memory read, stack read) 
or interrupt instruction (interrupt machine 
cycle) is input to the CPU from the DATA Bus; 
or a data byte (memory write, stack 
write or output machine cycle) is output 
onto the data bus. 

T4 States T4 and To are available if the execu-
T" tion of a particular instruction requires them; 

(optional) if not, the CPU may skip one or both of 
them. T4 and T5 are only used for internal 
processor operations. 

TABLE 7-2 State Definitions 



Page 79 
~~f¥f£6Si¥fi34~ ______________________________________________________________________ _ 

INTERRUPT SEQUENCES 

The 80BO has the built-in capacity to handle external 
interrupt requests. A peripheral device can initiate an 
interrupt hy driving the processor's interrupt (INT) 
line high. 

The interrupt (INT) input is asynchronous, and a re­
quest may therefore originate at any time during any 
instruction cycle. Internal logic re-clocks the external 
request, so that a proper correspondence with the 
driving clock is established. As Pictorial 7-8 (on Page 
80) shows, an interrupt request (INT) arriving during 
the time the interrupt enable line (INTEl is high, acts 
in coincidence with the 1>2 clock to set the internal 
interrupt latch. This event takes place during the last 
state of the instruction cycle in which the request 
occurs, thus ensuring that any instruction in progress 
is completed before the interrupt can be processed. 

The interrupt machine cycle which follows the arri­
val of an enahled interrupt request resembles an ordi­
nary fetch machine cycle in most respects. The MJ 
status bit is transmitted as usual during the sync in­
terval. It is accompanied, however, by an INT A status 
bit (Do) which acknowledges the external request. The 
contents of the program counter are latched onto the 
CPU's address lines during T 1, but the counter itself is 
not incremented during the interrupt machine cycle, 
as it otherwise would be. In this way, the pre-

interrupt status of the program counter is preserved. 
so data in the counter may be restored by the inter­
rupted program after the interrupt request has been 
processed. 

The interrupt cycle is otherwise indistinguishable 
from an ordinary fetch machine cycle. The processor 
takes no further special action. It is the responsibility 
of the peripheral logic to see that an 8-bit interrupt 
instruction is "jammed" onto the processor's data bus 
during state Ta. In a typical system, this means that 
the data-in bus from memory is temporarily discon­
nected from the processor's main data bus, so that the 
interrupting device can command the main bus with­
out interference. 

The 8080's instruction set provides a special 1-byte 
call which facilitates the processing of interrupts (the 
ordinary program call takes three bytes). This is the 
restart instruction (RST). A variable 3-bit field em­
bedded in the 8-bit field of the RST enables the inter­
rupting device to direct a call to one of eight fixed 
memory locations. The decimal addresses of these 
dedicated locations are: 0,8,16,24,32,40,48, and 56. 
Any of these addresses may be used to store the first 
instruction(s) of a routine designed to service the 
requirements of an interrupting device. Since the 
(RST) is a call, completion of the instruction also 
stores the old program counter contents on the stack. 



Page 80 

----------------------------------~,fh*i'fi. 

RETURN M, 
(lNTERNALI_ 

.NTE 

1\ 

\ 

! 
I 

\ 

I : iIi 
IL-

i! I :: 

i 

NOTE: @ Refer to Status Word Chart on Page 73_ 

PICIORIAL 7-8 Interrupt Timing 



Page 81 

Mn M n+ 1 
~----~---.----~---~-+-----~------1 
! (T.I· . (T51' T 

OR 

"1 

'P2 

A15-0 
r--i-f-------+----k-- - - - - - - - - - - -!- - - - - - - - -'r-+-----i 

FLO"~TING 

,.....-+------rl----;--+---i""- -,- - - - -.- - - - - - - - -- - - --,.....+---_ 07-0 

HOLD 
REOUEST 111 

HOLD 

READY 

HOLD FIF 
INTERNAL 

HLDA 

III SEE ATTACHED ELECTRICAL CHARACTERISTICS. 

A,SO I 

D70_l ___ .1 

HOLD 
REQUEST 

HOLD ___ --J 

PICTORIAL 7-9 HOLD Operation (Read Mode) 

Mn 

'T4 AND T5 OPERATION CAN BE 
DONE INTERNALLY. 

HEADY-------+-----+-----+----~--~---------~----+_---~ 

HOLD F/F 
INTERNAL~------_+------_4-----_4---J 

HLDA~-----_+----~----_4-------~-~--~ 

WRITE DATA 

PICTORIAL 7-10 HOLD Operation (Write Mode) 



Page 82 

HOLD SEQUENCES 

The 8080A contains provisions for Direct Memory 
Ar:CASS (DMAJ operations. By applying a hold to the 
appropriate control pin on the processor, an external 
device can cause the CPU to suspend its normal oper­
ations and relinquish control of the address and data 
buses. The processor responds to a request of this 
kind by floating its address to other devices sharing 
the buses. At the same time, the processor acknow­
ledges the hold by placing a high on its IILDA output 
pin. During an acknowledge hold the address and 
data buses are under control of the peripheral which 
originated the request, enabling itta r:ondll r.t memory 
transfers without processor intervention. 

Like the interrupt, the hold input is synchronized 
internally. A hold signal must be stable prior to the 
"hold set-up" interval (tHS ) , that precedes the rising 
edge of q,2. 

