

TABLE OF CONTENTS
e TTUITRTEROY. RO 2
DO ERIMI .- S S A R P i A LA o 3
PIRGOG5S S P S RS S B RO 3
D 4
DE-DOBUSIEBBCAIONocooesnosesonsenenmmonmnsnsesssssssdsdsaaassasessssesssssdnsinns 5
ORI o0 s A S B N T P Ao 6
DG-80 Jumper Options & Wait State SSIeCHON ... ___...........ccciiiiiii e 7
U e e 8
25 G ATCIBORN® . .o s S s A R Y SR 1
COTTRN. eSS R R e ns s s arsente: 14
CPU INMEITUPE RESPOMSEt e oot e e e e e e e e e 2
Parts LIS SCROIacs ... i oisinoesannnesis ORI s o v i mnasa snnnass %
S R S PG RS PR 2
ADDENdix B: Operation With THe DG-32D .-o-. . vomenuiuniosesssensiasinnsnsismnsnnnansesneses 28

Hegmt HE® ang PAN-E e registeras ade mana of The Faa Company of Sewioe Harder. Michigan

WARRANTY

The DG-80 CPU is warranted for a period of ninety (90) days from the date of purchase to be free from defects in
material and workmanship. Should this product fail to perform satisfactorily, arrangements should be made with D-G
Electronic Developments Co. for warranty service as follows.

Return of the DG-80 is subject to the issuance of 2 RETURN MERCHANDISE AUTHORIZATION NUMBER by D-G Electronic
Developments Co.. This RMA number must be ciearly visible on the outside of the returned package which must be returned
freight pre-paid. FAILURE TO CONFORM WITH THIS PROCEDURE WILL RESULT IN REFUSAL TO ACCEPT SAID PACKAGE
UPON ARRIVAL.

D-G Electronic Developments will, at our option, repair or replace defective units received during the warranty period. This
warranty is invalid if the product has been misused or modified Warranty is limited to replacement of defective parts and no
responsibility is assumed for damage to other equipment.

THIS WARRANTY IS MADE IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED

L

INTRODUCTION

The D-G Electronic Developmenis Company Model DG-80 is an advanced Central Processing Unit for the Heath H8*
microcomputer. The DG-80 utilizes the powerful Z80 microprocessor and provides the following features and options:

Compatible with Heath H8* hardware and software*

Enhanced Instruction Set — 158 instructions including all 78 instructions of the 8080A
Prowisions for on-board memory up to 8K ROM/EPROM or 4K RAM
Jump-On-Reset to any 1K boundary

Operation uwp 10 4 MHz (2 048 MHz standard)

DiP-switch selectable wat states for any or 2l 8X blocks of system memaory

All 780 interrupt response modes availabie

interrupt Acknowiedge and Dynamic Memory Refresh signais availabie on the bus
Frequently seiected options by DIP-switch or soideriess jumpers

Machined contact goid sockets for on-board memory provide long life and enhanced reliability
Many advanced features for future expansion

* Due to signal differences between the 8080A and the Z80 microprocessors, the DG-80 is not compatible with the single-
step feature offered by the Heath® PAM-8 Panel Monitor and the Heath® Console Debugger. Note however, that other
features of the DG-80 (i e. the jump-on-reset feature and the flexible on-board EPROM capacily) will afiow the sophisticated
user to employ advanced software from vendors other than Heath®. Many vendors supply software which include
software debugging utilities with (DG-80 compatible) single step in addition to assembiers, disassemblers, and monitors.
For the slightly less sophisticated user, D-G Electronic Developments Co. will soon make available products to aliow the
average DG-80 user to utilize much of this available software.

Microprocessor
Computer Interface

Clock Standard
Optional

Interrupts Standard
Optional

On-Board Memory

Sockets

Swilches

Power Requirements

(Note 1)

Manuals and Documentation

SPECIFICATIONS

Z80A (158 instructions including all 8080A instructions)

Heath H50 Bus {modified). All inputs 1 TTL load or less. Output Buffers-
7415240.

2.048 MHz

Up to 4.000 MHz

Seven, priority vectored

Z80 Mode 1 or Mode 2

2 on-board sockets aliow up to 8K ROM/EPROM or up to 4K RAM
All IC’s socketed

All frequently changed options determined by solderless jumpers or DIP
switches

+78+12VDC at 540 mA
+149+20 VDC at 50 mA
—149-20 VDC at 30 mA

Includes extensive instruction manual and Mostek Z80 Programming Manual

Note 1: Currents given are typical with Heath PAM-8 ROM (2308) on board and may vary according to RAM or ROM used.
The DG-80 does not include the PAM-8 ROM. Maximum currents (U10 and U11 combined) for the ROM sockets are:

+5VDC @ 200mA
+12VDC @ 100mA

INSTALLATION INSTRUCTIONS

Make sure that the H8* power switch is in the OFF position and the computer line cord is unplugged.

1) Remove the top cover and tie bracket from the H8* computer. Remove the 6-32 x %~ screw that holds the bottom of the
CPU board.

2) Disconnect the 5 pin connector (S201) from the Heath® CPU and remove the Heath® CPU board from the computer.

NOTE: In the following step, you will remove the Heath PAM-8 ROM (1C204) from your Heath CPU board. Before
removing the ROM, identify pin 1 so that the ROM will b2 installed properly on the DG-80. Remember that
care should be exercised when MOS devices zre nandied 0 zavoid damage to them.

3) Remove IC204 from your Heath CPU board. Install this ROM at U10 on the DG-80 CPU board. Be sure all of the pins are
straight and pin 1 is aligned properly before pushing the ROM mio the socket.
4) Make sure the following switches and jumpers are positionsd:

WAIT ADDR All switches OFF
MEM ADDR K ON, 2l others OFF
MEM SPACE BK ON, 2l others OFF
Jumper J9 No jumpers instalied
Jumper “A” PIN 18 GND
PIN19 +12v
PIN 21 -5V
Jumper “B"” No jumpers installed

5) Double-check the above jumpers and switches.

6) Install the DG-80 into the H8* computer. Be sure to align Pin 1 of P201 properly and plug S201 (the 5 pin connector) onto

P201.

7) Re-install the tie bracket and computer top cover. Install the 6-32 x %" screw in the bottom of the CPU board.
8) Make sure the H8 power switch is in the “OFF " position and then plug in ti:¢ computer.

9) Push the H8 power switch to the “ON"" position. The PWR, RUN. MON, and ION LED's should light and the nine LED
displays should indicate random numbers._ I this is not the case, turn the power switch to ““OFF ", unpiug the computer

and recheck this installation procedure.

10) If step 9 is successful, proceed to the Memory Test Routine on page 9 of your HB* operation manual or the H8* Memory
Test given in the H17 or WH 17 Disk System operating manual. The memory test will allow you to check the performance

of your computer system before putting it in use.