Pictorials 7-9 and 7-10 illustrate the timing involved 
in hold operations. Note the delay between the asyn­
chronous hold requcst and thc re clocked hold. As 
shown in the diagram, a coincidence of the ready, 
hold, and q,2 docks sets the internal hold latch. Set­
ting the latch enables the subsequent rising edge of 
the </>1 clock pulse to trigger the HLDA output. 

Acknowledgement of the hold request precedes 
slightly the actual floating of the processor's address 
and data lines. The processor acknowledges a hold at 
the beginning of Ta. if a read or an input machine 
cycle is in progress (see Pictorial 7-9). Otherwise, 
acknowledgement is deferred until the beginning of 
the state following T3 (see Pictorial 7-10). In both 
cases, however, the HLDA goes high within A 

specified delay (tDe) of the rising edge of the selected 
4>1 clock pulse. Address and data lines are floated 
within a brief delay after the rising edge of the next q,2 
clock pulse. This relationship is also shown in the 
diagrams. 

To all outward appearances, the processor has 
suspended its operations once the address and data 
buses are floated. Internally, however, certain 
functions may continue. If a hold request is 
acknowledged at T3, and if the processor is in the 
middle of a machine cycle which requires four or 
more states to complete, the CPU proceeds through T 4 

and T 5 before coming to a rest. Not until the end of the 
machine cycle is reached will processing activities 
cease. Internal processing is thus permitted to overlap 
the external DMA transfer, improving both the 
efficiency and the speed of the entire system. 

The processor exits the holding state thrmlgh a 
sequence similar to that by which it entered. A hold 
request is terminated asynchronously when the 
external device has completed its data transfer. The 
HLDA output returns to a low level following the 
leading edge of the next cf>1 clock pulse. Normal 
processing resumes with the machine cycle following 
the last cycle that was executed. 

HALT SEQUENCES 

When a halt instruction (HL T) is executed, the CPU 
enters the halt state (T WH) after state T 2 of the next 
machinf! eyelf!, AS shown in Pictorial 7-11. There are 
only three ways in which the 8080 can exit the halt 
state: 

• A high on the reset line always resets the 
8080 to state T 1: reset also clears the program 
counter. 

• A hold input causes the 8080 to enter the 
hold state, as previously described. When 
the hold line goes low, the HORO re-enters the 
halt state on the rising edge of the next </>1 
clock pulse. 

• An interrupt (for example, INT goes high 
while INTE is enabled) causes the 8080 to 
exit the Halt state and enter state T 1 on the 
rising edge of the next cf>1 clock pulse. 
NOTE: The interrupt enable (INTEl flag 
must be set when the halt state is entered; 
otherwise, the 8080 will only be able to exit 
vt? a reset signal. 

Pidorial7-12 illustrates halt sequencing in flow chart 
form. 

START-UP OF THE 8080 CPU 

When the power is applied initially to the 8080, the 
processor begins operating immediately. The con­
tents uf Us program counter, stack pointer, and the 
other working registers are naturally subject to ran­
dom factors and cannot be specified. For this reason, 
it will be necessary to hegin the power-up sequence 
with RESET. 

An external reset signal of three clock period duration 
(minimum) restores the processor's internal program 
counter to zero. Program execution thus begins with 
memory location zero, following a reset. Systems 
which require the processor 10 wait for an explicit 
start-up signal will store a halt instruction (El, HLT) 



.~ Page a3 

~~f'f*Pt9¥i'f*i6€I'"------------------------------------------------------------------------,, 
in the first two locations. A manual or an automatic 
interrupt is used for starting. In other systems, the 
processor may begin executing its stored program 
immediately. Note, however, that the reset has no 

91 

02 

A'50 
, 

effect on status flags, or on any of the processor's 
working registers (accumulator, registers, or stack 
pointer). The contents of these registers remain inde­
terminate, until initialized explicity by the program. 

j - -1- - -- .r--4----- -i- - --
D].O 

SYNC 

DBIN 

WAIT 

STATUS 
INFOR!V1ATION 

! 

r 

NOTE: ® Refer to Status Word Chart on Page 73. 

PICTORIAL 7-11 Halt Timing 

TO STATE NO 

TW or T3 

TO STATE YES 

T, 

YES 

NO 

PICTORIAL 7-12 Halt Sequence Flow Chart. 



Page 84 

Tn Tn+ 1 

., 

r---t----t---+----"!tt - - - - ,.. - - - -
A150 +-_~ --=t: FLOATING II 

- - - - - - - ~l-I- - - - -"'1 - - r, .... -U-NK"'"N""O-,..-N""""y.------___ _ J\ 

:1 \ l~--+-' --t---

RESET 

INTERNAL 

RESET +-----l' 

SyNC ____ ~----_r----+-----~ntti------_,--------~--JI '-----
I 

oelN __ --;--_-+-_---+_---t:'l......-.._-+--__ ---+
i 
-----Jr-. 