NOTE: IF DIFFICULTY IS ENCOUNTERED AT STEP 9, REFER TO APPENDIX A: OPERATING NOTES. This section
discusses operational differences between the Heath 8080 CPU and the DG-80. If this section does not
explain your symptoms refer to the Warranty section of this manual.

INTA
®

M1

WAIT

I/OW

MEMW

RFSH

BUSRQ

-

PIN# 0 Gnd PIN#25 BUSAK
PIN# 1 Gnd PIN#26 I/OR
PIN# 2 —18Voits PIN£27 BUSRQ
PIN# 3 INT: PIN#28 MEMR
PIN# 4 INT. PIN#2239 RESET
PIN# 5 INT: PIN#30 A
PIN# 6 INT. PN=31 A
PIN# 7 INT- PN232 A
PIN# 8 INT. PN#33 A
PIN# 9 INT: PIN#32 A
PN#10 Do PIN£35 A
PN£211 D PIN236 A
PN#12 D: PIN#37 A
PIN#13 Ds PIN#38 A
PIN#14 D. PIN#39 A
PIN#15 Ds PIN#40 A
PIN#16 Ds PIN#41 Asx
PIN#17 D: PIN#42 Ax
PIN#18 INTA PIN#43 As
PIN#19 M1 PIN#44 A.
PIN#20 WAIT PIN#45 A
PIN#21 I/OW PIN#46 ROMDISABLE
PN#22 PIN#47 +18Volts
PIN#23 MEMW PIN#48 +8Voits
PIN#24 RFSH PIN#43 +8Volits

DG-80 BUS IDENTIFICATION

ADDRESS BUS — Tri-state output, active low. Provides address to memory (up to 64K words) and
Input/Output Devices (up to 256 devices addressed by Ar-A;) A, is the least significant bit. During refresh
time, Ay-A; contain 2 vaid refresh address

DATA BUS — bidirectional - Input and Output active low. This 8 bit data bus is used for data exchanges with
memory and 1/0 devices.

INTERRUPT REQUEST — Vectored priority interrupt request inputs. active low. The various interrupt modes
available are discussed in the Interrupt Response section of this manual.

INTERRUPT ACKNOWLEDGE — Output active low. Signals that the CPU has accepted an interrupt request.
CPU CLOCK OUTPUT — This signal replaces the @ , clock found on the Heath H50 Bus.

INSTRUCTION FETCH CYCLE — Output active high. Indicates that the current machine cycle is the Op-code
fetch cycle of instruction execution.

WAIT STATE REQUEST — Input active low. Indicates that memory or /0 devices are not ready for data
transfer thus placing the CPU in 2 WAIT state until transfer can be completed. Replaces the READY INPUT
signal on the Heath H50 Bus.

INPUT/OUTPUT WRITE — Active high. Indicates that the current cycle is an 1/0 Write cycle.
MEMORY WRITE — Active high. Indicates that the current cycle is a Memory Write Cycle.

REFRESH — Qutput active high. Indicates that A,-A; contain a valid refresh address for use with dynamic
memory refresh operations.

BUSREOUEST lnptnacuveiow Usedbypenplmaldewcestoreques!controlofsystanbusforusem

nuas Ao 1EMAN N o8 o AL L Slo_aL HIfA N

BUSAK BUS ACKNOWLEDGE — Output active low. Used by the CPU to indicate to peripheral devices that they may
take control of the system bus. The following bus lines will be tri-stated at this time: A;-A,<. D,-D;. MEMR,
MEMW, I/O R, /O W, INTA, AND M1. Replaces the HOLD ACKNOWLEDGE signal on the Heath H50 Bus.

I/OR INPUT/OUTPUT READ — Output active high. Indicaies that the current cycle is an I/0 Read cycle
MEMR MEMORY READ — Qutput active high_ Indicates that the current cycle is 2 Memory Read Cycie.
RESET RESET — QOutput active low. System Reset output 1o peripherals.

ROMDISABLE ROM DISABLE — Input active low. Aliows peripheral devices to disable memory on the DG-80 CPU board.
See the Heath H8* operation manual for information on power supply specifications.

ON-BOARD MEMORY OPTIONS

The DG-80 CPU allows for up to 8K bytes of on-board ROM/EPROM, up to 4K bytes of on-board RAM or combinations of
ROM and RAM up to 4K ROM and 2K RAM. This memory is placed in sockets U10 (Memory A) and U11 (Memory B). The
options associated with this memory are controlled by jumpers “A”", “B"", and J9 as well as the “MEM ADDR"* switch and
the "“MEM SPACE"" switch.

The DG-80 will accept the following memory devices: 2308 (MK30000)-1K x 8 ROM, 2708 (2758)-1K x 8 EPROM, MK
4118-1K x 8 RAM, 2716 (TMS2516)-2K x 8 EPROM, TMS4016-2K = 8 RAM or many other devices which adhere to the
pin-out and function of these devices. All of the above devices have the same pinout with the exception of pins 18, 19, and 21;
therefore the function of these pins is controlied by jumper A" for U10 (Memory A) and jumper ““B" for U11 (Memory B).

The following table summarzes the jumper positions for the above devices.

NOTE: DO NOT INSTALL MORE THAN ONE JUMPER FOR EACH PIN (18, 19 and 21) OF THE DEVICE BEING USED AT U10
AND ONE JUMPER FOR EACH PIN OF THE DEVICE BEING USED AT U11.

JUMPER POSITIONS FOR COMMON MEMORY DEVICES

DEVICE FUNCTION 18" 19 2™
2308 1K x 8ROM GND ~12v -5V
MK30000 1K x 8 ROM GND NC NC

2316" 2K x 8 ROM GND A10 +5V
2708 1K x 8 EPROM GND +12V -5V
TMS2508 1K x 8 EPROM CS NC +5V
2758t 1K x 8 EPROM Cs +5V +5V
2716 (INTEL) 2K x 8 EPROM CS A10 +5V
TMS2516 2K x 8 EPROM CSs A10 +5V
2732 4K x 8 EPROM CS A10 Al
MK4118 1K x 8 RAM CsS +5V MW
TMS4016 2K x 8 RAM CS A10 MW

NC — No Connection

For other memory devices, see the appropriate manufacturer’s data sheets.

* The Intel 2316 ROM has several mask programmed (i.e. factory programmed) CS options. Some of these options may
not be compatible with the DG-80. Consult with the ROM vendor for the options chosen on your ROM.

1 There are two versions of the Intel 2758. Only the 2758-S1865 is compatible with the DG-80.
*«The signais CS and MW labelled on the board are active LOW signals but were not iabelled as such to enhance readability.

A‘

The memory address of the on-board memory is determined by the MEM ADDR and MEM SPACE switches and jumper J9.
The starting address of the 8% biock occupied by the memory is determined by the MEM ADDR switch. This switch is labelled
PK, 8K, 16K, 24K, 32K, 40K 48K and 56K. If, for example, the Heath® PAM-8 ROM is being used, the MEM ADDR switch
would be set at BK so that the BOM would occupy the lowest available memory locations.