,I X0 STATUS 
IN FORMATION i I 

'''WHEN RESET SIGNAL IS ACTIVE, All OF CONTROL OUTPUT SIGNALS WILL BE RESET IMMEDIATELY OR SOME 
CLOCK PERIODS LATER. THE RESET SIGNAL MUST BE ACTIVE FOR A MINIMUM OF THREE CLOCK CYCLES. IN 
THE ABOVE DIAGRAM NAND f MAY BE ANY INTEGER, 

NOTE: ® Refer to Status Word Chart on Page 73. 

PICIORIAL 7-13 Reset. 

I I 

I 

HOLD +--,11 
I 

:J 
! j 

/ 
1 

I 

\ j 
HOLD F/F 

(lNTERNALI +---I-.J 
I 

I 
HLDA +---+--+-"'f 

INTC \ 

INHIBIT 
I HOLD 

I 
I 

INT + ___ 1-_++ ___ 1-..11 INHIBIT 

~ I~T 
:~T~/:NALI -+-___ +--_ .... -+-___ +-___ 1-[' -~---II 

L. 

STATUS 

INFORMATION I'--__ --L ___ ~L.· ___ '--__ -'-___ L--__ --.l... ___ -'--__ --.l... ___ -'---__ ..J 

NOTE: ® Refer to Status Word Chart on Page 73. 

PICTORIAL 7-14 Relation between Hold and INT in the Halt State. 



rr;:~'f¥fifj$¥ifi3'GiO ........................................ __ ................................. p.a.
9 
.. e .. 8 .. 5 

------ --
MNEMONIC OP COOl:::: M1(11 M2 

D7 0 6 0 504 03 0 2 0 , 0 0 T1 n[2] T3 T4 T5 T1 T212] T3 

MOVrl.r2 0 1 D D o 5 5 5 peOUT PC=PCi1 INST-TMP/IR ISSSI-TMP ITMPI-·DDD :J' 
",' ., 

STATUS . ,','-, '. -, 

T 
-

t 
-

MOVr,M 0 1 D 0 0 1 1 0 • x[31 HLOUT DATA_DOD 

I STATUsI61 ! 
--- ~-,--.-.-~ ----

MOVM.r 0 1 1 1 0 S 5 S ISSSI-TMP HLOUT ITMPI___.;.DATA BUS 

I _._ .. - _ ... _._-- --- --_ ... STATUsI71 

SPHL 1 1 1 1 1 0 0 , 
I 

(HL) <P :t •••.. ,. ";'~~-. i 

MVI r, data 0 0 0 0 0 1 1 0 I 
f i 

X peOUT 
STATUsI6J 

B2_00DO 

------------------ ----
MVI M,data U U 1 1 U 1 1 U 

I 
x B2~TMP 

: 

LXI rp, data 
I 

0 0 R P 0 0 0 , 
i 

X PC=PC+l B2~rl 

LDA addr 0 0 1 , 
i 1 0 1 0 I X PC=PC+l 82 -i-"Z 

I 
I ----

STA addr 0 0 , 1 i 
I 

0 0 1 0 X PC=PC-' 82----;"Z 

LHlO addr 0 0 1 0 1 0 1 0 X PC=PC-' B2~Z 

• i 

SHLD addr 0 0 1 0 I 0 0 1 0 -t X '. PC OUT PC=PC-' B2- I--Z 

! STATUsI6] 
-- ---- f- .- - - -- I-----,~---- -- -

LDAX rpl41 
i 

0 0 R P , 0 , 0 X rpOUT DATA-~A 
STATUS[61 

STAX rp[4! 
I 

0 0 R P 0 0 1 0 X rpOUT 
STATUsI7] 

IAi-~DATA BUS 

XCHG 1 , , 0 , 0 1 , i 
IHLI~IDEI ,.' 

--. 
AOOr 1 0 0 0 0 5 S S I ! 

(SSSJ-4TMP (91 (ACT) +(TMP)---+A 

(Ai-ACT 

ADD M 1 0 0 0 0 1 1 0 I 
, 

{AI-ACT HLOUT DATA~TMP 
STATUsl61 

ADldsl<l 1 1 n 0 0 , 1 0 (Ai-ACT PC OUT 
STATUS(61 

PC=PC+' B2 ...... TMP 

ADCr 1 0 0 0 1 S 5 5 ISSS) 'TMP [91 (ACTI+(TMPI+CY-A i 
IAI-ACT 

f . 
ADCM 1 0 0 0 1 , 1 0 {AI-ACT HLOUT DATA_TMP 

i STATUS[61 I 

ACI data , , 0 0 1 , , 0 
, (A)-ACT PCOUT 

STATUS[61 
PC= PC"., B2tTMP 

SUB r 1 0 0 , 
i 0 S S S ! (SSSI-TMP [91 IACTI-ITMPI-A I (AI-ACT , 

SUB M , 0 0 1 0 , 1 0 
i 

(M-ACT HLOUT DATA-~TMP 
: STATUSI6] 

SUI data : 1 1 0 1 0 1 1 0 T i (A)-ACT PC OUT PC"'PC+1 B2 ___ TMP 
: I STATUS[6] 

SSBr , 0 0 , 1 S S S I ISSS)-TMP l~ (ACTi-ITMP)-CY-A .' c, 

I (A)-ACT ...... 