The MEM SPACE switch is set 1o determine where in the 8K block chosen by MEM ADDR memory is located. The #K block is
always assigned to Memory A (U10) and the 4K, 5K, 6K and 7K blocks are zlways zssigned to Memory B (U11). The 1K, 2K
and 3K blocks may occupy Memory A or Memory B depending on the memory dewices used This choice is made by use of
jumper J3_ A few examples will clarify switch and jumper selections:

The Heath PAM-8 ROM is 2 1K byte ROM. If this device were being used, the MEM ADDR switch would be set to §K to
place on-board memory in the lowest 8K block of the H8 memory The MEM SPACE switch would be set to BK to show that
the 1K ROM occupies the lowest 1K block of the 8K on-board memory space. No jumpers would be instalied in J9 since
the @K space is ziways assigned to Memory A and the ROM wouid be plugged in at Memory A (U10)

As anotner example, suppose the user wished to use a 2716 2K EPROM for program storage (his own custom panel
monitor) and wished to use a MK4118 RAM addressed immediately above the EPROM. If the EPROM is to be located at
the bottom of memory. then the MEM ADDR switch would again be set to BK. Since the user has 3K bytes of on-board
memory, the K. 1K and 2K MEM SPACE switches would be set to the ON position. Since the EPROM occupies 2K bytes,
jumper J9 would have the 1K position set to A (recall that the #K position is always assigned to Memory A) and the 2716
would be plugged into Memory A (U10). The 2K position of jumper J3 would be set to B and the MK4118 plugged into
Memory B (U11).

DG-80 JUMPER OPTIONS

The DG-80 CPU has many jumper selectable operating modes. A detailed discussion of all modes is beyond the scope of this
manual, but a brief description of each of the jumpers and their function will be given. It is strongly recommended that the
advanced user of the DG-80 acquire a copy of the Mostek MICROCOMPUTER DATA BOOK if he requires additional
information on Z80 operation

Note: Many of the DG-80 options are not compatibie with the Heath® PAM-8 Panel Monitor and certain other Heath
peripherais. This fact will be noted with each option.

J1 This jumper connects the DG-80 RFS signal to the system bus, pin 24. Pin 24 of the Heath Bus was not
assigned and therefore chosen for this function_ If the user aiready empioys pin 24 of the bus for some
function and does not desire this Dynamic Memory Refresh signal, then jumper J1 should be removed.

J2 This jumper connects the DG-80 INTA signal to the system bus, pin 18. This pin was not assigned on the
Heath Bus and therefore chosen for this function. If the user already empioys pin 18 of the bus and does not
desire the INTA function, then this jumper should be removed.

J3 Connects INT 2 to the system bus.
J4 Connects INT 1 to the system bus.
J5 When pin 1 is connected to pin 2 and J4 is connected, INT 1 is tied to the Heath Bus pin 8. If J4 is connected

and pin 1 of J5 is connected to pin 3, then pin 8 of the Heath Bus becomes the NMI (non-maskable Interrupt)
input. Wamning: The NMI function is not compatible with the PAM-8 Panel Monitor.

J6 Determines whether the BUSAK signal is active HIGH or active LOW
12 Active Low (BUSAK)
183 Active High (BUSAK)
J7 Used in selection of DG-80 CPU Interrupt response. When pin 1 is connected to pin 2, the CPU operates in

Z80 Interrupt Response Mode 0 (this is the normal Heath-compatible mode). When pin 1is tied to pin 3, the
CPU will operate in Z80 Interrupt Response Mode 1 or 2. See the Z80 CPU Interrupt Response section in this
manual for information on these interrunt resnonse modes. Warnino: The Z80 Interrunt Resoonse Modes 1

J8 Used in conjuction with J7 to determine DG-80 CPU interrupt response. When pin 1 is connectad 10 pin 3, the
CPU will operate in either Z80 Interrupt Response Mode 0 or 1. When pin 1 is connectad 1o pin 2, 2n INTA
signal from the CPU will allow data on the System Dztz Bus to be placed on the CPU Data Bus. This zllows the
CPU to operate in Z80 CPU Interrupt Response Mode 2. See the Z80 CPU Interrupt Response section in this
manua! for information on these interrupt response modes.

J9 Used in conjunction with the MEM SPACE switch to determine addressing of on-board memory. See the “ON
BOARD MEMORY SELECTION section of this manual for information.

CLK This jumper is used to select between 2 and 4 MHz operation of the DG-80 CPU. The oscillator made up of U2
and its associated components oscillates at a frequency determined by Y1. As distributed, Y1 is a4.096 MHz
crystal. This frequency is divided by 2 using flip-flop U3 to provide the 2.048 MHz clock frequency to the CPU.
Note that this is the standard clock frequency used by the Heath H8-8080A CPU. If operation at 4 MHz is
desired, Y1 should be changed to a 4.000 MHz crystal and jumper CLK set to the 4 MHz position. Waming: D-
G Electronic Developments Co. DOES NOT recommend operation of the CPU at frequencies above 4.000
MHz. NOTE: The Heath H-17 Disk System was not designed to operate at 2 system clock frequency of 4 MHz.

WAIT STATE SELECTION

When the DG-80 is operated at clock frequencies greater than 2.048 MHz, problems may be encountered with existing siow
memory in the system. To avoid this problem, the DG-80 allows one wait state (equivalent to one t-cycle) to be inserted when
accessing memory. Wait states may be selected for any or all 8K blocks of memory in the computer memory space by means
of the DIP switch labelled WAIT ADDR on the upper right-hand comner of the CPU board.

To illustrate the use of this feature, assume the user has one 16K memory board which will operate at 4 MHz and one 16K
board that will only operate at 2.048 MHz but wishes to operate the system at 4 MHz. He might address the fast 16K board to
occupy the 8K and 16K blocks of memory and the “slow”’ board to occupy the 24K and 32K blocks. Wait states would then be
selected by use of the DG-80 WAIT ADDR switch only for the 24K and 32K blocks. Note that in this example the “fast™
memory is located in the lower memory locations where it will probably be accessed more often and thus maximize overall
system speed.

INSTRUCTION SET

The Z80 CPU executes 158 different instruction types including the 78 instructions of the 8080A used in the Heath H8
computer. The 78 common instructions may not be immediately apparent upon inspection of the Z80 PROGRAMMING
MANUAL due to the fact that the makers of the Z80 chose to use a new set of instruction mnemonics. To aid the user in
becomming acquainted with the Z80 instruction set, we have included 2 table of the 8080A instruction set along with the Z80
mnemonics for each instruction (see accompanying table). By studying these common instructions in the Z80 PRO-
GRAMMING MANUAL, the user will begin to familiarize himself with the format of the manual and the conventions used in the
Z80 instruction set.

The opcodes for the instructions found in the Z80 PROGRAMMING MANUAL are given in binary and hexadecimal. Since

many users of the DG-80 are accustomed to the octal notation suggested by Heath, a brief review of binary to octal
conversion will be given.

An eight bit binary number may be grouped and converted to its octal equivalent in the following manner:
1 Lk m Binary

——— —— ——

3 7 7 Octal Equivalent
For example, on page 2-82 of the Z80 PROGRAMMING MANUAL may be found the HALT instruction. The binary opcode for
this instruction is converted to octal in the following way:

01 110 110 Binary

— ——

1 6 6 Octal Equivalent

For further information concerning the instruction set of the Z80 microprocessor we refer the user to the Z80 PROGRAMMING
MANUAL.

8080A INSTRUCTIONS WITH EQUIVALENT Z80 MNEMONICS

INSTRUCTION

ACIi Data
ADC Reg
ADCM
ADD Reg
ADDM

ADI Data
ANA Reg
ANAM

ANI Data
CALL Label
CC Label
CM Label
CMA

CMC

CMP Reg
CMPM
CNC Label
CNZ Labe!
CP Label
CPE Label
CPI Data
CPO Label
CZ Label
DAA
DADRP
DCR Reg
DCRM
DCXRP

DI

cl

HLT

IN Port

INR Reg
INRM
INXRP

JC Label
JM Label
JMP Label
JNC Label
JNZ Labe!
JP Label
JPE Label
JPO Label
JZ Label
LDA Addr
LDAX RP
LHLD Addr
LXI RP, Data 16
MOV Reg, Reg
MOV M, Reg
MOV Reg, M
MVI Reg, Data
MVIM, Data

BYTES CLOCKPERIODS

NN - wh o) G h DD DWW DG Q) b b ot N) b b ot b b ot d ek WWNWWOWW = = dWWWN N

1"
1

1
1
11
1

1
1

e B e B B e I

Z80
INSTRUCTION

ADC Data
ADC Reg
ADC (HL)
ADD Reg
ADD (HL)
ADD Data
AND Reg
AND (HL)
AND Daztz
CALL Label
CALL C, Label
CALL M, Label
CPL
CCF
CP Reg
CP (HL)
CALL NC, Label
CALL NZ, Label
CALL P, Label
CALL PE, Label
CPData
CALL PO, Label
CALL Z, Label
DAA
ADDHL.RP
DEC Reg
DEC (HL)
DECRP
Di
El
HALT
IN A, Port
INC Reg
INC (HL)
INCRP
JP C, Label
JP M, Label
JP Label
JP NC, Label
JP NZ, Label
JP P, Label
JP PE, Label
JP PO, Label
JP Z, Label
LD A, (Addr)
LDA, (RP)
LD HL, (Addr)
LD RP, Data 16
LD Reg. Reg
LD (HL), Reg
LD Reg, (HL)
LD Reg, Data
LD (HL), Data

Z80
CLOCK PERIODS

8080A 8080A Z80 280

INSTRUCTION BYTES CLOCK PERIODS INSTRUCTION CLOCK PERIODS
ORA Reg 1 K OR Reg 4
ORAM 1 7 OR (HL) 7
ORI Data 2 7 OR Data 7
OUT Port 2 10 OUT PORT, A 11
PCHL 1 3 JP (HL) 4
POP RP 1 10 POP PR 10
PUSH RP 1 11 PUSHPR 11
RAL 1 4 RLA 4
RAR 1 - RRA 2
RC 1 Sor11 RETC Sor11
RET 1 10 RET 10
RLC 1 < RLCA 4
RM 1 Sor 11 RETM Sor 11
RNC 1 Sor11 RETNC 50r 11
RNZ 1 Sor11 RETZ S5or11
RP 1 Sor11 RETP Sorit
RPE 1 Sor1 RETPE Sor 11
RPO 1 Sor11 RET PO 50r11
RRC 1 4 RRCA 4
RSTN 1 1 RSTN 1
RZ 1 Sor11 RETZ Sor11
SBB Reg 1 B SBC Reg 4
SBBM 1 7 SBC (HL) 7
SBI Data 2 7 SBC Data 7
SHLD Addr 3 16 LD (Addr), HL 16
SPHL 1 5 LD SP, HL 6
STA Addr 3 13 LD (Addr). A 13
STAXRP 1 7 LD(RP), A 7
STC 1 4 SCF 4
SUB Reg 1 4 SUB Reg 4
SUBM 1 7 SUB (HL) 7
SUI Data 2 7 SUB Data 7
XCHG 1 K EXDE.HL 4
XRA Reg 1 - XOR Reg 4
XRAM 1 7 XOR (HL) 7
XRI Data 2 7 XOR Data 7
XTHL 1 18 EX (SP), HL 19

Refer to the appropriate programming manual for an explanation of the symbols and abbreviations used in this table.

NOTE: If you are writing assembly language programs and intend to use the Heath assembler, you must only use 8080A
instructions. The Heath assembler (and many other assemblers availabie) will not handle the added Z80 instructions and are
not compatible with the Z80 mnemonics given in the Z80 PROGRAMMING MANUAL.

2.0 Z80-CPU ARCHITECHURE

A block diagram of the internal architecture of the Z80-CPU is shown in Figure 2.0-1
The diagram shows 3i! of the major elements in the CPU and it should be referred to

throughout the following description.

Z80-CPU BLOCK DIAGRAM

g3
Datagus
DatTasus
CONTROL
&= i < WTEANAL DATABUS >4 ALy
“~~—q REG r ‘/‘
INSTRUCTION |
DECODE 5
- S—- "
3 o°u
CONTROL Py
E0LE A0 REGISTERS
SYSTEM v
CONTROL CONTROL y
SIGNALS {t
\/
T ADDRESS
CONTROL
|
SV GND + L e
FIGURE 2.0-1 ADDRESS 8US

2.1 CPU REGISTERS

The ZB0-CPU contains 208 bits of R/W memory that are accessible to the programmer.
Figure 2.0-2 illustrates how this memory is configured into eighteen 8-bit registers and
four 16-bit registers. All Z80 registers are impiemented using static RAM. The registers
include two sets of six general purpose registers that may be used individually as 8-bit
registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag
registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current
instruction being fetched from memory. The PC is automatically incremented after
its contents have been transferred to the address lines. When a program jump occurs
the new value is automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of
a stack located anywhere in external system RAM memory. The external stack
memory is organized as a last-in first-out (LIFQ) file. Data can be pushed onto the
stack from specific CPU registers or popped off of the stack into specific CPU regis-
ters through the execution of PUSH and POP instructions. The data popped from the
stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many
types of data manipulation.

The following pages (numbered 11-25) are reprinted with permission of Mostek Corporation. 1980 Mostek Corporation.