SSB M , 0 0 1 

I 
1 , , 0 ! IAI-ACT HLOUT DATA- ,.TMP 

STATUsI61 

SDI doto , , 0 1 

I 
1 1 1 0 (A)--+Ar.T PCOUT 

STATUSI6! 
PC·PC., 82- ~TMP 

INR r 0 0 D D ! D 1 0 0 , IDDD)-TMP ALU-DDD 
I (TMPI + 1 ~A LU 

- --

INR M 0 0 , 1 0 1 0 0 : X HLDUT DATA-,.TMP 
STATUS f61 (TMP1+1- ,.AII) 

-

T OCR r I 0 0 D D D 1 0 1 IDDD)-TMP A LlJ-+O DD 

I I 
, ITMPlt'->ALU 

OCR M 0 0 1 , 0 1 0 , 
! i X HLOUT OATA-.. TMP 

STATUSI61 (TMPI-1 - _ALU 
- -

INX rp 0 0 R P 0 0 , 1 (RP) T 1 RP , 
_. 

DCX rp 0 0 R P , 0 , , (RP)-l~_ RP 

DAD 'p[B] 0 0 R P , 0 0 1 X I (lil--ACT (U--+TMP, ALU-L. CY 

I 
(ACT1.(TMP)-ALU 

. --- ! 
DAA ! 0 0 1 0 0 1 , 1 : DAA-A. FLAGs[101 : 

J 
- t- --

ANAr 1 0 , 0 0 S S s i • 
(SSSI_TIVJP 191 IACT)+ITMPI-A 

• (A)-ACT 

ANAM , 0 , 0 0 1 , 0 PCOUT Pc-o=pC+1 lNST--+TMPjlR (A)_ACT I HLOUT DATA-_TMP 

STATUS STATUS[6] 



Page 86 _______________________________________________________________________________ ~,f'f£f#$iifii~ 
--- ---, --

"3 .. , MS 

T1 T2[21 T3 T1 T2121 T3 T1 r,:;;;; T3 T4 T5 

", : 0 
~ 

"T ' ' " 
,-- , ' I , , .,. , 

, 

! C'_" ~ ., , . --<l. , -.. , 
. - ,- ,. ' _ . 

--

·11; z. '. r ~T:' 
, . " -- . 

, .' , ~ -:; , , 

-- H·-'· ___ ' _Wc~ 

i" , ' " ,. ',. f 

,.' . ,> -- -- , :. - --
, ; 

,- ; 
--,'. r " 

.1 '., - -- ; :i~ , . . 
--

. . , 
Iz" 

~, .... -- .. 
-- - --

HLOUT (TMP, ._ DATA BUS ; . ' - .- --
STATUSf71 . £ 

B3+'h 
• --

PC OUT PC=PC+l 
" , " STATUS[61 .. ' 

re-PC l l Dl+W WZ OUT DATA~ A 

". ' .' . 
'. 

-- -; STATUS[61 " 
PC=PC+l B3---i--w WZOUT IAi DATA BUS " -- ~"- ;, " --

STATUsI71 ~ -- -- :" ;; -

PC= PC+ 1 B3 .... W WZOUT DATA' -" , L WZOUT DATA - • : f-- , ~ --

STATUS[6] WZ = WZ + I STATUS[6] -- , 

PC OUT PC--PC+l 83 t ... w WZOUT ILl DATA BUS WZOUT (HI-- -DATA 6US 
,. 

, -- ;. e 

--
STATUS[6] STATUS[71 wz '" WZ + 1 STATusPI - c;" '--

F- ---- . -- :" ; i . " . 
--

" " . 
-- ----: . I " 

: t- __ --. ' .. - -- -- -'-,,-:--~ 
, 

--I' ! 
,,- :::-"'1 "I' ---':----------:1: 

I: -- '"',, ",' -- :-" .L" 

,,, 
,," · . , 1< - ,,, -- ; I~" ," ,,, , 

• '. - ---
I ' --

, 
, .,,' , -- , 

1- , , ;; --
: . ,", ' . ,. 

" 
.' 

"" ,--~. 
:' ': . 

--
" 

[91 IACTI+ITMPJ~A . >' .. ' , . 

--
" -- ... .: ; [91 (ACT) l iTMP} ~A ~ ~ . .-'j' .-- • j ,,' 

-- ' 
. . ,," " ; , 

, 

--

-,-- .--.>.".--- ~ ; .' __ . , 

--
" 

[91 IACTHITMP,+CY4A ,,: , !. "" , 
. .> , ," : ' --

c- , ", ' - . 
[91 (ACT)+{TMP)+CY-A .. I' .. 

--
. • 'l . --- . ' • . - · 

-- . ' -- . .. 
'--"'''' --'-" "·""""'0".' _0_ .. 

-' . , 
. --' . I, • ' · [91 (ACT)-iTMPI-+A 

-- I :;.: I .- .. 
-- ~ l '/ ' , 

' --[91 [ACTI--ITMPI4A ',- . " 

. " 
, .. ' ; 

; . '. 
--

.' 
--

[91 I IACT,--ITMP)--CY4A 'i I . -, 
--," 

" ' 
f------ ---

'" • -- .-r-- -- -~ .; .. 
[9] 'ACT)-{TMP)-CY----A 

- 1 -, 
- -- ;"" 

,-
I' 

, 

" 

.>. 
---

. 
--

- -- --

HLOUT 
STATUS[7' 

ALU-~DATABUS --

c'". .' --- c 

HLOUT I ALU-~DATABU5 . -- '--'--
-- " 

~ATll~[7J I 
-- , .. ~ " , 

, 

--,. -- " 

-- f 
, . 