Z80-CPU REGISTER CONFIGURATION

FIGURE 2.0-2

MAIN REG SET ALTERNATE REG SET
I\
”~ ~ .
Acwwuroﬂ FLAGS ACTOUMNULATOR | FLAGS
A £ a £
C) c | B c
- GENERAL
o £ D 3 PURPOSE
! REGISTERS
L] L - L
i
-
L INTERARLST WEWCE Y
VECTOR REFRESH

WNOEX REGISTER X

PECIAL
PURPOSE

WOEX RECISTER 1Y Ao I8

STACK POSNTER SP
4

PROGRAM COUNTER #C ‘ |
/s

3. Two Index Registers (IX & 1Y). The two independent index registers hold a 16-bit

base address that is used in indexed addressing modes. In this mode, an index register
is used as a base to point to a region in memory from which data is to be stored or
retrieved. An additional byte is inciuded in indexed instructions to specify a dis-
placement from this base. This displacement is specified as a two’s complement
signed integer. This mode of addressing greatly simplifies many types of programs,
especially where tables of data are used.

. Interrupt Page Address Register (). The Z80-CPU can be operated in a mode where

an indirect call t@ any memory location can be achieved in response to an interrupt.
The | Register is used for this purpose to store the high order 8-bits of the indirect
address while the interrupting device provides the lower 8-bits of the address. This
feature allows interrupt routines to be dynamically located anywhere in memory with
absolute minimal access time to the routine.

. Memory Refresh Register (R). The Z80-CPU contains a memory refresh counter to

enable dynamic memories to be used with the same ease as static memories. This 7-bit
register is automatically incremented after each instruction fetch. The data in the
refresh counter is sent out on the lower portion of the address bus along with a
refresh control signal while the CPU is decoding and executing the fetched instruc-
tion. This mode of refresh is totally transparent to the programmer and does not
slow down the CPU operation. The programmer can load the R register for testing
purposes, but this register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers.
The accumulator holds the results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit operations, such as indicating whether
or not the result of an operation is equal to zero. The programmer selects the accumulator
and flag pair that he wishes to work with with a single exchange instruction so that he may
easily work with either pair.

12

-

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit regis-
ters that may be used individually as 8-bit registers or as 16-bit register pairs by the prog-
rammer. One set is called BC, DE, and HL while the complementary set is called BD’, DE’
and HL'. At any one time the programmer can select either set of registers to work with
through a single exchange command for the entire set. In systems where fast interrupt
response is required, one set of general purpose registers and an accumulator/flag register
may be reserved for handling this very fast routine. Only a simple exchange command need
be executed 10 go Detween the routines. This greatly reduces interrupt service time by
eliminating the requirement for sawing and retrieving register contents in the external
stack during interrupt or subroutine processing. Thess general purpose registers are used for
a wide range of applications by the programmer. They aiso simplify programming, especially
in ROM based systems where little external read/write memory is available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)
The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally

the ALU communicates with the registers and the external data bus on the internal data bus.
The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exciusive OR Reset bit

Compare Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and
decoded. The control section performs this function and then generates and supplies all of
the control signals necessary to read or write data from or to the registers, controls the
ALU and provides all required external control signals.

4.0 CPU TIMING

The Z80-CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write
1/0 device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations
can take from three to six clock periods 10 complete or they can be lengthened to syn-
chronize the CPU to the speed of external dewvices. The basic clock periods are referred to as
T states and the basic operations are referred 10 a5 M {for machine) cycles. Figure 4.0-0
illustrates how 2 typical instruction will be merely 2 series of specific M and T cycles. Notice
that this instruction consists of three machine cycles (M1, M2 and M3). The first machine
cycle of any instruction s a fetch cycle which is four, five or six T states long (unless
lengthened by the wait signal which will be fully described in the next section). The fetch
cycle (M1) is used to fetch the OP code of the next instruction to be executed. Subsequent
machine cycles move data between the CPU and memory or /O devices and they may have
anywhere from three to five T cycles (again they may be lengthened by wait states to
synchronize the external devices to the CPU). The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

BASIC CPU TIMING EXAMPLE

Machne Cycie

pre) i w2)
10P Code Faten) Memary Poad) IMlemary Wirtel

Imrructeon Cycle

— - -

FIGURE 4.00

All CPU timing can be broken down into 2 few very simple timing diagrams as shown in
Figure 4.0-1 through 4.0-7. These diagrams show the following basic operations with and
without wait states (wait states are added to synchronize the CPU to slow memory or
1/0 devices).

4.0-1. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 1/0O read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.05. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable Interrupt Request/Acknowledge Cycle
4.0-7. Exit from a HALT instruction

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is
placed on the address bus at the beginning of the M1 cycie. One half clock time later the
MREQ signal goes active. At this time the address 10 the memory has had time to stabilize
so that the falling edge of MREQ can be used directly as 2 chip enable clock to dynamic
memories. The BD line also goes active to indicate that the memory read data should be
enabled onto the CPU data bus. The CPU samples the data from the memory on the data
bus with the rising edge of the clock of state T3 and this same edge is used by the CPU
to turn off the RD and MREQ signals Thus the data has already been sampled by the CPU
before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to
refresh dynamic memories. (The CPU uses this time to decode and execute the fetched
instruction so that no other operation could be performed at this time). During T3 and T4
the lower 7 bits of the address bus contain 2 memory refresh address and the signal
becomes active to indicate that a refresh read of all dynamic memories should be accom-
plished. Notice that a RD signal is not generated during refresh time to prevent data from
different memory segments from being gated onto the data bus. The MREQ signal during
refresh time should be used to perform a refresh read of all memory elements. The refresh
signal can not be used by itself since the refresh address is only guaranteed to be stable
during MREQ time.

INSTRUCTION OP CODE FETCH

- S MICscie —
!
y 3 "3 Ts Ty

S T ek N =3 7}

AD A I = | i I SEERESH ADDR) 8

wia T 1V T s e B
40 ¥ 3 ¥

vt S ol e o e T e
e i | ¢ I . S
Do - D7 E—

i Y ;\ S

FIGURE 4.0-1

Figure 4.0-1A illustrates how the fetch cycle is delayed if the memory activates the WATT
line. During T2 and every subsequent Tw, the CPU samples the WAIT line with the falling
edge of . If the WAIT line is active at this time, another wait state will be entered during

INSTRUCTION OP CODE FETCH WITH WAIT STATES

I e iy e rr
AQ ~ ATS I o I REFRESH ADDR I
wia; T i 1
% F [
DO - D7 Df
W« N I
ot abee— BN PN o X e e
1 r

FIGURE 4.0-1A

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code
fetch (M1 cycle). These cycles are generally three clock periods long unless wait states are
requested by the memory via the WAIT signal. The MREQ signal and the RD signal are used
the same as in the fetch cycle. In the case of a memory write cycle, the MREQ also becomes
active when the address bus is stable so that it can be used directly as a chip enable for
dynamic memories. The WR line is active when data on the data bus is stable so that it can
be used directly as a R/W pulse to virtually any type of semiconductor memory. Further-
more the WR signal goes inactive one half T state before the address and data bus contents
are changed so that the overiap requirements for virtually any type of semiconductor
memory type will be met.