-, 
" , ,. -- --

(rh)-+ACT lH)4TMP ALU-H, CY : ' IACTI+{TMP)+CY~ALU . 

--. 

~ 

19] lACT)+ITMP)4A --

---



~~>fff&fiS¥¥f{3¥i@, .. ______________ .. ________________________________________________________ p.a.9.8 ... 87 

MNeMONIC OPCOO[ M1[1J M2 

07 0 6 0 5 0 4 \ 0302D, DO T1 12121 T3 T4 T5 T1 12121 T3 

ANI data 1 1 1·0 i 0 1 1 0 PC OUT PC -= PC + 1 INST~TMP/IR IAI~ACT 
.' 

PCOUT PC = PC + 1 R:> ~T""'P 
STATUS STATUS[6] 

XRAr 1 0 1 a 1 S S S 
, • IAJ~ACT 

" 
[91 ~ACT)+~TPM)-+A 

(SSSI-TMP -
XRAM 1 0 1 0 1 1 1 0 

i 
(AI-ACT ' -,'. HLOUT DATA- f-TMP 

STATUS[61 
._---~. 

; XRI data 1 1 1 0 1 1 1 0 [AI-ACT PC OUT PC'" PC + , 82- I--TMP I ~ "" STATUS[61 

ORAr 1 0 1 1 0 S S S 

i 
, (AI-ACT ", [91 [ACTI+(T"PI~A 

[SSSI-TMP I 
ORAM 1 0 1 1 0 1 1 0 ! IAI-ACl HLOUT DATA· f-TMP 

I " -> STATUS[61 
I 

OR) datil I 1 1 1 1 0 1 1 0 

I 
IAI-ACT PCOUT PC = PC t 1 B2- f-TMP 

- STATUS[61 

CMPr 1 0 1 1 1 S S s ! (A) ,ACT 101 (ACT} (TMP), FLAGS , ISSSI-TMP , 

CMP M 1 0 1 1 1 1 1 0 
I I i IAI-ACT HLOUT 

STATUS[61 
DATA _TMP 

CPI datil 1 1 1 1 1 1 1 0 ; ! IAI ·ACT PCOUT PC=PC+l B2 ,..TMP 
I i , 5TATUS(61 

RLC 0 0 0 0 0 1 1 1 IAI-ALU [91 ALU 'A, CV 
ROTATE '. 

RRG 0 a a 0 1 1 1 1 

I 
(AI-ALU [\ .. '- [9) A Llf-+A, cy 

1 : ROTATE -._-
--~~~- -:z .' RAL 0 a 0 1 0 1 1 1 I (AI, CV-ALU [91 A Lu--.-A, CV 

1 ROTATE " :'~'-i ,',', 

RAR 0 0 0 1 1 1 1 1 IAI. CY~ALU " -, [91 AL~A, CV 
ROTATE 

CMA 0 0 , 0 1 1 1 1 IAI-A .' - " .',. - " 

. " " ,',' , I" 
. 

CMC 0 a 1 , 1 1 1 1 CV··CV 
. -

----
STC 0 0 1 1 0 1 1 1 

i 
1 ·cy 

i 
; 

" . . ,', . -
----

JMP addr 1 1 0 0 a 0 1 1 ; X PCOUT PC=PC .. 1 82- _z 
STATUS[6] i 

-
i ! J cond addr [17] , , C C C 0 , 0 ; JUDGE CONDITION PC OUT PC"PC-' 62- .z 
i 1 I !:iiAlus[Ol 

CALL addr 1 1 0 0 1 1 0 , i , 
SP = SP - , 

i 
PC OUT 
ST ATUS[61 

PC = PC + 1 82· _z 
.~ 

C cond addr[17} 1 1 C C C 1 0 0 , JUDG E CONDITION PC OUT i PC = PC + 1 B2-----.-.Z 
IFTRUE,SP~SP-l STATUS(6) 

--, 
" SP OUT i RET , , 0 0 , 0 0 , 

i 
x SP = SP + 1 DATA-4.Z , STATUS[15] ! 

R cond add,['7] , 1 C C C 0 0 0 T INST-TMP/IR JUDGE CONDITION[141 SPOUT SP = Sp + t DATA~2 

I STATUS[151 

RST n 1 1 N N N 1 1 , 
I i fr,;~-TMP/IR SP·SP-l SP OUT SP· SP - 1 IPCHi- f-DATA 8US 

I STATUS['61 

PCHL , 1 , 0 1 0 0 1 INST-TMPI,R , fHU-· --fpC 

I-'USHrp 1 1 K P a I 0 , • SP -:.if' - 1 Gf' OUT 
STATUS['6) 

SP - SP 1 frh) t--0ATA BUS 

--

PUSH PSW 1 1 1 1 i 0 1 a , SP=SP-, SP OUT SP == SP - 1 (A! -~DA fA BUS 

I 
STATUS[16) 

POPrp 1 , R P 0 0 0 , , : x SPOUT SP - SP + 1 DATA-~r' 
I 

~IAI U:::,'4S} 
--

I pop PSW , 1 1 , 0 0 0 1 ! X SPOUT SP "" SP + 1 DATA- j-FLAGS 
STATUS['5] 

--

1 XTHL 1 1 1 0 0 0 1 1 i X SP OUT SP = SP + 1 DATA- j-2 

i STATUsl'5] 

IN port , , 0 1 , 0 , 1 i X PC OUT PC:PC+1 82- f-Z,W 

; STATUS[61 

OUT port , I 0 1 0 0 , 1 X PC OUT 
STATUS [61 

PC=PC+1 82- f-Z,W 

.--
EI , 1 1 , 1 0 , , SET INTE F/F 

! 

01 1 1 1 , 0 0 , 1 RESET INTE F/F 

, 

HLT 0 1 1 1 0 , , 0 ~ 
X PCQUT HALT MODr::IDl 

, , STATUS 

NOP 0 0 0 0 0 0 0 0 PC OUT PC= pe+ 1 INST-TMPIIR X 
STATUS 



Page 88 

T1 

PC OUT 
STATUS(6) 

peOUT 
STATUSI6] 

PC OUT 
STATusIS] 

SPOUT 
STATusl151 

SPOUT 
STATUS[15) 

SPOUT 
STATUS[1S] 

SPOUT 
STATUS(lbl 

SP OUT 
STATUS(lS} 

SPOUT 
STATtJS(151 

wz OUT 
STATUS[18) 

M3 

PC"'PC+l 

PC=PC+l 

PC=PC+1 

sp.: Sf + 1 

SP=SP+1 

SpooSP+l 

SP=SP+l 

M4 M5 

WZOUT 
STATUSI11] 

(wZ) + l-PC 

WZOUT 
STATusl11,121 

(WZ)+1-PC 

WZOUT 
STATUsI111 

(WZ)+1-PC 

WZOUT 
STATusl11 ,121 

!WZ) + 1-PC 

~A~~~1111 IWZ) + 1-PC 

~~~~~[11,12) IWZ)+1-+PC 

WZOUT
STATUsI111

(WZ) + 1 -PC

Page 89 ~~fff95Si§f{~I __ _

NOTES:

1. The first memory cycle (MIl is always an in­
struction fetch; the first (or only) byte, contain­
ing the op code, is fetched during this cycle.

2. If the ready input from memory is not high dur­
ing T2 of each memory cycle. the processor will
enter a wait state (TW) until ready is sampled as
high.

3. States T4 and T 5 are present, as required, for
operations which are completely internal to the
CPU. The contents of the internal bus during T4
anu T 5 are availaule at the uala uus; this is de­
signed for testing purposes only. An "X" de­
notes that the state is present, but is only used
for such internal operations as instruction de­
coding.

4. Only register pairs rp == B (registers Band C) or
rp = D (registers D and El may be specified.

5. These states arc skipped.

6. Memory read subcycles; an instruction or data
word will be read.

7. Memory write subcycle.

B. The ready signal is not required during the sec­
ond and third subcycles (M2 and Ma). The hold
signal is accepted during M2 and Ms. The sync
signal is not generated during M2 and Ma. Dur­
ing the execution of DAD, M2 and Ma are re­
quired for an internal register-pair add; memory
is not referenced.

9. The results of these arithmetic, logical, or rotate
instructions are not moved into the accumulator
(A) llntH stl'ltP. T" of the next instruction cycle.
That is, A is loaded while the next instruction is
being fetched; this overlapping of operations
allows for faster processing.

10. If the value of the least significant 4-bits of the
accumulator is greater than 9, or if the auxiliary
carry bit is set, 6 is added to the accumulatur. If
the value of the most significant 4-hits of the
accumulator is now greater than 9, or if the carry
bit is set, 6 is added to the most significant 4-bits
of the accumulator.

11. This represents thp. first suhr:ycle (the instruc­
tion fetchl of the next instruction cycle.

12. If the condition was met, the contents of the
register pair WZ are output on the address lines
(Ao- l5) instead of the contents of the program
counter (PC).

13. If the condition was not met, sub cycles M4 and
M5 are skipped; the processor instead proceeds
immediately to the instruction fetch (MIl of the
next instruction cycle.

14. If the condition was not met, subcyr:les M2 and
Ma are skipped; the processor instead proceeds
immediFltely to the instruction fetch (MIl of the
next instruction cycle.

15. Stack read subcyde.

16. Stack write subcyc1e.

17.

lB.

19.

20.

CONDITION CCC

NZ - not zero (Z = 0) 000
Z - zero (Z == 1) 001

NC - no carry rCY = 0) 010
C - carry (CY == 1) 011

PO - parity odd (P == 0) 100
PE - parity even (P = 1) 101

P - plus (S = 0) 110
M - minus (S = 1) 111

110 subcycle: the I/O port's 8-bit select code is
duplicated on address lines 0-7 (Ao- 1) and B-15

(AS-IS)'