MEMORY READ OR WRITE CYCLES

(R AN TR (N (R VR R (N B T TR S
I

AD A5 Y MEMORY ADOR 3 § MEMOHY ADDH

DATA BUS) — DATa OUT -
(D0-D7) 1 Cd n

——— . — - ———— e e - ——— —————
walT ’ ‘ ’ ‘
— e e e - —— ——— e - ———————

FIGURE 4.02

16

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or
write operation. This operation is identical to that previously described for a fetch cycle.
Notice in this figure that a separate read and a separate write cycle are shown in the same
figure although read and write cycles can never occur simultaneously.

MEMORY READ OR WRITE CYCLES WITH WAIT STATES

T T, Te 7- ’) _
Y s T s A i T e O . WY s MR
AD - A15 I ey J
WRED S EEASEE | r
= / READ
DaYTa Bu \ S /'cvc-\s
Pt | -
N j I wRITE
:&:Y“:g:5 ——L 1 DATA OUT 8 [evoue
il e 5 B e s R 0l % i Sea el i oS
FIGURE 4.0-2A

INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an 1/0 read or 1/O write operation. Notice that during I/0 operations
a single wait state is automatically inserted. The reason for this is that during 1/O operations,
the time from when the IORQ signal goes active until the CPU must sample the WAIT line
is very short and without this extra state sufficient time does not exist for an 1/0 port to
decode its address and activate the WAIT line if a wait is required. Also, without this wait
state it is difficult to design MOS 1/O devices that can operate at full CPU speed. During
this wait state time the WAIT request signal is sampled. During a read 1/O operation, the
RD line is used to enable the addressed port onto the data bus just as in the case of a
memory read. For 1/O write operations, the WR line is used as a clock to the |/0 port, again
with sufficient overlap timing automatically provided so that the rising edge may be used as
a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line.
The operation is identical to that previously described.

3US REQUEST/ACKNOWLEDGE CYCLE

Figure 4.04 illustrates the timing for a Bus Reguest/Acknowledge cycle. The BUSRQ
signal is sampled by the CPU with the rising edge of the last clock period of any machine
cycle. If the BUSRQ signal is active, the CPU will set its address, data and tri-state control
signals to the high impedance state with the rising edge of the next clock pulse. At that
time any external device can control the buses to transfer data between memory and 1/0
devices. (This is generally known as Direct Memory Access [DMA] using cycle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles
as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories
are beina used. the external controller must also perform the refresh function. This situation

INPUT OR OUTPUT CYCLES

AD A7 1 PORT aDDH I
ORQ \ I

R e %

gy A

roiteis EAL o

o e
an | .) (T S
DATA BUS —e—ed oult —

*Ins=rtea by 280 CPU

FIGURE 4.0-3

INPUT OR OUTPUT CYCLES WITH WAIT STATES

AD - a7 1 PORT ADDHF 55 1
0RO \ l
CATA BUS J_L".
20 \ |

*Inserted by Z80 CPU

FIGURE 4.0-3A

18

BUS REQUEST/ACKNOWLEDGE CYCLE

A=y M Cydie B Avalebie Statet —— g
Law T Stase T, T. T. Ty
|
=3 \ F I I L | 1 =L \
SAQ LT
= } i s
SUSAx —‘ I__
— S s
o007 B M S ——
L S s ool -
AFSH |
FIGURE 4.04

INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal
(INT) is sampled by the CPU with the rising edge of the last clock at the end of any in-
struction. The signal will not be accepted if the internal CPU software controlled interrupt
enable flip-flop is not set or if the BUSRQ signal is active. When the signal is accepted a
special M1 cycle is generated. During this special M1 cycle the IORQ signal becomes active
linstead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
VECIOr on the data bus. Notice that two wait states are automatically added to this cycle,
These states are added so that a ripple priority interrupt scheme can be easily implemented.
The two wait states allow sufficient time for the ripple signals to stablilize and identify
which 1/O device must insert the response vector. Refer to section 8.0 for details on how the
interrupt response vector is utilized by the CPU.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Last M Cycie ! L2
of {=straction

I | Lase T Seane Ty T2 L , Vo' i T3

{
v ———— ————C—————F—————f————'ﬂ-———— —— — — —

—_———— — - . T — — — — . . —————— — — —— — —— —— ————

AD - a5 B] = ! | ReFrEsH
% | | —
o ~h:
ioAa 1)
oatasus : ﬁ —(=)

Qe SEsceegs SRR AT SO :__:Z}'.T'C::_-_—_—_'
"o i I | l

FIGURE 4.05 Mode 0 shown

Figure 4.0-5A illustrates how additional wait states can be added to the interrupt response
cycle. Again the operation is identical to that previously described.

INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES

v
|
:

T Ty Ta

' e (e T e S s TEE e TN aa VSNV Eay | SES S SR

a0 -2) #C L REFRESH ADDR
L \ J
S s s s i (i P e A o
1080 \ /
. % }
DATA BUS { }
MEEC L__J—
RD
FIGURE 4.0-5A Mk S oo

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the reguest/acknowledge cycle for the non-maskable interrupt.
A pulse on the NMI input sets an internal NMI latch which is tested by the CPU at the
end of every instruction. This NMI latch is sampled at the same time as the interrupt line,
but thls line has priority over the normal interrupt and it can not be disabled under soft-
ware control. Its usual function is to provide immediate response to important signals
such as an impending power failure. The CPU response to a non maskable interrupt is
similar to a normal memory read operation. The only difference being that the content
of the data bus is ignored while the processor automatically stores the PC in the external
stack and jumps to location 0066H. The service routine for the non maskable interrupt
must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an
interrupt is received (either a non-maskable or a3 maskable interrupt while the interrupt
flip flop is enabled). The two interrupt lines are sampled with the rising clock edge during
each T4 state as shown in Figure4.0-7. If 2 non-maskable interrupt has been received or a
maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt
state will be exited on the next rising clock edge. The following cycle will then be an inter-
rupt acknowledge cycle corresponding to the type of interrupt that was received. |f both are
received at this time, then the non maskable one will be acknowledged since it was highest
priority. The purpose of executing NOP instructions while in the halt state is to keep the
memory refresh signals active. Each cycle in the halt state is a normal M1 (fetch) cycle
except that the data received from the memory is ignored and a NOP instruction is forced
internally to the CPU. The halt acknowledge signal is active during this time to indicate
that the processor is in the halt state.