Output sub cycle.

The processor will remain idle in the halt state
until an interrupt, a reset, or a hold is accepted.
When a hold request is accepted, the CPU enters
the hold mode; after the hold mode is termi­
nated, the processor returns to the halt state.
After a reset is accepted. the processor begins
execution at memory location zero. After an in­
terrupt is accepted, the processor executes the
instruction forced onto the data bus (usually a
restart instruction).

'SSSor DDD Value rp Value

A 111 B 00
B 000 D 01
C OO! H 10

D 010 SP 11
E 011
1-1 100
L 101

Page 90 .. __ ~~,f¥fH#Siif!i!iU

SPECIFICATIONS

Microprocessor. , . ,

Monitor

Monitor Functions .. ,

Clock

Interrupts ,

Power Supplies

B080A.

Tn on-board 1K x 8 ROM. Octal addresses, data input,
and display from the front panel.

Memory display and alter.
Register display and alter.
Memory load and dump.
Single instruction execution.
Program execution.
Port input and output.

2.048 MHz, crystal controlled.

Seven, priority vectored.

+8 VDC at 10 amperes maximum. Regulated to +5
vnc on each circllit board

±18VDC at 500 rnA. Regulated to +12VDC and -5
VDC on the CPU circuit board.

Chassis Capacity Seven locations on ihe mother circuit board for mem­
ory or I/O cards. Four memory cards maximum. One
bus expansiull Im;llLiuIl.

Operating Temperature. .. 0° to 40°C.

Cooling .. Convection type.

Power Requirements. .. 120 VAC, 50/60 Hz, 150 watts.
240 VAC, 50/60 Hz, 150 watts.

Voltage Requirements , 120 VAC (100-135 VAC), 50/60 Hz.
240 VAC (200-270 VAC), 50/60 Hz.

Dimensions. 16/1 'vV x 17.5" D x 6.5" H.
(40.6 x 44.5 x 16.5 em.)

Weight. .. 21 lbs. (9.5 kg).

I ••

The Heath Company reserves the right to discontinue
products and to change specifications at any time
without incurring any obligation to incorporate new
features in products previously sold.

= 0:

SEMICONDUcrOR COMPONENT NUMBER INDEX

DIODES

[I Rr.111 T
CO,\,\ PONENT

NUMBER

01 f 0;>

D3-D6

DIDI. DI02

LEDI0I-LEDI09

LEDlll-LED1l4

TRANSISTORS

CIRCUIT
COMPONENT

NUI'IIBER

QIOI-QI09

QIDI-QIl8

Q 119

INTEGRATED CIRCUITS

CIRCUIT
COMPONENT

NUMBER

I CI0l

ICI02

ICI03

I C 1 04

IGI05

ICI06

IC107

ICI08

This Index, which shows the Heath Part Number of
each semiconductor product, provides you with a
cross reference between Circuit Com ponent Numbers
and their respective Heath Part Numbers. The Com­
ponent Numbers are listed in numf!rir:al nrder.

HEATH
CIRCUIT

COMPONENT
PART NUMBER NLIV1BER

100-1718 I CI09

57-27 I CllO

56-56 I Cll I

411-819 I ClI2

412-611 I C113

I C1l4. I C1l5

IC1l6.ICl17,ICl18

I C119

IC120
HEA TH

PART NUMBER I C201

417-801 I C202

417-235 I C203

417-875 I C204

I C205, I C206

l C207

I C208

HEA TH
I C209

PART NUMBER I C210

442-54 I C211

443-6 I C 212

443-760 I C213

443-755 I C214

443-3 I e215

443-752 I C216

443 - 90 I C217

443-6 I C218

HtA~H

PART NUMBER

443-755

443-1

443-46

443-54

443-754

443-756

443-752

443-713

442-54

442-54

442-617

442-618

444-13

443-754

443-3

443-754

443-754

443-754

443-754

443-758

443-762

443-759

443-12

443-730

443-756

443-754

Page 91

Page 92

DIODES

HEATH PART
NUMBER

56-56

57-27

100-1708

411-819

412-611

SEMICONDUCTOR PART NUMBER INDEX

This index shows a lead configuration detail (basing
diagram) for each semiconductor part number. The
Heath Part Numbers are listed in numerical order.

MAY BE
REPLACED WITH

IN4149

1 N 2071

2
HEATH PART

57 - 35

F N D 500

LSL-3L

IDENTIFICATION

IMPORUNT: THE BANDED END OF DIODES cal