NON MASKABLE INTERRUPT REQUEST OPERATION

AR~ AN A = iB § nerness (]

v \ =

weeo \ 1\ _f

T \ ' 3

AFsn L (N

*M2 and M3 are stack write Operanons

FIGURE 408

HALT EXIT

L —— ™ M

l Ta Ty l T3 T3 Ta | T 2

_(_I_J\‘I\Jl\h =3

WALT | ,) | : J |
I [, RN I | I 'O\ (AtETe S Rt
N B - ‘ |

HALT INSTRUCTION
IS RECEIVED
DURING THIS
MEMORY CYCLE

FIGURE 4.0-7

8.0 INTERRUPT RESPONSE

The prupose of an interrupt is to allow peripheral devices to suspend CPU operation in an
orderly manner and force the CPU to start a peripheral service routine. Usually this service
routine is involved with the exchange of data, or status and control information, between
the CPU and the peripheral. Once the service routine is completed, the CPU returns to the
operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z80-CPU has two interrupt inputs, a software maskable interrupt and 3 non-maskable
interrupt. The non-maskable interrupt (NMI) can not be disabled by the programmer and
it will be accepted whenever a peripheral device requests it. This interrupt is generally
reserved for very important functions that must be serviced whenever they occur, such as
an impending power failure. The maskable interrupt (INT) can be selectively enabled or
disabled by the programmer. This allows the programmer to disable the interrupt during
periods where his program has timing constraints that do not aliow it to be interrupted.
In the Z8BO-CPU there is an enable flip flop (called IFF) that is set or reset by the prog-
rammer using the Enable Interrupt (El) and Disable Interrupt (DI) instructions. When the
IFF is reset, an interrupt can not be accepted by the CPU.

Actually, for purposes that will be subseguently explained, there are two enable flip flops,
called IFF 1 and IFFy.

IFFy IFF5
Actually disables interrupts Temporary storage location
from being accepted. for IFF 4.

The state of IFFq is used to actually inhibit interrupts while IFF5 is used as a temporary
storage location for IFF 1. The purpose of storing the IFF 4 will be subsequently explained.

A reset to the CPU will force both IFF and IFF9 1o the reset state so that interrupts are
disabled. They can then be enabled by an El instruction at any time by the programmer.
When an El instruction is executed, any pending interrupt request will not be accepted until
after the instruction following El has been executed. This single instruction delay is neces-
sary for cases when the following instruction is a return instruction ana interrupts must not
be allowed until the return has been completed. The El instructions sets both IFFq and
IFF2 to the enable state. When an interrupt is accepted by the CPU, both IFF4 and IFF5
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a
new El instruction. Note that for all of the previous cases, IFFq and IFF are always equal.

The purpose of IFF5 is to save the status of IFF; when a non-maskable interrupt occurs.
When a non-maskable interrupt is accepted, IFF{ is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non.maskable interrupt has been accepted
maskable interrupts are disabled but the previous state of IFFq{ has been saved so that the
complete state of the CPU just prior to the non-maskable interrupt can be restored at any
time. When a Load Register A with Register | (LD A, |) instruction or a Load Register A
with Register R (LD A, R) instruction is executed, the state of IFF is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFF is thru the execution of a Return From
Non-Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non
maskable interrupt service routine is compiete, the contents of IFF5 are now copied back
into IFF4, so that the status of IFF{ just prior to the acceptance of the non-maskable
interrupt will be restored automatically.

Figure 8.0-1 is 2 summary of the effect of different instructions on the two enable flip flops.

INTERRUPT ENABLE/DISABLE FLIP FLOPS

Action IFF; IFF,

CPU Reset 0 0

Di 0 0

el ! 1

IDA ! . . IFF —*Panty flag
IDAR . . IFF> —Parity flag
Accept NMI 0 .

RETN IFFy; o IFF> —IFF;
vccept INT 0 o

RETI . .

FIGURE 8.0-1 “e™ indicates no change

CPU RESPONSE
Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the
CPU ignores the next instruction that it fetches and instead does a restart to location
D066H. Thus, it behaves exactly as if it had received a restart instruction but, itisto a
location that is not one of the 8 software restart locations. A restart is merely a call to a
specific address in page 0 memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three
possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupt-
ing device can place any instruction on the data bus and the CPU will execute it. Thus, the
interrupting device provides the next instruction to be executed instead of the memory.
Often this will be a restart instruction since the interrupting device only need supply a
single byte instruction. Alternatively, any other instruction such as a 3 byte call to any lo-
cation in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal
number for the instruction. This occurs since the CPU automatically adds 2 wait states to an
interrupt response cycle to allow sufficient time to implement an external daisy chain for
priority control. Section 4.0 illustrates the detailed timing for an interrupt response. After
the application of RESET the CPU will automatically enter interrupt Mode 0.

Mode 1
When this mode has been selected by the programmer, the CPU. will respond to an interrupt

by executing a restart to location 0038H. Thus the response is identical to that for a non
maskable interrupt except that the call location is 0038H instead of 0066H. Another

Mode 2

This mode is the most powerful interrupt response mode. With a single 8-bit byte from the
user an indirect call can be made to any memory location.

With this mode the programmer maintains 2 table of 16 bit starting addresses for every in-
terrupt service routine. This table may be located anywhere in memory. When an interrupt
is accepted, a 16 bit pointer must be formed to obtzin the desired interrupt service routine
starting address from the table. The upper 8 bits of this pointer is formed from the contents
of the | register. The | register must have been previously loaded with the desired value by
the programmer, i.e. LD I, A. Note that a CPU reset clears the | register so that it is ini-
tialized to zero. The lower eight bits of the pointer must be supplied by the interrupting
device. Actually, only 7 bits are required from the interrupting device as the least
bit must be a zero. This is required since the pointer is used to get two adjacent bytes to
from a complete 16 bit service routine starting address and the addresses must always start
in even locations.

’
desired starting address
Interrupt puinted to by
Service
Routine < low vrder } I REG 7 BITS FROM |,
Starting fugh order CONTENTS | prripHERAL [°
Address
Table
| SERNSCCR——

24

The first byte in the table is the least significant (low order) portion of the address. The
programmer must obviously fill this table in with the desired addresses before any interrupts
are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/
Write Memory) to allow different peripherais to be serviced by different service routines.

Once the interrupting device supplies the lower portion of the pointer, the CPU automat -
cally pushes the program counter onto the stack, obtains the starting address from the table
and coes a jump to this address. This mode of response requires 19 clock periods to com-
plete (7 to fetch the lower 8 bits from the interrupting device, 6 to save the program
counter, and 5 to obtain the jump address.)

Note that the Z80 peripheral devices all include 3z daisy chain priority interrupt structure
that automatically supplies the programmed vector to the CPU during interrupt acknow-
ledge. Refer to the Z80-P10, Z80-SI0 and Z80-CTC manuals for details.