BE MARKED IN A NUMBER OF WAYS.

/(///~ //~~/
\,)

v
BANDED £NO

CATHODE a£i~~

~ ANODE

TOP VIEW
]0 9 8 7 6 PIN
DDDCJO l. ... SEG,',IENT E

A z ... , SEGMHJT [)

F~~~B
Ell:JJC

"
D DP

3 COMMON CA THODE
4 ... <;FGMENT C
5 Q P
6 S E G .'11 E NT B
7 SEGMENT A
8 COI\~MON CA THO OE
9 SEGME~ I ~

10 SEGMENT G
DODDc::::J

1 2 3 4 5

AND~ ~Fl"
~CATHOOE

Page 93

TRANSISTORS

H EA TH MAY BE IDENTIFICATION
PART NUMBER REPLACED WITH

,r FLAT

417-235 2N4121
EMITTER ~

BAS~C10"

417-875 2N3904

CMIIJ,~FLAI

\ COLLEClOR

417-881 MPSA13 BA SE

Page 94

INTEGRATED CIRCUITS

HEATH PART
NUMBER

442-54

442-617

442-618

443-1

443-3

443-6

:'11 A Y BE
REPLACED WITH

7805

78.'V1G

79MG

7400

7430

7474

DESCR! PTION

5 VOLT
REGULATOR

+5 TO +30
VOLT

REGULATOR

-2.21-30

VOL T
REGULATOR

QUADRUPLE
2-INPUT

POSITIVE
NAND GATES

8-INPUT
POSITIVE

NAND GATES

DUAL D-TYPE
POSITIVE

EDGE-TRIGGERED
FLI P-FLOPS

WITH PRESET
AND CLEAR

LEAD CONFIGURATION

>R~ GNll/ OUT GND/ OUT

TO P V I E\Iv

v s C 4 E 4A 4Y

I~. 15 IY IA

TOP VIEW

TOP VI EW

25

2
PRESET

2Y G~J)

I 10 10 G N 0
CLEAR ClOCK PRESET

::: ::: ~ Ell

Integrated Circuits (cont' d.)

HEATrl PART
iv1A Y BE

REPLACFD
NJMBER WITH

443-12 7410

443-46 7402

443-54 7403

443-90 74123

DESCRIPTION

TR I ~LE
3-INPUT

POSITIVE-
NAN) GATES

QUADRUPLE
2-INPUT

POSITIVE
OR GA res

QU" DRU BLE
2-INPUT
PCSITIVE

NAND GATES

DUAL
MONOS TA BLE

~1 U L T I V I BRA TO R

LE AD CONFIGURATION
:TOP VIEW)

vee

I A I B u,

'Icc 4Y 4B

I Y IA I B

vee 4B 4A

IRe xl

'/~r c exL

18 I
: LEA R

38 3A

n zc zy

4A 3Y 38

?V 2A ,B

4Y 3B

-
10 2Q CLEAR

3Y

GND

JA

GijD

JA 3Y

2B 2A

2Rex!. GND
C. xl.

Page 95

Page 96

.. --___ a:::~fff~i¥9i¥fj*£Gi«
Integrated Circuit~ (cont'd.)

HEATH
PART NUMBER

443-713

~43-73[\

443 752

443-754

443-755

,1;1 A Y BE
REPLACED WITH

MC14028

74LS74

74LS175

74LS 240

74 L 5 U4

DESCRIPTIOf\

4-TO-l0
LIN E

DECODER

DUA L D
FLIP-FLOP:'

QUA D
LA T C H

OCTAL B urfER S
3-STATE OUPUTS

HEX
BLJFHR

LoA) CONFIGURATION
nop VIEW)

OUTPUT
~

Yl 'il

SOSlS2SJ

: I

~ ___ t,~':.u TS

53

3 ~ 3 6

Y0 Yi Y2 YJ Y·1 y5 '16 YJ Yb Y9

OulPLTS

Vee CLH,)2 CcK2 PR2

v C C 4i) lQ Cl8CK

.: L EA R 10

Integrated Circuits (cont'd.)

HEATH
PART NUMBER

443-756

443-758

443-759

443-760

MA Y BE
REPLACED WITH

74148

8224

8238

MCl4040

DEseRI PTIOf,

8 - LIN E TO
3LINE

PRIORITY
E,\leODER

C La CK
GENERATOR

AND DR I VF R
FOR

8080A CPU

SY STEM
CO\ITROLLER

AND
BUS DRIVER

FOR
8080A CPU

12 -B IT
B I NA RY
COUI~TER

2.

3.

~ .

6.

7.

8.

LEAD CONFIGURATION
ITOP VI~W)

OUTPUTS IN PUIS

Page 97

r---""'------, ,r------..---~\ 0 U I P U I
EO GS AD

II A2 Al GND '-____ ,--___ ~ • .-.J

I~FJTS Ou -PU IS

R£SET OUIPUI 9. VDD 1+ 12V!

R [S [T I r~ nUT 10.
0 2)

ilEA JY It, PUT 11 i3'1 80~O CLOCK

READY OUTPe T P. OSCILLATOR OUTPU-

SHe I ~ ,._ T 13. -ANK ,UscD WITH OI'HTONE XTALI

O? C L;(,T -L LEV:: L J 14. :<r A L 2} COI,~; [C T I 01, S

SIALS SID 'ACI"'[LO":" 15. XTAL I FOR CRYSTH

CROU!J0 I O'.,I1 16 lice [+5\;1

MfMW l\lFiVlR

I/ow IloR INTA 06 DB6 05 OB5 Df OBI OJ)'

/
IILOA VIR OBIN DB4 04 087

S TST8
D7 DB3 03 OB2 02 OM GNO

V:D 011 DID 08 Q9 RESET CLOCK 01

_p.a.9.e_9.8 ___________________________________ •E#fhidiffHW

Integrated Circuits (cont'd.)

HEATH
PART NUMBER

443-762

444-l3

MAY BE
REPLACED WITH

8080A

MK3000

DESCRIPTION

MICRO­
PROCESSOR

8192 BIT
STATI CMOS
RLII.D ONLY

MEMORY

LEAD CONFIGURATION
(TOP VIEW)

/114 AU +12V WAIT READY

All \ AI; \ AI5 A 9 A8 A, A6 A5 114 A3 Az A] AO / .0'1 HLDA

AIO I 04 D5 06 0, 03 01

GND