@

MREQ

ICRQ

DATA BUS

warT

RD

BC XREFRESH
i
}
: |
1
| k.~ /
1 i
1 : S o .
. : B P,
—————————— -—-——————lJ-—————p——----ib---- —— — T —————————
1 E 5
__________________ 1 DA IR WSS W I T, TR R
n |
I I
L Dassey Chain :4 Vector Placed
1 Priaeity Frozen T onto Data Bus
1 I

Z80 INTERRUPT ACKNOWLEDGE SUMMARY

i)

2)

3)

PERIPHERAL DEVICE REQUESTS INTERRUPT. Any device requesting and interrupt
can pull the wirec-or line INT low.

CPU ACKNOWLEDGES INTERRUPT. Priority status is frozen when M1 goes low
during the Interrupt Acknowledge sequence. Propagation delays down the IEI/IEO
daisy chain must be settled out when IORQ goes low. If IEl is HIGH, an active Peri-
pheral Device will place its Interrupt Vector on the Data Bus when 1ORQ goes low.
That Peripheral then releases its hold on INT allowing interrupts from a higher

priority device. Lower priority devices are inhibited from placing their Vector on
the Data Bus or Interrupting because |EO is low on the active device.

INTERRUPT IS CLEARED. An active Peripheral device (IEI=1, |IEO=0) monitors
OP Code fetches for an RETI (ED 4D) instruction which tells the peripheral that its
Interrupt Service Routine is over. The peripheral device then re-activates its internal
Interrupt structure as well as raising its |EO line to enable lower priority devices.

INTERRELATIONSHIP OF INT, NMI; AND BUSRQ

The following flow chart details the relationship of three control inputs to the Z80-CPU. Note
the following from the flow chart.

1. TNT and NM1 are always acted on at the end of an instruction.

2. BUSRAQ is acted on at the end of a machine cycle.

3. While the CPU is in the DMA MODE, it will not respond to active inputs on TNT or NI NMI.

4. These three inputs are acted on in the following order of priority: alBUSRQ b)N c)INT

b _

PARTS LIST AND SCHEMATIC

The Parts List and Schematic included with this manual are for the use of persons wishing to repair or modify their board after
the warranty period has lapsed. Remember, any attempt to modify or repair the board during the warranty period will void
the warranty!! The advanced user will also find the schematic useful when he attempts to implement the many advanced
features of the DG-80.

PARTS LIST
ut Z80A RP-1, RP-2 1K ohm %W SIP
u2 74504 RP-3 4.7K ohm YW SIP
U3 7474 R1, R2, RS, R6,'19 1K ohm %W 5%
U4 74121 R10-R19
Us 74132 R3 22 ohm %W 5%
U6 7474 R4 220 ohm YaW 5%
u7 74148 R7 15K ohm YeW 5%
us 741532 RS, R9 47K ohm YW 5%
us 7415240
u1o User ROM c1, C3 0.0015mf Polyester
U1 User ROM c2 33pf Silver Mica
u12 7474 C4, C5 10mf 16V Tantulum
TE] 7410 cs. C7 10mf 35V Low-Leakage Electrolytic
U4 7408 £8,C9,C10.C11 2 2mf 35V Low-Leakage Electrolytic
u1s 7415240 C12 — C27 0.1mf Ceramic
U6 741532
u17 7415240 D1, D2 1N4148
u18 7415240
u19 74156 Y1 4.096 MHz
u20 74156
u21 74156 a1 2N3906
u22 741504
u23 7415240
u24 745240

7415240

LM341P12
LM320MPS

0061 0D Wawd0faK) w00 DY

SNOHLDINNGD ANddNS HAMOJ 08-00

IS

ol
Len
o\

e € | O
Uen
S g0 120 800 w w
Dok g woL (1) W) 2
EOI WM U ey d oo Ly sajoN \ -
n
IR 4 ¢ [] ‘ o
L
ft
.HME I—len_] " IHH..U _ (2]] HB LA .H_|3 i I~.|r.._]
an’ (B4l LN — Wn i Ln
Tl TEIET TEIET f T LT
-
i "
] wo | a v war [o 9o [l L] mwo | o Pl i) 210 9 [0}
0l LT "n == |00 " g] el == =N === R
¥ s ' s 1 ¢ .
1 i pe 1 — e a | —
) _

28

APPENDIX A: OPERATING NOTES

Operation of the Heath H8 computer using the DG-80 CPU differs from that using the Heath 8080 CPU in the following areas:

1)

2)

3)

ION LED — The H8* front panel provides an LED labelled ION which normally indicates whether hardware
interrupts have been enabled or disabled. The designers of the Z80 microprocessor determined that in most
applications this information was irrelavent and therefore did not provide a hardware signal equivalent to the
8080 “interrupts enabled’ signal. For this reason, the ION LED on the Heath H8* front panel will remain on
regardiess of whether the interrupts are enabled or disabled when the DG-80 CPU is being used.

MASTER RESET — The DG-80 is designed to provide 2 short reset signal to the CPU in order to protect the
contents of any dynamic RAM in the system_ For this reason, if the f and RST/# keys are held down for a long
period of time, the system will reset and then interpret these keys improperly. Therefore, when a ““Master
Reset’” is desired, the @ and RST/@ keys should be pressed simuitaneously and held only briefly. (A few tries
will give you the *“feel” for this operation!) If the reset is heid too long, the H8* will go into the cassette tape
load mode in which the front panei keyboard will appear non-functional.

PAM-8 SINGLE STEP MODE — As mentioned previously, the Z80 microprocessor does not provide a
hardware “INTERRUPTS ENABLED" signal as found on the 8080A. Since the Heath PAM-8 single step
function (as well as the Heath Console Debugger single step function) require this signal, the H8* computer
cannot be used in this mode of operation with the DG-80 instalied. When trouble shooting relatively simpie
programs, we suggest using the PAM-8 breakpointing feature discussed in the Heath H8* Operations
Manual. The advanced user of the DG-80 will find that features of this CPU coupled with his own ingenuity will
allow him to use software from sources other than Heath. This will provide him with many options in the area

of debugging routines.

APPENDIX B: USING THE DG-32D DYNAMIC RAM BOARD WITH THE DG-80 CPU

The DG-32D memory board provides several jumper selectable modes of operation. Among these are two modes designed to
be compatible with the DG-80 CPU.

MODE 1: This mode adjusts the DG-32D ON-BOARD refresh timing for use with the DG-80. For operation in Refresh Mode 1,
the following jumpers should be set on the DG-32D:

J1 13
J2 192
J33 12
J4 183
J5 NO CONNECTION OR 13

MODE 2: This mode allows the DG-32D to be refreshed from the Z80 Refresh Signals provided by the DG-80 and is the
RECOMMENDED mode of operation. Since the Z80 microprocessor provides refresh signals upon execution of the HALT
instruction, memory contents may be maintained indefinitely in the HALT state. Jumpers for this mode of operation should
be set as follows:

183
DOES NOT MATTER
i
"2
3

GEGRS

